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On the Inversion of Moving Averages, Linear 
Discrete Equalizers and "Whitening" Filters, 
and Series Summability 

LUDVIK PROUZA 

The connections of some methods of inversion of moving averages, a method of construction 
of linear discrete equalizers or "whitening" filters, and the Borel property of series summation 
methods are investigated. 

1. INTRODUCTION 

In 1938, interesting articles [1] and [2] have been published, containing two some­
what different points of view on the problem of inversion of a finite moving average. 
In a special case, a new connection with the problem of series summation has been 
found, but not studied in detail in [1], [2] nor in [3], where the inversion problem has 
been attacked by the spectral methods developed in the meantime. It seems that no 
further articles on the random stationary sequences have been devoted to this topic. 

Recently, the problem of a linear discrete equalizer has been investigated in [4], 
[5]. The formulation of the problem is a slight generalization of the problem of 
[2], the solutions being also similar. 

In this article, we will investigate the problems in some detail. The connections 
with more recent results of the theory of linear discrete filters and with the so-called 
Borel property of series summation methods [6], [7] will be shown. 

2. PROBLEM FORMULATION 

Let (x(t)} be a real weakly stationary white sequence, i. e. for t = 0, ± 1 , ± 2 , . . . 

(1) E[x(0] = 0 , 

E{Wt)]2} = ^ , 

E[x(0 x(w)] = 0 for t * u , 

where E denotes the mean value. 



Without loss of generality, we will suppose o2
x = 1. 

Let the sequence {£(t)} be formed from {x(t)} by the finite moving average 

(2) £(0 = b0 x(t) + b1x(t-l) + ... + bh x(t - h) , 

where h = 1, b} are real, b0 + 0, bh + 0. Without loss of generality we will suppose 
b0 = 1. 

Let JV be a natural number, N = h. We will form the finite moving average 

(3) x*N(t - T) = aN0 £(t) + aN1 S(t - 1) + ... + %JV £(f - JV) , 

T fixed, 0 = T = JV + h. 
We seek aN0,..., aNN so that 

(4) E{[x(f - T) - x*(t - T)]2} » *(awo, • • -, «ww) = min . 

This expression is nonincreasing in JV and can be expected to decrease with N. 
For T = 0, we have in essence the problem of Frisch [2], for T > 0, we have the 

problem of Di Toro [4]. 
Denote the transfer functions of the filters of (2) and (3) resp. 

(5) B(z) = b0 + b1z-1 + ... + bhz-h, 

(6) AN(z) = am + aN1z~l + ... + aNNz~N . 

Then 

(7) AN(z) B(z) = CN+h(z) = cN+ht0 + ... + cN+hiN+hz~N-h 

is the transfer function from x(t) to x*(r — T), and 

(8) E{[x(, - T) - x*(t - T)Y} = -L f \z~T - AN(z) B(z)\> ^ = 
2niJCl z 

= CN + h,0 + CN + h,i + ••• + (1 — cN + h,r) + ••• + cN + h,N + h-

Ct is the unit circle. The sequence {bj} is the unit impulse response of the filter (2), 
{cN+hJ} the same of the cascade of (2) and (3). In what follows, we will omit the first 
indices and write simply {aj}, {cj}. 

Considering the filter (2) as "distorting" and the filter (3) as equalizer, then (4) 
according to (8) means to make cT near 1 and the other c} near 0 in the sense of 
minimum squares. This is the interpretation of Di Toro. In what follows we will 
consider mainly the case of T = 0, solved in essence by Frisch [2]. 

3. PROBLEM SOLUTION 

From (5), (6), (7), we have the system of equations 



(9) c0 = b0a0 , 

ci = t^itto + b0at > 

cT = bTa0 + &!•_!«! + .. . + b0aT, 

cN+h — ohaN, 

where bj = 0 for j > h. 
In the matrix notation, (9) is 

(10) c = Ba , 

where the meaning of the vectors a, c and the matrix B is clear. 
Then, 

N+h 
(11) £ c) = c , c = o'B'Bo = °'Ma 

J = 0 

where f is the unit matrix and 

fl0, H-u H-2, •••, H-h-N 

s,2\ M — I l*1' l*0' l1-1' ••"' /--*+i-w 

X^N + h, I^N + h-U •••> A'o 

where according to the third member in (11) 

