# A Note on One-Sided Context-Sensitive Grammars 

Ivan Havel

In this note it is proved that so called one-sided context-sensitive grammars can generate languages which cannot be generated by any context-free grammar.

This fact is not quite new. It has been proved in [3], [4] and [5] (as far as the author knows). In [3] it is proved that a special one-sided context-sensitive grammar suggested by Dr. Friš ([1]) generates a language

$$
\left\{a^{m} b^{m} c^{n} ; 1 \leqq n \leqq m\right\}
$$

which is not context-free.
In [5] an example of a one-sided context-sensitive grammar is given and in [4] there is proved, concerning this grammar, that it generates a well-known language

$$
\left\{a^{n} b^{n} c^{n} ; n \geqq 1\right\} .
$$

The proofs given in [3] and [4] are rather complicated though the grammars in question contain about 20 rules only.

The aim of the present note is to give a simple proof of the above-mentioned statement.

Let us define a one-sided context-sensitive grammar $G=\left\langle V_{T}, V_{N}, R, S\right\rangle$ as follows:
$V_{T}=\{a, b, c\}$,
$V_{N}=\{A, B, C, D, E\}$,
$R:$

1. $S \rightarrow a a A B B c c$,
2. $A \rightarrow a A B$,
3. $A \rightarrow a b$,
4. $b B \rightarrow b C$,
5. $C B \rightarrow C C$,
6. $b C \rightarrow b D$,
7. $b D \rightarrow b b$,
8. $D C \rightarrow D B$,
9. $B C \rightarrow B B$,
10. $B C \rightarrow B \quad B c$.

We shall prove

$$
\begin{equation*}
L(G)=\left\{a^{m} b^{m} c^{n} ; 1<n<m\right\} \tag{1}
\end{equation*}
$$

$L(G)$ not being context-free. (It may be easily proved directly or derived from general theorems in [2].) In what follows $\stackrel{*}{\Rightarrow}$ (resp. $\Rightarrow$ ) denotes derivability (resp. immediate derivability) in $G$.

Assertion 1. For any $m, n, 1<n<m$

$$
S \stackrel{*}{\Rightarrow} a^{m} b^{m} c^{n} .
$$

Proof. For $m>3$ and $2 \leqq i \leqq m-2$ we have

$$
\begin{equation*}
a^{m} b^{i-1} B^{m-i+1} c^{i} \stackrel{*}{\Rightarrow} a^{m} b^{i} B^{m-i} c^{i+1}, \tag{2}
\end{equation*}
$$

for

$$
\begin{gathered}
a^{m} b^{i-1} B^{m-i+1} c^{i} \Rightarrow a^{m} b^{i-1} C B^{m-i} c^{i} \stackrel{*}{\Rightarrow} a^{m} b^{i-1} C^{m-i+1} c^{i} \Rightarrow \\
\Rightarrow a^{m} b^{i-1} D C^{m-i} c^{i} \Rightarrow a^{m} b^{i-1} D B C^{m-i-1} c^{i} \stackrel{*}{\Rightarrow} \\
\stackrel{*}{\Rightarrow} a^{m} b^{i-1} D B^{m-i-1} C c^{i} \Rightarrow a^{m} b^{i} B^{m-i-1} C c^{i} \Rightarrow a^{m} b^{i} B^{m-i} c^{i+1}
\end{gathered}
$$

Suppose $1<n<m$. Using (2) several times we obtain

$$
\begin{gathered}
S \Rightarrow a^{2} A B^{2} c^{2} \stackrel{*}{\Rightarrow} a^{m} b B^{m-1} c^{2} \stackrel{*}{\Rightarrow} a^{m} b^{2} B^{m-2} c^{3} \stackrel{*}{\Rightarrow} a^{m} b^{n-1} B^{m-n+1} c^{n} \Rightarrow \\
\Rightarrow a^{m} b^{n-1} C B^{m-n} c^{n} \Rightarrow a^{m} b^{n-1} D B^{m-n} c^{n} \Rightarrow a^{m} b^{n} B^{m-n} c^{n} \Rightarrow a^{m} b^{n} C B^{m-n-1} c^{n} \Rightarrow \\
\Rightarrow a^{m} b^{n} D B^{m-n-1} c^{n} \Rightarrow a^{m} b^{n+1} B^{m-n-1} c^{n} \stackrel{*}{\Rightarrow} a^{m} b^{m} c^{n}
\end{gathered}
$$

In order to prove (1), we need the following

## Assertion 2. If

$$
\begin{equation*}
S=x_{0} \Rightarrow x_{1} \Rightarrow \ldots \Rightarrow x_{p} \in V_{T}^{*} \tag{3}
\end{equation*}
$$

then there are $m, n(1<n<m)$ such that $x_{p}=a^{m} b^{m} c^{n}$.
Proof. Let a derivation (3) of grammar $G$ be given. There are $i$ and $j(0<i<p$, $2<j$ ) such that $x_{i}$ in (3) is of the form $a^{j} b B^{j-1} c^{2}$. Actually, the only rule which can be applied to $x_{0}$ is the rule 1 whose application results in $x_{1}=a^{2} A B^{2} c^{2}$. To $x_{1}$ only

188 the rules 2 or 3 can be applied. The application of the rule 3 yields $x_{2}$ of the desirable form ( $i=2$ ), the rule 2 results in $x_{2}=a^{3} A B^{3} c^{2}$ to which only rules 2 or 3 may be applied again. The repeated application of the rule 2 yields strings of the form $a^{n} A B^{n} c^{2}(n>3)$ and cannot result in the terminal string $x_{p} \in V_{T}^{*}$, hence the rule 3 has to be applied at least once. The first (and only possible) application of the rule 3 results in $x_{i}$ of the desirable form.

