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Generalization of the Non-additive Measures 
of Uncertainty and Information and their 
Axiomatic Characterizations* 

P. N. RATHIE 

The object of this paper is to define generalized non-additive (i) entropy of order a and type /? 
and (ii) information of order a and type /? and to give their axiomatic characterizations. Further 
generalizations are indicated towards the end of the paper. 

1. INTRODUCTION AND THE GENERALIZATIONS 

Let P = (p i , . . . , p„), n ^ 1 be a finite discrete probability distribution with pt > 

> 0, W(P) = ^pi = 1. W(P) is called the weight of the distribution P. Let A denote 
!=1 

the set of all finite discrete generalized probability distributions. Introducing a para­

meter p, we call W(P; 0) = £ pf <; 1, /? > 0, as the generalized weight of the distribu-
; = i 

tion P. Clearly, W(P; 1) = W(P). 
In what follows, £ will stand for the sum Ŷ  unless otherwise specified. 

i = l 

Now we introduce a new generalization of the non-additive entropy [2,4] as 

(i.i) %(p; p) = (i - i p r ^ / M / a - 21-*), 
a * 1 , P > 0, a + J? - 1 > 0 ; 

which we shall call as the generalized non-additive entropy of order a and type p. 
Let P — (pu ..., p„) e A and Q = (qu ..., q„)e A be the two generalized proba­

bility distributions, the correspondence between the elements of P and Q is that given 
by their subscripts. Then we define a new generalized non-additive information of 

* The author is thankful to Professor A. M. Mathai of McGill University for providing 
financial assistance through his N.R.C. grant No. A 3057-282-08 which made this work possible. 



order a and type fi as 

(1.2) L(P;P\Q) = (i-lPr 

a + 1 , P > 0, a + £ - 1 > 0 . 

For /? = 1, (1.2) reduces to the non-additive measure of information of order a which 
has recently been characterized by means of a functional inequality by the author [3]. 

The additive entropy of order a and type /? [5,6] is defined by the expression, 

(1-3) tff(P) = (1 - a)-1 log2 (I>r'-7I>?) . 

a # 1 , j 8 > 0 , a + £ - 1 > 0 ; 

where as the additive information of order a and type /? [7] is defined as, 

(i.4) n(p | Q) = («-1)-1 i0g2 o r ' - ^ r / x v ? ) > 
a 4= 1 , j8 > 0 , a + £ - 1 > 0 . 

It is easy to find from (1.1) and (1.3) that* 

(1.5) Ha(P; fi) = (1 - 2<1-*)H""<P))/(l - 21"") ; 

and from (1.2) and (1.4), we get 

(1.6) Ia(P; P\Q) = (1- 2<-1>'-'<|,l->)/(l - 2 - 1 ) . 

The conditions /? > 0 and a + j8 — 1 > 0 are put so that some of the p's may be 
allowed to take zero values. 

The object of this paper is to prove some characterization theorems for the general­
ized non-additive measures of uncertainty (1.1) and information (1.2) respectively by 
assuming certain sets of postulates. On specializing the parameter ft (i.e. /> = l), one 
can easily obtain similar results for the ordinary non-additive measures of uncertainty 
and information. 

2. CHARACTERIZATION OF THE GENERALIZED UNCERTAINTY 

This section deals with the characterizations of the generalized non-additive 
measures of uncertainty, tfa(P; ft) by two sets of postulates. The axiomatic characteri­
zations are given below in the form of two theorems which generalize the recent 
results of [4]. • 

Postulate 1. Lim Ha(l - p; j$)\p = A, peA. 

* The author thanks I. Vajda, the reviewer of this paper, for suggesting the relationship 
between Ha(P; /?) and H^(P). 



Postulate 2. Ha(\; ft) = 1. 127 

Postulate 3. If p, q e A, then 

Ha(pq; 0) = Ha(p; 0) + Ha(q; 0) + (21 - - I) Ha(p; 0) Ha(q; 0). 

Postulate 4. If P =(pt,..., p„)eA, Q = (qu ..., qm) e A and W(P; 0) + W(Q;0)^ 
=• 1, then 

H(PuQP)= HP^)Ha(P:P)+W(Q;P)Ha(Q;P) 

W(P; p) + W(Q; p) 

where P u Q = (pu ..., p,„ qu...,qm). 
It is sufficient to assume postulate 4 for n = m = 1, the result for the genera! case 

follows by induction. 

Theorem 1. A function Ha(P; p) satisfying the postulates 1, 2, 3 and 4 is given by 
(1.1) for n = 2. 

Proof. For p = 1 the postulate 3 takes the following form, 

(2.1) Ha(l; p) [1 + (2*"1 - 1) Ha(q; /?)] = 0 . 