(13) A*-,- = X &k+A = £ b A + ; = V-i 
fc = 0 fc = 0 

are the "autocorrelations" or "automoments" of {bj}. For j > h, there is pj = 0, 
Thus the right side of (8) can be expressed as 

(14) #(«0 , . . . ,a J V) = l - 2 c r + 

+ a0(n0a0 + H-tat + . . . + ju_AaA) + 

+ Ol(i«l«0 + Po«i + ••• + /»-kah+l) + ••• 

. . . + aN(/xhaN-h + ... + fi0aN). 

Necessary and sufficient conditions for the minimum of this positive definite 



228 quadratic form are the N + 1 equations 

(15) V0a0 + fi-1a1 + . . . + n-hah = bT, 

Hxa0 + n0a1 + ... + fi-hah+1 = & r- i> 

HTa0 + iiT~1a1 + . . . + M - A + T = b0, 

HT+1a0 + fiTa1 + ... + fi„hah+T+1 = 0 , 

HNa0 + . . . + H-hah + N = 0 , 

where again /*,- = 0 for j > h, bj == 0 for j > h, a} = 0 for ; > N. The system has 
the unique solution a0,..., aN, since the determinant thereof is distinct from zero, 
being the first principal minor of the determinant of the positive definite matrix (12). 
Substituting from (15) in (14) one gets 

(16) <P(a0,...,aN)min = l -cT. 

Especially for T = 0 

(17) $(a0,...,aN)min= 1 - b0a0 

and for b0 = 1 

(18) <P(a0,...,aN)min=l - a0. 

Since $(a0,..., aN) is positive definite, there is cT = 1. Putting a0 = al = . . . 
. . . = aN = 0 in (8), one gets 1, thus from (16) cT = 0, and 

(19) 0 = cT = 1 . 

In [2], an expression slightly different from (4) has been minimised, resulting in 
more complicated condition than (17). 

Instead of solving the system (15), it were apparently possible according to (8) 
to seek c0,..., cN+h fulfilling 

(20) c2
0 + c\ + ... + (1 - cT)2 + ... + cN+h = min 

with h supplementary conditions expressing the fact that the equation 

(21) coz»+h + c1z»+h-i + ... + cN + h = 0 

(and possibly their derivations) are satisfied by the roots (possibly multiple) of 

(22) b0z» + biz
h~1 + ... + bh = 0. 

The solution may be found by the method of Lagrange multipliers and then 
a0,..., aN be computed from (9). 



4. THE CASE T = 0 

For T = 0 one gets from (15) the system 

(23) p0a0 + / /_!„! + .. . + \i_hah = b0, 

HiOo + / v t i + ••• + M-ft+iflh + V-hGh+i = 0 , 

Vi,a0 + tik-i<*i + ••• + Wh + V-iOh+i + ••• + Hh-N<>N ~ 0> 

HhaN_h + ... + n0aN =0. 

Let us consider for a moment the system (23) with exception of the first equation. 
It is obvious that the solution of this reduced system is precisely each multiple of the 
(unique) solution of (23). Putting in the reduced system a0 = 1, one gets the system 
of Frisch [2]. The unique solution thereof is thus a multiple of the solution of (23). 
Only if a0 = 1 in (23), both solutions are the same. Generally, the error (8) is greater 
for the Frisch case. 

To solve (23), we use the same method as in [2]. We replace (23) by the homo­
geneous linear difference equation of the order 2h for {a,-} 

(24) fi_ha„ + ^_,,+ 1an_1 + . . . + n0an_h + Ju1an_h_1 + . . . + 

••• + ^an-2h = 0 

with 2h boundary conditions 

(25) a_, = 0 , a_2 = 0 , . . . , a _ „ + 1 = 0 , a _ f t = - ^ + 0 , 

(26) . aN+1=0, aN+2 = 0 , . . . , aN+h = 0. 