Lemma. If $j>2$ and $a^{j} b B^{j-1} c^{2} \stackrel{*}{\Rightarrow} \eta$, then either there is an occurrence of the string cB resp. cC in $\eta$, or

$$
\begin{equation*}
\eta=a^{j} b^{k} \widetilde{D} \varphi c^{l} \tag{4}
\end{equation*}
$$

where $k>0, l \geqq 2, \tilde{D}$ is either empty or $\tilde{D}=D, \varphi$ is a string (maybe empty) built of $B$ and $C,\left|b^{k} \widetilde{D} \varphi\right|=j$ and if we denote by $\gamma(\widetilde{D} \varphi)$ the number of distinct occurrences of strings $B C$ and $D C$ in $\tilde{D} \varphi$ (with the only exception: we put $\gamma(D C)=0$ ), then

$$
\begin{equation*}
\operatorname{Max}(|\varphi|-2,0)+\gamma(\tilde{D} \varphi)+l<j \tag{5}
\end{equation*}
$$

Note. Assertion 2 can be easily derived from the lemma: in (3) we have

$$
S=x_{0} \Rightarrow \ldots \Rightarrow x_{i}=a^{j} b B^{j-1} c^{2} \Rightarrow \ldots \Rightarrow x_{p} .
$$

There are no occurrences of $c B$ (resp. $c C$ ) in $x_{p}, \widetilde{D}$ and $\varphi$ are empty, therefore $x_{p}=$ $=a^{j} b^{j} c^{l}$; (5) yields $l<j$.

Proof. We shall prove the lemma by induction on the length of the derivation of $\eta$.
I. A string $a^{j} b B^{j-1} c^{2}$ is obviously of the needed form.
II. Suppose $a^{j} b B^{j-1} c^{2} \stackrel{*}{\Rightarrow} \eta \Rightarrow \eta^{\prime}$; we shall prove the statement of the lemma for $\eta^{\prime}$ assuming it valid for $\eta$.
If there are occurrences of $c B$ or $c C$ in $\eta$, then such occurrences are in $\eta^{\prime}$, too (this may be easily seen from the set of rules). Suppose that $\eta$ is of the form (4); let us investigate all possible cases generating $\eta^{\prime}$ from $\eta$ :
a) the rule 4 is applied to $\eta$; in this case $\widetilde{D}=\Lambda, \varphi=B \varphi_{1}$, hence $\eta^{\prime}=a^{j} b^{k} C \varphi_{1} c^{l}$, $\left|b^{k} C \varphi_{1}\right|=j$ and (5) holds, since $\gamma$ did not increase;
b) the rule 6 is applied to $\eta\left(\tilde{D}=\wedge, \varphi=C \varphi_{1}\right) ; \eta^{\prime}=a^{j} b^{k} D \varphi_{1} c^{l}$, the length of $\varphi$ decreased $(-1), \gamma$, if changed, increased $(+1)$, hence the inequality $(5)$ remains valid. The case $\varphi=C C$ requests a special consideration: $\gamma(D C)=0$ and (5) holds;
c) the rule 7 is applied to $\eta$, then $\tilde{D}=D$, (5) holds;
d) the rule 5 is applied to $\eta$; it does not affect $|\varphi|, \gamma$ does not increase, (5) holds, too.

It may be easily seen that $\eta^{\prime}$ is of the desirable form also when the rule 8 or 9 is applied to $\eta$.
e) The rule 10 is applied to $\eta$; there are two possibilities to be considered. Either it is applied to an occurrence of $B C$ which is immediately followed by $B$ or $C$, then $\eta^{\prime}$ contains an occurrence of $c B$ resp. $c C$; or the rule 10 is applied to the last two symbols of the string $\varphi, \gamma$ decreases $(-1), l$ (i.e. the number of $c$ 's) increases $(+1)$.

No rule of $1-3$ may be applied to $\eta$. The lemma, Assertion 2 and also (1) are proved.
The main problem concerning one-sided context-sensitive grammars is that of comparison of generative power of such grammars and context-sensitive grammars in a usual sense.
(Received July 24th, 1968.)

## REFERENCES

[1] Friš I.: Oral communication.
[2] Ginsburg S.: The mathematical theory of context-free languages. McGraw-Hill, New York 1966.
[3] Havel I.: Doctoral thesis. Prague 1967.
[4] Samoilenko L. G.: Doctoral thesis. Kiev 1968 (in Russian).
[5] Самойленко Л. Г.: Об одном классе грамматик непосредственно составляющих. Кибернетика (1968) 2, 102-103.

## VÝTAH

## Poznámka o jednostranně kontextových gramatikách

Ivan Havel

V práci se dokazuje, že tzv. jednostranně kontextové gramatiky, které jsou v Chomského klasifikaci mezi typy 2 a 1 (tj. mezi gramatikami bezkontextovými a gramatikami kontextovými), mohou generovat více než jen bezkontextové jazyky. Všechna pravidla jednostranně kontextové gramatiky jou tvaru $\varphi A \rightarrow \varphi \omega$, kde $\varphi \in V^{*}$, $A \in V_{N}, \omega \in V^{*}-\{\Lambda\}$. Sestrojuje se jednostranně kontextová gramatika o 10 pravidlech a dokazuje se o ní, že generuje jazyk $\left\{a^{m} b^{m} c^{n} ; 1<n<m\right\}$, který není bezkontextový.

