KYBERNETIKA ČÍSLO 3, ROČNÍK 5/1969

A Note on One-Sided Context-Sensitive Grammars

IVAN HAVEL

In this note it is proved that so called one-sided context-sensitive grammars can generate languages which cannot be generated by any context-free grammar.

This fact is not quite new. It has been proved in [3], [4] and [5] (as far as the author knows). In [3] it is proved that a special one-sided context-sensitive grammar suggested by Dr. Friš ([1]) generates a language

$$\{a^m b^m c^n; 1 \leq n \leq m\}$$

which is not context-free.

In [5] an example of a one-sided context-sensitive grammar is given and in [4] there is proved, concerning this grammar, that it generates a well-known language

$$\{a^n b^n c^n; n \ge 1\}.$$

The proofs given in [3] and [4] are rather complicated though the grammars in question contain about 20 rules only.

The aim of the present note is to give a simple proof of the above-mentioned statement.

Let us define a one-sided context-sensitive grammar $G = \langle V_T, V_N, R, S \rangle$ as follows:

R:

$$V_T = \{a, b, c\}, V_N = \{A, B, C, D, E\}, 1. S \to a a A B B c c , 2. A \to a A B, 3. A \to a b, 4. b B \to b C, 5. C B \to C C, 6. b C \to b D.$$

7.
$$b D \rightarrow b b$$
,
8. $D C \rightarrow D B$,
9. $B C \rightarrow B B$,
10. $B C \rightarrow B B c$.

We shall prove

(1)
$$L(G) = \{a^m b^m c^n; 1 < n < m\},\$$

L(G) not being context-free. (It may be easily proved directly or derived from general theorems in [2].) In what follows $\stackrel{*}{\Rightarrow}$ (resp. \Rightarrow) denotes derivability (resp. immediate derivability) in G.

Assertion 1. For any m, n, 1 < n < m

$$S \stackrel{*}{\Rightarrow} a^m b^m c^n$$
.

Proof. For m > 3 and $2 \leq i \leq m - 2$ we have

(2)
$$a^{m}b^{i-1}B^{m-i+1}c^{i} \stackrel{*}{\Rightarrow} a^{m}b^{i}B^{m-i}c^{i+1},$$

for

$$a^{m}b^{i-1}B^{m-i+1}c^{i} \Rightarrow a^{m}b^{i-1}CB^{m-i}c^{i} \stackrel{*}{\Rightarrow} a^{m}b^{i-1}C^{m-i+1}c^{i} \Rightarrow$$
$$\Rightarrow a^{m}b^{i-1}DC^{m-i}c^{i} \Rightarrow a^{m}b^{i-1}DBC^{m-i-1}c^{i} \stackrel{*}{\Rightarrow}$$
$$\stackrel{*}{\Rightarrow} a^{m}b^{i-1}DB^{m-i-1}Cc^{i} \Rightarrow a^{m}b^{i}B^{m-i-1}Cc^{i} \Rightarrow a^{m}b^{i}B^{m-i-1}c^{i+1}.$$

Suppose 1 < n < m. Using (2) several times we obtain

$$S \Rightarrow a^{2}AB^{2}c^{2} \stackrel{*}{\Rightarrow} a^{m}bB^{m-1}c^{2} \stackrel{*}{\Rightarrow} a^{m}b^{2}B^{m-2}c^{3} \stackrel{*}{\Rightarrow} a^{m}b^{n-1}B^{m-n+1}c^{n} \Rightarrow$$
$$\Rightarrow a^{m}b^{n-1}CB^{m-n}c^{n} \Rightarrow a^{m}b^{n-1}DB^{m-n}c^{n} \Rightarrow a^{m}b^{n}B^{m-n}c^{n} \Rightarrow a^{m}b^{n}CB^{m-n-1}c^{n} \Rightarrow$$
$$\Rightarrow a^{m}b^{n}DB^{m-n-1}c^{n} \Rightarrow a^{m}b^{n+1}B^{m-n-1}c^{n} \stackrel{*}{\Rightarrow} a^{m}b^{m}c^{n}.$$

In order to prove (1), we need the following

Assertion 2. If

(3)

$$S = x_0 \Rightarrow x_1 \Rightarrow \dots \Rightarrow x_p \in V_T^*$$

then there are m, n (1 < n < m) such that $x_p \approx a^m b^m c^n$.

Proof. Let a derivation (3) of grammar G be given. There are i and j (0 < i < p, 2 < j) such that x_i in (3) is of the form $a^j b B^{j-1} c^2$. Actually, the only rule which can be applied to x_0 is the rule 1 whose application results in $x_1 = a^2 A B^2 c^2$. To x_1 only

187

the rules 2 or 3 can be applied. The application of the rule 3 yields x_2 of the desirable form (i = 2), the rule 2 results in $x_2 = a^3AB^3c^2$ to which only rules 2 or 3 may be applied again. The repeated application of the rule 2 yields strings of the form $a^nAB^nc^2$ (n > 3) and cannot result in the terminal string $x_p \in V_T^*$, hence the rule 3 has to be applied at least once. The first (and only possible) application of the rule 3 results in x_i of the desirable form.

