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Transfer Function Measurements with 
Statistical Methods by means 
of Digital Computation 

W. KREIL, W. SCHNITZLER, G. SCHWEIZER 

The article describes methods of processing data which represent measurements taken from 
a physical system where stochastic components are involved. Digital computer application is 
discussed in some detail, with special emphasis on programming for maximum processing speed. 

I. INTRODUCTION 

The dynamic characteristics of linear systems, especially linear constant parameter systems, 
can be described by frequency response functions. For physically realizable and stable systems, 
the frequency response function of a system may replace the transfer function with no loss of 
information. 

Extended developments of aerospace systems require the determination of the frequency 
response functions of many subsystems for the judgement of the overall performance. In some 
cases, appropriate transfer functions can be obtained by analytical procedures. However, there 
are many examples where the determination of the transfer function or frequency response by 
analytical methods is presently beyond the state of the art. This is particularly true for physio
logical systems. 

Because of these difficulties it is common to determine the frequency response of linear systems 
by empirical methods. The most straightforward approach is to subject the system to a sinusoidal 
input and to measure the output-magnitude and -phase as the stimulus frequency is varied. 

There are many situations during the development of aerospace systems where it is not possible 
to apply sinusoidal stimuli. This applies to the majority of measurements during normal operation 
(that means in-flight measurements). In this case, it is possible to establish frequency response 
functions by means of inherent or artificial random input. Quite often the problems are further 
complicated because open-loop measurements are not feasible. The determination of open-loop 
transfer functions by means of closed-loop measurements requires usually high accuracy. 

The development of a variety of aerospace vehicles and the necessity of processing enormous 
quantities of test data especially from flight tests have initiated the use of digital computer pro
grams to determine transfer functions with statistical methods at the Dornier GmbH, Friedrichs-
hafen. Hence the necessary equipment and the computer programs have been carefully planned, 
great amount of data can be processed conveniently in very short time. System performance, 
malfunctions of subsystems and parameter identification are investigated by means of transfer 
function and power density spectra measurements. 



II. DATA PROCESSING PROCEDURE 

D.l Data Acquisition 

The first step of the data processing procedure is obviously the data acquisition. 
The Dornier Installations can be used to convert the physical parameters into 
voltages and store them on magnetic tapes either in analog or digital format. The 
tape-recorders can be installed on board of any vehicle or at ground stations. Signals 
to remote stations are transmitted via telemetry (Fig. l). 
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Fig. 1. Data acquisition equipment of the Dornier GmbH. 

Computer programs and the necessary equipment are available to feed the data 
in any analog or digital format from tapes into the digital computer. 

On line data acquisition of analog electrical signals from simulator or rig tests 
is feasible. For this purpose a program can be used to sample 20 different signals in 
a specified way in time intervals less than 1 millisecond under computer control. 
Fig. 2 shows the Dornier Hybrid Computer which is used for data acquisition and 
processing. 

n.2 Data Processing of Weakly Stationary Processes 

Fig. 3 shows a block diagram for processing weakly stationary data with the 

Dornier Installation. If there is some indication that the data could be random, 

the process is plotted for a first short inspection. Then the data are tested for station-



Fig. 2. Dornier GmbH hybrid computer installation. 
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arity, for randomness and possible linear trends. The techniques for determining 

whether the data are stationary and random are straightforward and rather simple. 

The sampled data are divided into several sequences. Then the statistical properties 

for these sequences are computed by time averaging. If these statistical properties 



do not vary significantly, the process is considered as stationary. Under two assump

tions a sufficient stationarity test for a sequence is available by computation of the 

mean- and the mean-squarevalue (or the variance): 

a) The process has a Gaussian probability density function; 

b) The correlation function is stationary if the variance is stationary. 

These assumptions are usually valid. Furthermore the experience shows that power 

density spectra and autocorrelation analysis yield good results, even if the processes 

are weakly stationary. In the case where any trend of the mean values can be assumed, 

linear correction for this slight nonstationary and nonrandom effects is provided 

in the following way. 

Ususally the data are divided into three sequences. If the three means indicate a 

nonstationary trend as shown in Fig. 4, where the individual means have increasing 

values, correction is provided. For this purpose only the stochastically changing 

part of the data about the straight line 

(1) XG(i) = i. a + p ( i = l , 2 , 3 , . . . , i V ) 

is considered within the analysis (Fig. 4). 