From the solution of (24), one will use o0, ..., „A,. 
Clearly (25), (26) are satisfied by the solution of (23). Thus if (24) with the boundary 

conditions (25), (26) has unique solution, this solution includes that of (23). 
The uniqueness of the solution of (24) with (25), (26) is, generally, an unsolved 

nontrivial problem. However, in special simple cases, it may be solved easily. The 
great advantage of solving (24), (25), (26) instead of (23) lies in the fact that 2/i 
may be considerably smaller than N. 

Consider the characteristic equation to (24): 

(27) nhz
2h + iih-yz

2h-1 + . . . + n0z
h + / . .2*"1 + . . . + nh = 

= B(z)B(z-i)zh = 0 . 

It is reciprocal and its roots C l 5 . . . , ^2h are the roots zu ...,zh of (22) and the 



230 reciprocal values thereof. Suppose the roots arranged according to 

(28) | C 1 | _ . | C 2 | r s . . . _ - | C a 4 -

From (13) one gets nh = bQbh, so that the last condition of (25) is a_A = — l/bh. 
Since from (22) bh = (-l)*ZiZ2 . . . zh for b0 = 1, one gets 

(29) ...=tr Z,Z-> . . . Zu 

Consider the case where the roots of (22) are simple and none lies precisely on the 
unit circle C.. 

Then the general solution of (24) is 

(30) a. = -^íCi + Ml + ••• + A2/.C.Í 

and from the boundary conditions (25), (26) one gets a system of 2h equations for 

A\, •••> A2h 

(31) Cr*-4i + Ca"% + ••• + Ca/Ma.. = « - * . 

c r * + % + z;h+1A2 + . . . + c;h
h+1A2h = o , 

CГг^i + C ľ % + 

cî+Ч + cr% + . 
+ CÍ..Ч* = o, 

ЛГ+1 j 
>2Л л 2 f t 

c r % + crA^2 + 

The determinant of this system is 

(32) - l - ( C i . . . C a i ) ' 
•/•-i 

cíH cr 
•A + N + l 

+ CГM-.-0. 

rҺ + N+: 
ţ.2A 

r2h + N 
V.2A 

- (Ci . . . C a . ) - " ' . [ F C l . . , h . K f c t l . . . t o . ( C . + 1 ...C2A) f t + W + 1 + - ] • 

The determinant on the left side is a generalization of the known Vandermonde 
determinant. On the right side, this determinant is developed according to Laplace 
theorem. F?,...Cjl and V;h+I....2h are Vandermonde determinants to the respective roots 
and only the first term of the Laplace development is explicitly shown in the bracket. 



According to (28) and since the roots of (22) are simple, this term is clearly "do- -31 
minant" for N -* oo. Thus, at least for sufficiently great N the determinant (32) 
is distinct from zero and the solution of (24) is unique. 

Now, with respect to (18), we are interested in the behaviour of a0 for N -+ oo. 
From (30) and (31) it is seen that a0 = a_h. A0\A, where A0 is a determinant ana­
logous to (32). Developing again this determinant one gets 

(33) A0 - (-iy-1 ( c . . . . u r h + t . en.. . , , . VCh+I..,2h(c,+1...s_hrN + . . . ] . 
where again only the "dominant" term is shown in the bracket. 

From (29), (32), (33) there follows 

(34) lim a0 = (-^______l ^•••^H _ U^U _ 
JV-co Z i - . - Z ^ Ck + l - . - C l * Zf-Zh 

Theorem 1. / / all roots of (22) are simple and none lies on Cu then 

lim a0 = 1 

N->oo 

f/ and on/y (/ all roots lie inside of C1. If at least one root lies outside of C1( then 

lim a0 < 1 , 

and vice versa. In no case there is 

lim a0 = 0 . 
JV-00 

Proof follows immediately from (34). 
Simple examples and the reasoning that (34) must very continuously with conti­

nuous vatiation of the roots of (22) give some evidence that the formula (34) and 
Theorem 1 are of general validity without the premise about the roots of (22), but 
the precise proof thereof seems to be difficult. 

5. EXAMPLES 

Example 1. Let 

(35) C(t) = x(t) - ix( . - 1) . 

By the methods of the section 4, one gets 

_ 2N+W _ 2 „ + w + 1 . 