Taking .7 = \ and using the postulate 2, we find that 

(2.2) Ha(\;P) = 0. 

Now with q = 1 - 5p/p, the postulate 3 takes the form, 

(2.3) Ha(p; p) - Hip - 8p; /}) = //a(l - 8Pjp; p) [(l - 21"«) Ha(p; /?) - 1] . 

Dividing (2.3) by 5p and taking limits as 5p -» 0, we get 

(2.4) dHa(p; P)jdp = (Ajp) [(1 - 21 - ) Ha(p; /?) - 1] , 

by using the postulate 1. 

Solving the differential equation (2.4) under the boundary conditions given in the 
postulate 2 and (2.2), we arrive at 

(2.5) Ha(p;P) = (p«^ -\)lp-°-V). 

Hence using (2.5) in postulate 4 proves theorem 1. 
Postulate 1 implies that Ha(p; /?) is differentiable. We can weaken this postulate by 

assuming the following postulate of continuity: 

Postulate T. Ha(p; 0) is a continuous function of p e (0,1]. 



Now we prove the following theorem: 

Theorem 2. A function HjP; P) satisfying the postulates V, 2, 3 and 4 is given 
by (1.1) forn £ 2. 

Proof. Let 

(2.6) ga(p;P)= l + (2l-«-l) Hjp;P), 

then from postulate 3, we have 

(2.7) gjpq; p) = gjp; p) gjq; p). 

Since Hjp; p), by postulate V, is continuous in (0,1] and therefore gjp; p) is also 
continuous. Hence the only non-zero continuous solutions [1, p. 41] of (2.7) are 
given by 

(2.8) gjp; p) = f , 

where a is a real arbitrary constant which may depend on a and p. 
Now the use of postulate 2 yields a = a. — 1 giving (2.5). Hence as before, the 

postulate 4 proves the theorem. 

3. CHARACTERIZATION OF THE GENERALIZED INFORMATION 

In this section we characterize the generalized non-additive measure of information 
of order <x and type p. We start by assuming the following postulates. 

Postulate 1. Lim Ijl; p I 1 - q)jq = A, q e A. 
q->o + 

Postulate 2. ijp; P | 1) is a continuous function of p e (0,1]. 

Postulate 3. Ijl; P | i ) = 1. 

Postulate 4. ijh P \ i ) = 0. 

Postulate 5. If pl3 P%, qx, q2 6 A, then 

iJViVi, P | q,q2) = Ia(Pi\ P\q1) + ljp2\ P\q2) + 

+ (2*-i-l)IJPl;P\q1)lJp2;P\q2). 

Postulate 6. If P, Q 6 4, then 

I(P-P\Q)~ W(-Pi; A J " ( f i ; g 1 6 l ) + ^ ( P 2 ; j8 ) /a ( f2 ; g I g z ) 

w(/ J
l;/?) + ^ ( P 2 ; / 3 ) 

where P = Pj u P 2 and Q = g ! u g 2 . 



Theorem 3 . A function Ia(P; p \ Q) satisfying the postulates 1, 2, 3, 4, 5 and 6 is 129 
given by (1.2) for n = 2. 

Proof. Taking pt — p, p2 = qt = 1 and q2 = q in postulate 5, we have 

(3.1) 7.(p; p\q) = 7.(p; /? [ l) + 7.(1; / , [« ) + (2-"1 - l) 7.(p; )8 | 1) 7.(1; j8 | «) 

Postulate 5 for p t = p 2 = 1 gives 

(3.2) 7.(1; p | flla2) = 7.(1; p\q,) + 7.(1; j8 | «j2) + 

+ ( 2 - 1 - 1) 7.(1;/? | «.) 7.(1 ;fi \ q2) . 

Now for q2 = 1, (3.2) yields 

(3.3) 7.(1; p | 1) [1 + ( 2 - 1 - 1)7.(1; ,3 | «.)] = 0 . 

Taking qt — i and using the postulate 3, we have 

(3.4) 7.(1;/? |1) = 0 . 

Again taking q1 = q, q2 = 1 — §g/a in (3.2), we get 

7.(1; p | q) - 7.(1; /* | q - Sq) = 7.(1; /? | 1 - 5a/g) [(1 - 2"~1)7.(1; p \ q) - 1] ; 

which on dividing by 5cj, taking limits as Sq -*• 0 and using the postulate 1 gives the 
following differential equation 

(3.5) d7.(l; P | q)jdq = (Ajq) [(1 - 2 s - 1 )7 . (1 ; P \ q) - 1] . 

