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Some Nonlinear Shift Register Generators 
JOSEF PUZMAN 

In the contribution some shift register generators producing certain cyclic sequences are 
considered. The problem is concentrated on the searching procedure of suitable, in general non
linear, feedback Boolean function to generate the sequences of length 2" and 2" — 1. The number 
of such Boolean functions is derived and some of their necessary properties are established by 
means of which it is possible to reduce the amount of Boolean function being examined. 

1. INTRODUCTION 

In many applications the following problem arises. Let the n-stage shift register 
(the cascade of n delay elements) be given and letf(xu x2, ..., x„) be the Boolean 
function of n variables which determined the dependency between the outputs of 
every stage of shift register and the input of the first one (so-called feedback Boolean 
function — FBF). Connection of both objects forms the general shift register genera
tor (SRG). Further, let the SRG generate the binary cyclic sequence of a certain 
cyclic length. Then, it is natural to ask whether any FBF which realizes such seqaen-
cies exists, and, if so, to give the necessary and sufficient conditions for such FBF's. 
In our contribution we shall try to answer some questions concerning the cycles of 
length 2" and 2" — 1 and to point out so far unsolved problems. 

2. M- AND m-SEQUENCES 

We shall start with the explanation of the action of general SRG. Let the stages of 
the shift register be numbered from the first delay element to the last one by positive 
integers 1, 2, ..., n, the corresponding outputs of stages (variables of FBF) having 
the same indices. When the content of the shift register (its initial state) is x l 5 x2, ...,x„ 
a consecutive state yx. ...xn_1, where y = f(xu ..., x„) a n d / ( ) is the FBF, will 



appear after applying a shift pulse. Because of the finitness of number of stages (there 457 
are exactly 2" different states) the sequence of at least 2" + 1 states must contain two 
identical ones; the shortest subsequence between identical states is called a cycle. 
Every SRG generates therefore the cycles except possibly for the first several states 
determined by the initial content of the shift register. Thus, the state diagram (a 
graphical representation of transitions between consecutive states of SRG) is de
composed into several connected subdiagrams, each of them forming a cycle with or 
without branches. 

The m-sequences will be for us a cycle of length 2" — 1 states. For a given n, all 
m-sequences differ possibly by their vertex labeling. It is necessary, however, to point 
out that our definition of m-sequence is wider than usually, because we do not deal 
with its statistical properties, so that e.g. the pseudonoise sequences from [ l ] form 
a proper subset of our m-sequences. 

The FBF can generate the m-sequence (it is understood with the corresponding 
shift register but for the sake of brevity we shall further speak only about FBF) in 
two ways: it produces two cycles (one of length 2" — 1 and other of length one) or 
one cycle (of length 2" — 1) with a branch (of length one). We shall prove the missing 
state in an m-sequence is just the state of n zeros (zero-state) or of n ones (one-state). 
First, let us recall Good's (or de Bruijn) diagram and the notion of the M-sequence. 

Every state x1x2...xn of SRG has two possible successors (Oxj . . . xn_1 and 
lxj . . . x„_i) as well as two possible predecessors (x2 ... xn0 and x2 ... xni), so that 
the state sequence from SRG is not arbitrary. If we, for some n, construct an oriented 
graph with 2" vertices labelled by the states and with exactly two arrows entering 
and two arrows leaving every vertex according to its predecessors and successors, 
we obtain Good's diagram. A closed path through this diagram traversing each 
vertex exactly once is a sequence of all 2" states (M-sequence). An m-sequence must 
be the part of an M-sequence, i.e. it is an M-sequence without a certain state. 

3. THE NUMBER OF ALL m-SEQUENCES 

Let us take three consecutive states of the M-sequence: x2x3 ... xn+1, xtx2 ... xn, 
x0xt ... xn_1 (say). The removal of some state must not disconnect a cycle, so that 
if the missing state is xtx2 ... xn, the transition between xtx3 ... xn+1 and x0Xi .. . x„^1 

must exist. Considering also the primary transitions, the last condition implies 
xt =- x2 — . . . == x„ and the possible missing state is zero- or one-state which can 
form either a cycle (zero or one) or a branch (zero or one). 

Since there are 22"~,~" possible different M-sequences (for a proof see [1]) the 
following theorem can be proved). 

Theorem l. The number of different FBF's of n variables giving different m-se
quences is 22"~l-" + 2 



Proof. Every M-sequence can turn into an m-sequence in four ways. It is possible 
to exclude either zero- or one-state and in both cases the missing state forms either 
a cycle or a branch. Since all 22"~1~~" M-sequences differ by their vertex labelling but 
each of them has the same transitions 00 ... 01 - 00 ... 0 - 10 ... 0 and 11. . . 10 -
— 11. . . 1 — 01 . . . 1, the thus derived m-sequences are all different. On the other 
hand let some m-sequence be given and let its missing state be zero (say). Then this 
m-sequence must contain the transition 00... 01 — 10 ... 0 (the other successor to 
00... 01 is just the zero-state and the same applies for the other predecessor to 
10 ... 0) and therefore it is possible to change it, by inserting the zero-state between 
00 ... 01 and 10 ... 0, into an M-sequence being already included in the set of 22"~ i~n 

M-sequences. This and the fact that there is an one-to-one correspondence between 
FBF's and state diagrams completes the proof. 