" 2 N + 3 — ( , i y + i ' 



232 so that 

(37) lim a„ = (i)" 
JV-00 

especially 

(38) lim a0 = 1 
iV-OO 

in accordance with (34). 

Example 2. Let 

(39) Z(t) = x(t)-2x(t-l). 

By the methods of section 4, one gets 

22(/V+l,-n _ 2" 
(40) 

so that 

2 2 ( N + 2) _ j ' 

(41) lima„ = ( i ) " + 2 , 
JV-00 

especially 

(42) lim a0 — \ 
JV-OO 

in accordance with (34). 
For N = 1, we have 

(43) **(<) = MO+ M' - i ) -

This case has been solved in [3] with the unnecessary restriction a0 = 1 (see the 
note after (23)) and the nonoptimal solution 

**(.) = z(t) + U(t - l) 
has been found. 

Example 3. Let 

(44) {(0 = x(t) - x(t - 1) . 

Now, the characteristic equation (24) has double root z 1 2 = 1. Thus 

(45) a„ = Ax + A2 • n 

and with (25), (26) one gets 

fAA N +1 - n 
(46) a„ = , 
V ' N + 2 



so that 

(47) lim a„ = 1 , 
N-.oo 

especially 

(48) lim a0 = 1 
JV-00 

in accordance with (34). According to (9) 

(49) 1 - c0 = 1 - a0 = — i — 
N + 2 

and 

(50) c„ = att- «„_,= - - L -
N + 2 

for n = 1,2, ...,7V + 1. 
Thus 

(51) x(t) - x*(t) = - J - ^ [x(.) + x(. - 1) + . . . + x(t - JV - 1)] . 

From (46) and (51) we see that in this case we have in essence the known Cesaro 
summation method # , . According to (48) 

(52) lim[( l-C o)2+WXC j
2] = 0 . 

JV-oo j = l 

Example 4. Let 

(53) £(t) = x ( t ) - 2 x ( * - l ) + x ( * - 2 ) . 

Now, the characteristic equation (24) has quadruple root z, 2 3 4 = 1 and with 
boundary conditions (25), (26) 

so that 

(55) lim a„ = 1 + n , 
JV-00 

especially 

(56) lim a0 = 1 
JV-00 

in accordance with (34). 



234 According to (9) 

r „ x , . 4N + 10 
(57) I - . , - , _ O 0 _ _ ^ _ _ 

and 

(58) 
4N + 10 - 6n 

(N + 3) (N + 4) 

for n =- 1,. . . ,N + 2. Thus 

(59) »(,) - , • ( , ) . ( W + 3 ; ( W + 4 ) [ ( 4 N + 10) , ( , ) + 

+ (4N + 4) x(t - 1) + .. . + ( - 2 N - 2) x(t - N - 2)] . 

From (54) and (55) is clear that we have to do with the "Cesaro" analogy for 
double summation. 

The matrix of coefficients of (59) (for increasing N) is row-finite. Denoting these 
coefficients c*, c*, ..., c* + 2 we may prove easily 

N + 2 

(60) £ Cj* = 1 for every N , 
j = o 

lim c* = 0 for every n , 
N-oo 

N-t-2 

X |c*| < 4 for every N , 
J = 0 

so that all Toeplitz conditions are fulfilled and the transform is regular. 

6. THE CONNECTIONS WITH SERIES SUMMATION METHODS 

The fact that the inversion of (44) leads to a summation method is not surprising. 
Since (44) is a "first difference" filter the formal inversion of which is the unstable 
summing filter, there is plausible that from the postulate (4) with increasing N a 
sequence of stable filters representing a regular summation method results. What 
is interesting is that this method is precisely Cesaro c€1. 

Now, it is natural to abandon the postulate (4) and to require only 

(61) limxV = 0 
N-+X j = 0 

(identical with (52)) and 

(62) J c* = - for everv N 

J = 0 



(since (22) has the root z = 1) and to seek regular transforms fulfilling (61) and (62). 235 
We obtain in fact a wider class, since e. g. the known Euler St transform fulfills 
(61) and (62), as we will show. 