Solving the differential equation (3.5) under the boundary conditions given in (3.4) 
and the postulate 3, we have 

(3.6) • Ia(l;P\q)~(qi-°-l)l(2°-i-l). 

Taking qt = q2 = 1 in postulate 5, we get 

(3.7) 7.(p!p2; p | 1) = /„(- . ; j8 [ l) + 7.(p2; j8 | l) + 

+ ( 2 - 1 - l ) 7 . ( p 1 ; i S | l ) 7 . ( p 2 ; ^ | l ) . 

Let 

(3.8) ga(P; P 11) = 1 + ( 2 - J - 1) 7.(p; j8 | 1), 

then from (3.7) we have 
(3-9) gx(PlP2; p 11) = ga(Pl; P \ 1) o.(p2; )611). 

By postulate 2 the continuity of 7.(p; P \ 1) implies the continuity of ga(p; P \ 1) 
and hence the non-zero continuous solutions of (3.9) are given by [1, p. 41], 

(3.10) ga(P; P I 1) = p \ 



130 where a is a real arbitrary constant. Hence 

(3.11) Ia(p;P\l) = (P°- 1)1(2-1 -I). 

Thus (3.1) on using (3.6) and (3.11) gives 

(3.12) / a (p ; /? |g ) = ( / / ^ - - l ) / ( r - 1 - 1 ) . 

The use of postulate 4 yields a = a — 1 giving 

(3.13) llp;f}\q) = (p*-iqi-*-l)\(2*-l-l). 

Theorem 3 can now be obtained on using (3.13) and the postulate 6. 

Now we replace the postulate 1 by a weaker postulate assuming the continuity of 

I.(UP\q). 

Postulate T. lj\; ft I q) is a continuous function of q e (0,1]. 

Theorem 4. A function Ia(P; fi | Q) satisfying the postulates V, 2, 3, 4, 5 and 6 is 
given by (1.2) for n >. 2. 

Proof. As done in the later part of the proof of theorem 3, it is easy to prove in 
this case that 

(3.14) Ia(p; p\l) = (f- 1)1(2*-' -i) 

and 

(3.15) / r i ; / j | a ) = ( f l » - l ) / ( 2 ° - i - l ) 

giving 

(3.16) / a (p; j S|g) = ( p V - l ) / ( 2 ^ 1 - l ) . 

The use of postulate 3 and 4 yields a = a — 1 and b = 1. — a giving (3.13) from 
which theorem 4 follows by postulate 6. 

4. FURTHER GENERALIZATIONS 

In this section we give some further generalizations of the non-additive measures 
of uncertainty and information. They are: 

(i) The generalized non-additive entropy of order a and type {/?,}, 

(5.1) Ha(P; ft | fi) - (1 - YPrfi'-limW - 21-), 
a * 1 , ft>0, a + ft-l>0. 



(ii) The generalized non-additive information of order a and type {Pi}, 

(5.2) IIP; fit | Q) = (1 - IP?"-'*}-7M/(1 - 2°t_1) > 
a * 1 , /?,• > 0 , a + fit - 1 > 0 . 

Clearly (5.1) and (5.2) yield (1.1) and (1.2) respectively for j3; = P for all / = 1, . . . , n. 

It is proposed to study (5.1) and (5.2) in subsequent papers. 

(Received August 12, 1970.) 
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Zobecnění neaditivních měr nejistoty a informace a jejich 
axiomatické charakteristiky 

P. N. RATHIE 

Budiž P = (p,, . . . , p„) konečné diskrétní rozložení pravděpodobnosti pro p ; > 0, 

Y,Pi ú 1 • Nechť A znamená množinu všech konečných diskrétních rozložení pravdě­

podobnosti. Pak zobecněná neaditivní entropie řádu a a typu fí je definována vztahem 

(lA) IaIj;/í) = ( i - i p r ' ? - i / i p ? ) / a - 2 1 - ) , 

a 4= 1, P > 0, a. + p - 1 > 0 . 

Rovněž pro P = (p,, . . . , p„) e A a Q = (qu ..., q„) e A je definována zobecněná 



132 neaditivni informace řádu a a typu /? vztahem 

(1.2) ia(p; p | Q) = (i - Irt^-^ř-ZlpO/Ci - 21-1), 
a + 1, j8 > 0 , a + /» - 1 > 0 . 

Pro (1.1) a (1.2) jsou dokázány čtyři charakterizační věty při uvážení určitých 
souborů postulátů. Je naznačeno další zobecnění (1.1) a (1.2). První dvě věty zobec­
ňují výsledky získané I. Vajdou. 

Dr. P. N. Rathie, Visiting Scientist, Department of Mathematics, McGill University, Montreal 
110, Quebec. Canada. 