The direct corollary of the theorem is a necessary condition for FBF generating 
M- and m-sequences (see Table 1). 

Fixed values of FBF in some entries for realizing M- and 
m-sequences 

Entries 
o fFBF 

M-sequence 
m-sequence with 

Entries 
o fFBF 

M-sequence a cycle a branch 
Entries 
o fFBF 

M-sequence 

zero one zero | one 

0 0 . . . 0 0 
11 . . .10 
00 . . . 01 
11 . . .11 

1 
1 
0 
0 

0 
1 
1 
0 

1 
0 
0 
1 

1 
1 
1 
0 

1 
0 
0 
0 

Notice the similarity between zero- and one-cycle (zero- and one-branch). If for 
zero-cycle (zero-branch) f(xu ...,x„) — y holds, then for one cycle (one-branch) 
f(xu ..., x„) = j ; and vice versa (x!... x„ is one of the combinations of Table 1). 
It is possible however, to derive a more general result concerning a transformation 
of states. The state diagram of SRG is invariant with respect to the inversion of all 
states, e.g. an M-sequence changes into the M-sequence having the same order of 
inverse states; an m-sequence with zero-cycle changes into the m-sequence with one-
cycle, etc. The transformation of an arbitrary state x t ... x„ into yt ... ya, where 
yt = xu changes the original FBF f(xu ..., x„) into f(xu ..., x„) because the con. 
secutive state is now y0yt ...yn~x where y0 = f(xu ..., x„) = f(yu ..., y„). It is 
sufficient therefore to consider only FBF's which realize always one of a couple 
of mutually complementary state diagrams. 

As an example let us choose a linear FBF alxl © a2x2 © ... © a„x„, at = 0 or 1, 
producing the m-sequence with zero-cycle (in this case the number of nonzero coef-



ficients at is always even [2]). The new SRG generating the inverse m-sequence and 
one-cycle has as its FBF a.x. © a2x2 ® .. . ® a„x„ ® 1 (xt = x, © 1, 1 © 1 = 0), 
which is also linear, although the resulting SRG is now nonlinear (for the definition 
of linear automaton see e.g. [2]). 

4. SOME NECESSARY PROPERTIES OF FBF's 

Finally, we shall deal with the truth table of FBF. A truth table of Boolean func
tion f(xu ..., xn) is a table of all 2" binary combinations of length n representing the 
values of variables xf, i = 1,2,..., n, and the corresponding values of Boolean 
function. The binary combinations are usually arranged according to the increase 
of the binary numbers represented by them, and, at the same time, the least index of 
variable corresponds to the least significant digit in binary representation, and vice 
versa. As the decomposition of state diagram of SRG into pure cycles is equivalent 
to the existence of exactly one predecessor to every state, the necessary and sufficient 
condition for the F B F / ( x l 5 . . . , xn) to realize only pure cycles is the equality f(xu ... 
..., x„) = f'(xu ..., xn_.) © x„, or, which is the same, the bottom half of the values 
of FBF in the truth table is the complement of the top half. 

As it has already been proved every m-sequence is obtainable from an M-sequence 
by changing the values of FBF in states 00 .. . 0 and 10 .. . 0 or 11 .. . 1 and 01 . . . 1 
(note that now we record the states in the opposite order according to the entries in 
the truth table). When the SRG operates in one or two pure cycles (the case of 
M-sequences and some m-sequences), the above assertion for the truth table of FBF 
must hold. Considering only the values in the top half of the truth table without 
the values in entries 00 . . . 0 and 01 . . . 1 (let us call them the top variable part of the 
truth table) then this part must be complementary to the corresponding bottom 
variable part even for all m-sequences with a branch (clearly for other m-sequences 
and all M-sequences, too). Finally, it has been proved ( [ l ] Theorem 5 of Chapter VI) 
that the FBF for « > 2 produces the odd number of pure cycles if and only if the top 
half of its truth table contains the odd number of ones. Since for M-sequences the 
values of FBF in the entries 00 . . . 0 and 01 .. . 1 are 1, and in the entries 10 .. . 0 and 
11 . . . 1 are 0, the top as well as the bottom variable part of the truth table must 
contain also the odd number of ones. It must hold not only for M-sequences but 
also for all m-sequences. 

Thus, we have proved the following useful theorem: 

Theorem 2. The necessary conditions for the truth table of FBF f(xu x2,..., x„), 
n > 2, to produce an M- or an m-sequence are: 

a) the values of FBF in entries 00 .. . 0, 01 .. . 1, 10 , . , 0 and 11 ... 1 are given 
by Table 1; 

b) the top variable part of the truth table is the complement of the bottom 
variable part', 



460 c) the top as well as the bottom variable part of the truth table contains the odd 
number of ones; 

d) if an FBF f(xu ..., x„) realizing some M- or m-sequence is known, the FBF 

f(xu ..., x„), with the variable part of its truth table being written in the opposite 
order (from below upwards) to the variable part of the truth table of f(xu ..., x„) 
and with the corresponding change in remaining entries in accordance with Table 1, 
generates the complement of original state diagram. 