Put according to St 

ГҪ)]-wн 

ЧG)+-+»-1 ) +-+(>-яЧ 
Then 

(64) x(0 - x*(t) = 1 [ Q x(t) + ( / ^ x(< - 1) + ... + ^ x(< - N)] • 

From (64), (62) follows at once. Moreover, 

(65) 
:кь+e 

УИ) 

asymptotically for great N, so that (61) is also fulfilled. Moreover, all c* > 0 in Su 

similarly as in c£l. 
Now, let us consider another interesting transform due to Wold [ l ] and Frisch [2]. 
Let 

(66) x*(0 = i(t) + Q^(t - 1) + ... + eH(t -N), (0 < Q < 1). 

Then 

(67) x(0 - x*(0 = (1 - Q) [x(t - 1) + Qx(t - 2) + ... + tP->-x(t - JV)] + 

+ QNx(t - JV - 1) . 

It is clear that for Q -» 1 with JV -» oo this is a "truncated" Abel summation with 
the transform matrix 

/I -ex, C ? l . ©.-A 
(68) F = 11 -«? 2 , (1 - i ? 2 ) f c , <?2, 0 , . . . . 

\i -C3.(i-C3)c3.(i-e3)ci.C3.o,-.../ 

This matrix is row-finite, fulfills (62) and for 0JV -> 1 is regular. Moreover 

(69) E{[x(0 - x*(0]2} = LzJŁ + JL 
1 + Q 1 + 



236 so that (61) is fulfilled only if 

(70) QN
N -* 0 for N -* oo . 

According to Cramer (see [1] and [2]) QN ~* 1 and QN —> 0 simultaneously for 
N ~* oo e. g. for 

(71) fc-l--l. 

The first term on the right side of (69) is valid for the Abel transform (see [78]), 
where the rapidity of the convergence QN -* 1 to fulfill the analogon of (61) (Abel 
matrix is not row-finite) may be arbitrary. 

Consider now the postulate (61) for regular transforms generally, without the 
restriction, to row-finite ones. 

Remember that according to (8) (T = 0) this means that x*(i) converges to x(f) 
in the quadratic mean for N -* oo. 

Thus, suppose we are given a regular transform 3" with the matrix 

(72) T=\t2Ut22,... 

Then, Hill [6] has been shown that 

(73) lim £ t% - 0 
}-<* k-i 

is a necessary condition that the transform 3" has the so-called Borel property, 
which may be defined as follows. 

Let {x„} be a sequence of O's and l's with infinite number of l's. We connect a 
binary number 0, xy,x2 ... in the interval (0, 1> with this sequence. Introducing the 
usual Lebesgue measure on (0, 1>, one says that 3~ possess the Borel property, if in 
the sense of this measure it transforms almost every sequence of O's and l's to the 
value \. 

Various sufficient conditions for 3~ to possess the Borel property have been found 
by Hill [6] and Lorentz [7]. Each of such transforms which is row-finite and ful­
fills (62) may be used to define a sequence of nonrecursive stable filters to invert 
(44). But according to (4) Cesaro # . , which has been shown in 1909 by Borel himself 
to possess the Borel property, possess the greatest rapidity of convergence of (61). 

The condition (73) may be expressed in a simpler form. 

Theorem 2. Let 3~ be a regular transform with the matrix (72). Then (73) holds 
if and only if 

(74) lim Xj = lim max \tJk\ = 0 . 
y-oo >- .«, k 



Proof. Let (74) hold. In each row 

(75) t2
i + t2

2 + ...=Tj.f\tjk\=rJ.K, 
k=X 

where K < oo is independent on j , 0" being regular. From (74) and (75), there 
follows (73). Let further (74) is not valid. Then there exists a 8 > 0 so that for some 
subsequence {]',} there holds xu > S. In this case the left side of (75) is greater than 
b2 > 0 for each /", and (73) is not valid. 

It is seen that the property (74) is a generalization of (70). 

7. INVERSION BY RECURSIVE FILTERS 

Let us consider example 1. The transfer function of the filter with "limit" coeffi­
cients (37) is 

1 
(76) 1 + i z " 1 + \z~2 + . . . = 

1 - łz" 

and this is the transfer function of a stable recursive filter obtained by formal in­
version of (35). 