( 2) a = - l ( x 0 - 5 c „ ) , 
2 * V 

(3) P = i • (5xu - x0) , 

Fig. 4. Elimination of mean and linear trend. 

xu is the mean of the first third of the data, x 0 the mean of the last third, 

(4) 
3 " ' 3 

*. - - I *! . 
JV І = I 



(5) x0 = A E X | . 
N i=l+2JV/3 

The random ordinates about the straight line are to be 

(6) yt = xt - x + — f~ - »J (*o - *„) • 

If random processes with trends are corrected in this way, large distortions at low 
frequencies and particularly at zero frequency are avoided. The correction for linear 
trends makes only sense in the presence of such a trend. 

Before analyzing these data, only the overall mean value will be subtracted. 

1 N 

(7) yt = X; — x with x = — ]T x , . 
JV i=i 

In the data contain sinusoidal components, they can be easily detected by the auto
correlation function. 

Experience has shown that in almost any practical test the probability distribution 
can be approximated by the normal (Gaussian) distribution. The validity of this 
assumption is usually proved by a chi-square goodness-of-fit test [1]. 

13.3 Details of Digital Computer Techniques for the Determination of Correlation 
Functions and Power Density Spectra 

The auto- and crosscorrelation function is obtained by means of Eqs. (8) and (9) 

(8) 0xx(r) = \im±CTx(t).x(t + -z)dt, 
r -a )2TJ_ r 

1 r+T 

(9) $xz(%) = lim — x(t). z(t + x) dt. 
T-.GO 2T J _ r 

The auto correlation function is even: 

(10) <Pxx(r) = <I>xx(-x). 

By substitution t + T = t' in Eq. (9) one obtains for the crosscorrelation function 
the relation 

(11) $XZ(-T) = <PZX(X). 

For digital calculations the data have to be sampled. Therefore only discrete values 
for the correlation functions can be computed. The data {x} and {z} are only available 
for positive times. If one has the data available for a length of JV . Af, good accuracy 
can be expected for correlation times M . At where M :g 0,1 JV. 



For numerical computations, Eqs. (8) and (9) become 

(12) $Jm) = —L- Yyi.yi+m, 0^m = M, 
N — m 1=1 

(13a) 0jm) = — iiyfli+m , 0£m^M, 
N — m i=i 

(13b) 0jm) = \ ~f vt. yi + lml , -M^m<0. 
N — \m\ i=i 

Hereby the data {x} and {z} have been converted to the normalized data {>'} and 
{v} by Eq. (6) or (7). 

The correlation functions computed by means of Eqs. (12) and (13) can be used 
as an unbiased estimate of the true value. For the error analysis the variance of the 
correlation function will be computed 

(14) ajm) = E{(d>Jm) - <I>;x(m))2} , 

(15) ajm) = E{(<Pjm) - 4>;x(m))2} . 

If one determines the relations (14) and (15) explicitly and assumes normal pro
bability density functions of the data {x} and {z}, the following relations will be 
obtained: 

(16) <£H = 7^—* "Z~\N - m - k - l . 
(N - m)2 k=o 

[<Pjk) + <Pjk + m) <Pjk - m)] , 

(17) ajm) = - ^ - — " Y \N - m - k - l ) . 
(N — m) k=o 

[$Jk) <Pjk) + $Jk + m) $xz(~k + m)] . 

Eqs. (16) and (17) cannot be evaluated in their present form since the correlation 
functions are only calculated for —M <. m g M. For practical purposes, however, 
one can assume the correlation functions to be zero for m + M. The upper summation 
index can therefore be limited to M — m. 

Fig. 5 shows the auto-correlation function of the output and Fig. 6 the cross-
correlation function between output and input of a lag network excited by white 
noise. The variance for different observation length is shown. The sampling time was 
0-2 sec. The lag time constant of the network is 0-5 sec. The variance is smaller with 
longer observations. 

Unfortunately the length of the observation time is more determined by practical 
considerations during flight tests than by statistical requirements only. In many 



T 500 1 
1000 data 
1500J 

Fig. 5. Output autocorrelation function of a lag network. 