Lemma. If j > 2 and $a^{j}bB^{j-1}c^{2} \stackrel{*}{\Rightarrow} \eta$, then either there is an occurrence of the string cB resp. cC in η , or

$$\eta = a^j b^k \tilde{D} \varphi c^l,$$

where k > 0, $l \ge 2$, \tilde{D} is either empty or $\tilde{D} = D$, φ is a string (maybe empty) built of B and C, $|b^k \tilde{D}\varphi| = j$ and if we denote by $\gamma(\tilde{D}\varphi)$ the number of distinct occurrences of strings BC and DC in $\tilde{D}\varphi$ (with the only exception: we put $\gamma(DC) = 0$), then

(5)
$$\operatorname{Max}(|\varphi| - 2, 0) + \gamma(\widetilde{D}\varphi) + l < j.$$

Note. Assertion 2 can be easily derived from the lemma: in (3) we have

$$S = x_0 \Rightarrow \ldots \Rightarrow x_i = a^j b B^{j-1} c^2 \Rightarrow \ldots \Rightarrow x_p$$

There are no occurrences of cB (resp. cC) in x_p , \tilde{D} and φ are empty, therefore $x_p = a^j b^j c^l$; (5) yields l < j.

Proof. We shall prove the lemma by induction on the length of the derivation of η .

I. A string $a^{j}bB^{j-1}c^{2}$ is obviously of the needed form.

II. Suppose $a^{j}bB^{j-1}c^{2} \stackrel{*}{\Rightarrow} \eta \Rightarrow \eta'$; we shall prove the statement of the lemma for η' assuming it valid for η .

If there are occurrences of cB or cC in η , then such occurrences are in η' , too (this may be easily seen from the set of rules). Suppose that η is of the form (4); let us investigate all possible cases generating η' from η :

a) the rule 4 is applied to η ; in this case $\tilde{D} = \Lambda$, $\varphi = B\varphi_1$, hence $\eta' = a^j b^k C\varphi_1 c^l$, $|b^k C\varphi_1| = j$ and (5) holds, since γ did not increase;

b) the rule 6 is applied to η ($\tilde{D} = \Lambda$, $\varphi = C\varphi_1$); $\eta' = a^j b^k D\varphi_1 c^i$, the length of φ decreased (-1), γ , if changed, increased (+1), hence the inequality (5) remains valid. The case $\varphi = CC$ requests a special consideration: $\gamma(DC) = 0$ and (5) holds;

c) the rule 7 is applied to η , then $\tilde{D} = D$, (5) holds;

d) the rule 5 is applied to η ; it does not affect $|\varphi|, \gamma$ does not increase, (5) holds, too.

188

(4)

It may be easily seen that η' is of the desirable form also when the rule 8 or 9 is applied to η .

e) The rule 10 is applied to η ; there are two possibilities to be considered. Either it is applied to an occurrence of BC which is immediately followed by B or C, then η' contains an occurrence of cB resp. cC; or the rule 10 is applied to the last two symbols of the string ϕ , γ decreases (-1), l (i.e. the number of c's) increases (+1).

No rule of 1-3 may be applied to η . The lemma, Assertion 2 and also (1) are proved.

The main problem concerning one-sided context-sensitive grammars is that of comparison of generative power of such grammars and context-sensitive grammars in a usual sense.

(Received July 24th, 1968.)

REFERENCES

- [1] Friš I.: Oral communication.
- [2] Ginsburg S.: The mathematical theory of context-free languages. McGraw-Hill, New York 1966.
- [3] Havel I.: Doctoral thesis. Prague 1967.
- [4] Samoilenko L. G.: Doctoral thesis. Kiev 1968 (in Russian).
- [5] Самойленко Л. Г.: Об одном классе грамматик непосредственно составляющих. Кибернетика (1968) 2, 102—103.

VÝTAH

Poznámka o jednostranně kontextových gramatikách

IVAN HAVEL

V práci se dokazuje, že tzv. jednostranně kontextové gramatiky, které jsou v Chomského klasifikaci mezi typy 2 a 1 (tj. mezi gramatikami bezkontextovými a gramatikami kontextovými), mohou generovat více než jen bezkontextové jazyky. Všechna pravidla jednostranně kontextové gramatiky jsou tvaru $\varphi A \rightarrow \varphi \omega$, kde $\varphi \in V^*$, $A \in V_N$, $\omega \in V^* - \{\Lambda\}$. Sestrojuje se jednostranně kontextová gramatika o 10 pravidlech a dokazuje se o ní, že generuje jazyk $\{a^m b^m c^n; 1 < n < m\}$, který není bezkontextový.

Ivan Havel, Matematický ústav ČSAV, Žitná 25, Praha 1.

189