In example 2, we obtain by formal inversion a useless unstable filter. But the 
transfer function of the filter with "limit" coefficients (41) is 

(77) j r i + i z - i + i z - 2 + ...] = ] 
4 1 - I z " 1 

and this is again the transfer function of a stable recursive filter. 
In example 3, the filter with "limit" coefficients (47) is the same unstable summing 

filter as obtained by formal inversion of (44). 
To make an approximation by stable filter, we shift the pole (1, Oi) to the point 

(Q, Oi) inside C x (0 < Q < 1). One may expect that for Q —> 1 the error analogous to 
(4) will tend to 0. In fact, this follows from 

ps) r f > - — 
2 m J c , I z - Q 

Developing 
(79) Ae(z) = 

áz 1 -

1 + Є 

1 -QZ-

in a series, one sees that this procedure is identical with the Abel summation method, 

as has been pointed out in [1]. But, replacing the Abel matrix by the matrix (68), 

one may not choose QN independently from the "truncation" (see (71)). 



238 The filter (79) is used in radar in the form of a "delay-line video-integrator". 

In cases where (22) has roots outside Cu as in example 2, one may find the transfer 

function of the recursive inverse filter with advantage directly with the aid of a 

theoremofWalsh([8],p. 183)), as has been shown in similar situations in [9], [10]. 

Substitute z _ 1 = v and rearrange the integral in (8) as follows (T = 0): 

(80) -f r4r--V) \B*(v)\2 - = min , 
v 

where A*(t>) = A(f_1), B*(v) = B(f _ 1 ). 
According to Theorem 17 of Walsh, 

(81) A*(v) - 1 f N®-dt 

A{V)-2niN(v)iClB*(t)(t-vY 

where N(v) is an analytic function without zeros inside Ct and for which 

(82) \N(v)\2 = \B*(vf 

on c j . We find N(v) so that each linear factor v — Vj of B*(v), where Vj is the zero 

inside Cu is multiplied by the Blaschke factor 

(83) П(v)=l-~V>V. 
V — Vj 

For example 2, JV(t>) = 2 -- v and 

(84) A*(i л _ 1 _ 1 1 
(84) A*(i 

' 4 - 2i> 4 1-- ł - " 1 

as in (77). 

8. CONCLUDING REMARKS 

Thus trivially, the formal inversion by recursive filter is "precise" and with zero 
error, if the roots of (22) lie inside Ct, If they lie outside C., the nonformal inversion 
by recursive filter resulting from the Walsh theorem is "optimal" but gives nonzero 
quadratic error resulting from (34). 

If the roots of (22) lie inside and outside Cu but not on Cu both methods can be 
combined to obtain the optimum recursive filter. 

If the roots of (22) lie on Cu only sequences of stable recursive or nonrecursive 
filters can be constructed approximating the operation of inversion. For the root 
z = 1, these sequences are e. g. Abel and Cesaro summation methods. For \z\ = 1, 
z + 1, the generalization seems obvious, but a general theory of such filters is not 
ready. 



It seems that some important questions arising in connection with the present 

article are unsolved. 

An Appendix concerning one such question will appear in the next number of 

"Kybernetika". 

The existence and uniqueness of the solution of a linear difference equation, given 

boundary conditions of various complexity, seems to be an open problem and its 

solution is of great importance for T > 0. For the optimum nonrecursive filter one 

can argue that solving the system (15) gives always result, but since the structure 

of the inversion filter is influenced by the roots of (22), the solution through the 

difference equation as in the section 4 is more natural and important. 

Considering the existence of additive noise will make the solution of inversion 

filters more realistic and more complicated. Some results are known from [4], but a 

general theory remains to be created. 

(Received January 22, 1970.) 
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O inverzi klouzavých průměrů, lineárních diskrétních vyrovnávacích 
a „bělících" filtrech a sumabilitě řad 

LUDVÍK PROUZA 

V článku se vyšetřují souvislosti několika metod inverze klouzavých průměrů, 
metody konstrukce lineárních diskrétních vyrovnávacích a „bělících" filtrů a tzv. 
Borelovy vlastnosti metod sumace řad. 
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