Fig. 6. Crosscorrelation function (output-input) of a lag network. 

cases, however, good results are obtained even if the length of observation is not 
sufficient. Fig. 7 shows two correlation functions. Both have been obtained by 
analyzing the stick deflection of two different pilots during flight. In the second 
correlation function a sinusoidal component introduced by one of the pilots can be 
detected. 
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Fig. 7. Autocorrelation functions of stick deflection during hovering flight (two pilots). 

Power Density Spectra. The cross power density spectrum is defined as the Fourier 
Transform of the crosscorrelation function 

(18) Sxz(f)=r\z(x)e-^dx. 

For evaluation the real and imaginary part have to be calculated separately 

(19) Re Sxz(f) = f °° <Pxz(x) cos cox dx, 



f+00 

(20) I m Sxz(j) = - _>„(-) sin COT dT . 

According to Eq. (10) it is sufficient to undergo only a cosine transformation for 
obtaining the auto power density spectrum 

(21) 
Л+CO 

Sxz(j) = 2 Фjт) cos (ÛT dт 
J — 00 

The integrals must be calculated numerically. As the process has been sampled at 
equally spaced intervals At, the highest signal frequency which could be detected 
i s j = < j r /2 = \ At. Therefore, Eqs. (19) —(21) can be evaluated only for the foll
owing frequencies: 

(22) f» = ~7fr (-M^n^M). 
2M 

Using digital calculations for power spectra analysis, one has to consider that the 
correlation functions are only available at discrete time intervals. This means that 
one obtains due to aliasing effects all the frequency spectra 

(23) SX(j)= +f Sjf-mfT), 

(24) Sjf)=^_JJf-mfT). 

Evaluation power density spectra by digital means fT has to be chosen sufficiently 
high so that no aliasing of the side bands can occur. Using any numerical integration 
method for Eqs. (19) —(21), only a raw estimate of the spectrum can be obtained 
because m is restricted to values m < |Afj. A good smooth of the estimate may be 
obtained by frequency smoothing called hamming: 

(25) Sjf„) = 0-54Sjf„) + 0-23Sjf„^) + 0-23Sxx(f„ +,) , 

(26) Sjf„) = 0-54Sjf„) + 0-23Sjf„_.) + 0-23Sjf„+1) . 

The raw estimate of the power spectra is calculated by means of Eqs. (27) and (28) 

using trapezoidal integration 

r M-i 

(27a) ReSxz(j„) = Af J *«(0) + £ [<Pjm) + $Jm)] . 

. c o s ___ * + izH \cpjM) + 4>JM)]\ , 



(27b) Im Sxz(f„) = Ař { Y [*Jm) - $Jmj\ sin — n\ 

(OgmáJlí), 

(28) SXI(L) = At L(0) + 2 "%**&) cos'-~* + *«(Af) (-1)" j . 
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Fig. 8. Power density spectra of a harmonic. Parameters: maximum correlation time (Af), 
sampling frequency (fT). 

Fig. 8 shows a few characteristic results. In (a) and (b) a single harmonic oscillation has been 
analyzed. In (a) the maximum number of correlation lag values has been kept constant to M = 
= 100. The analyzed record length was 1500 samples. The sampling frequency was varied, 
fT = 5 Hz, 10 Hz and 20 Hz. If fT is increased, the bandwidth of the spectrum will increase 
according to Eq. (22). However, if M is kept constant, the number of independent spectral 



estimates will be the same. That means that the intervals A / = fT/2M where the spectrum is 
estimated are wider if fT is increasing. In the present case with only one harmonic oscillation 
the energy which is constant is dissipated in a wider interval a s / r increases. 

If fT is kept constant and the maximum number of correlation lag values M is varied to values 
M— 100; 50; 25 one encounters to the same situation (Fig. 8b). Decreasing M means increasing 
the intervals in which the energy of the spectra is estimated. Therefore the results shown in Fig. 
8 are identical because it is the same if one varies M in the ratio 4 : 2 : 1 o r / T in the ratio 1 : 2 : 4 . 
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Fig. 9. Power density spectral of a square-wave (0.1 Hz). 