5. EXAMPLES 

First, let us solve the case n = 2 which is not included in Theorem 2. As there 
exist one FBF realizing an M-sequence and four FBF's realizing m-sequences, all 
entries from Table 1 form the corresponding truth tables. For n = 3 the number 
of basic FBF's giving m-sequences with cycles is 2. The linear theory shows that also 

ТаЫе 2. 

Variable parts of the truth tables of 4 variable FBF's 

realizing M- and m-sequences 

x4 x3 x2 x i Л h h h h h fi h 

0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 

0 0 0 0 1 1 1 1 
0 1 1 1 0 0 1 1 
0 1 1 0 1 0 1 1 
1 1 0 0 0 0 1 0 
1 0 1 1 1 1 1 1 
1 0 0 1 0 1 0 1 

two linear FBF's exist for realizing an m-sequence with zero-cycle [2] (x t © x 3 and 
x 2 © x 3) so that no nonlinear FBF exists producing this state diagram. Two FBF's 
give an inverse state diagram (i.e. an m-sequence with one-cycle): x x © x 3 © 1 and 
x 2 © x 3 © 1. Finally, four FBF's form the m-sequence with a branch: the zero-
branch x1 © x 3 + x 2 x 3 and x 2 © x 3 + xtx3 and their inverses (the one-branch) 
x t x 3 + x1x2x3 and x 2 x 3 + x 1 x 2 x 3 . The case of n = 4 is shown in Table 2 describing 
the top variable parts of the truth tables of 8 basic FBF's which allow, with the aid 
of Table 1 and complementations, all 64 FBF's to be obtained. Among them there 
are 14 nonlinear FBF's producing an m-sequence with zero-cycle (e.g. x 2 + x 3 © x4, 
* i + x 2 © x4, xt © x 2 + x 3 © x 4, etc.); only two are linear. 

In general, for n > 2 there are 2z"~l~n~1 variable parts, giving with the aid of 
Table 1 and of the condition d of Theorem 2 all M- and m-sequences, so that their 



number rapidly increases with increasing n; for n = 5 there are already 1024 such 
variable parts from the 8192 satisfying the properties of Theorem 2. 

As another example we shall show a simple method of M-sequence generator 
synthesis from the given linear SRG producing an m-sequence with zero-cycle. The 
latter can be defined by the irreducible and primitive polynomial E(x) over GF(2): 
F(x) = x" © c„_j x""1 © ... © ctx © 1. Since the linear SRG consists of the 

Fig. 1. 

n-stage shift register with feedbacks from those delay units, to which there cor
responds c = 1, to the first delay unit, its FBF is/(x1( x2,..., x„) = x„ © c1x„_1 © 
© ... © c„_ .Xj. The FBF/M(x1, x2,..., x„) of M-sequence generator andf(xu x2,... 
..., x„) differ only in entries 00 ... 00 and 10 .. 00 (as it is shown in Table 1), so that 

n - l n - 1 n 

fM(Xl, X2, ..., X„) = f(xu X2, ..., X„) © f l X, = f(xlt X2, ..., X„) ( £ X,.) + J ] X; 
; = i i = i i = i 

Let e.g. F(x) = x7 © x3 © 1, i.e./(x,, x2, ..., x7) = x7 © x4. Then/M(xls x2 , . . . 
..., x7) = x7 © x4 © XiXzX^XsXe = (x7 © x4) (xx + x2 + x3 + x5 + x6) + 
+ (xj + x2 + x3 + x5 + x6 + x7) and the corresponding SRG cari be realized 
from the linear one by adding either one NOR circuit with six inputs and one mod 2 
sum, or one OR circuit with five inputs, two OR circuits and one AND circuit with 
two inputs and one invertor (see Fig. 1). 

6. CONCLUSION 

In spite of a certain success in obtaining some necessary conditions for FBF's 
which facilitate the searching procedure among all FBF's, the gain for greater n is 



462 not very high (the number of FBF's being necessary to test is by Theorem 2 
-2> s rv 

iodd \ í 

j = 22""1 3, i.e. 2" 2-foId). It is therefore necessary to find sufficient 

conditions ba means of which it would be possible to decide whether or not a certain 
FBF realizes an M- or an m-sequence. For the sake of completeness the same remains 
to be derived even for other types of state diagrams. 
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Některé nelineární generátory s posuvnými registry 

JOSEF PUŽMAN 

V příspěvku se studují některé generátory s posuvnými registry produkující určité 
cyklické posloupnosti. Problém se soustřeďuje na vyhledání vhodných, obecně 
nelineárních, zpětnovazebních Booleových funkcí ke generování posloupnosti délky 
2" a 2" — 1. Odvozuje se počet takových Booleových funkcí a některé jejich nutné 
vlastnosti, což umožňuje značně zmenšit celkový objem Boleových funkcí, které je 
třeba prověřit. 
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