Before analyzing a record, thoughts have to be given to how many independent spectral 
estimates have to be detected and to what the bandwidth will be. This is particularly true in the 
case of period phenomena in the spectrum. 

Fig. 9 shows the analyzed spectrum of a square wave with a fundamental periodic of 0-1 Hz. 
The harmonic oscillations of the square wave will be 0T; 0-3: 0-5; 0-7;... Hz. For spectral densi
ty analysis the following sampling frequencies were chosen fT = 5 Hz; 10 Hz and 20 Hz. Evalua
tion with M= 100 lag intervals yields power density estimates at intervals A / = 0-025 Hz; 
005 Hz and 0 1 Hz. It is obvious from Fig. 9 that overlapping problems will increase with A/ 
increasing because the constant power of each single harmonic is sperad over a wider frequency 
range. 



If the signal frequency band extends half the sampling frequency aliasing occurs. This is shown 
in Fig. 10 where the power density spectrum of a square-wave with a fundamental periodic of 
1-5 Hz is given. Sampling w i th / T = 30 Hz yields an unaliased power density spectrum. Strong 
aliasing occurs at a sampling frequency of fr = 10 Hz. In this case the sampling theorem is 
only valid for the fundamental and the third harmonic. 

To avoid aliasing the sampling frequency has to be chosen twice the highest signal frequency. 
A signal with unknown frequency bandwidth must be modified by a low pass filter in order to 
prevent aliasing effects of noise and energy rich disturbances of higher frequencies. 
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Fig. 10. Spectral density analysis of a square-wave 1.5 Hz-aliasing problems. 

III. DIGITAL IMPLEMENTATION OF CORRELATION AND POWER 
SPECTRA CALCULATIONS 

Digital implementation of correlation and power spectra calculations can con
siderably benefit from the use of hybrid or process control computers. There are 
two specific difficulties when the correlation and power spectra calculations are 
implemented on such a computer: The enormous number of individual digital 
operations to be performed and the large storage capacity needed for handling large 
quantities of data. In the following it will be shown how these problems have been 
solved on the Dornier SDS 9300 computer with a 8096 twenty-four bit memory and 
two magnetic tapes. This computer is mainly used for data processing and hybrid 
simulation. 



n i . l Some Consideration on Time Optimisation 

With A— D converters analog data can be quantized at 104 scale units; that means the computer 
words will have about 13 useful bits of information. As the normal computer words of the SDS 
computer and most of the process computers have 24 or in some cases 18 bits, one should not 
use double precision length which is required for floating point operations, thus increasing the 
computer data artificially to 48 or 36 bits, where only 13 bits are used. 

Fixed point implementing of all the numerical calculations requires careful investigation 
during programming in order to avoid any possible overflow. There are special summing routines 
in the program where double-precision appears to be necessary. But even then, fixed point 
operations are usually considerably faster than floating point operations, e. g. in the case of the 
SDS 9300 

addition (fixed point 24 bit word length) 3-5 usee 

addition (fixed point double precision) 5-2 usee 

addition (floating point) 10-5-M9 usee 

As the input data are principally digitalized from analog form at 104 scale units, one may 
avoid any overflow associated with the fixed point computation of the correlation and power 
spectra. 

By inspecting the machine code program produced by a Fortran Compiler it was learned 
that the Fortran II compiler using double precision operation does not make full use all of the 
possibilities of the available instructions especially in connection with the index-registers. There
fore the whole program was written in machinecode. Investigating all the procedures with regard 
to minimum computer time and making full use of the three index registers, time for the overall 
computations could be saved. This is particularly true in the case of certain inner loops which 
are run very often. 

in .2 Consideration on the Memory Requirements 

The Fortran Compiler at hand requires 4000 24 bit memory words for the monitor. There
fore memory considerations, too, rule out the use of Fortran for programming. The length of 
the program written in machine code instructions with all the necessary subroutines required 
for the calculation of the means and variances, the probability density functions, some tests for 
randomness and stationarity, the correlation and power spectra functions uses roughly 4 500 
twenty-four-bit-words. 3 000 words are reserved for two arrays of the digitized data of two 
stochastic processes. 1 500 sampled values from a weakly stationary process yields, as the expe
rience shows enough information, provided the adequate sample interval has been chosen. The 
correlation functions are computed up to a maximum correlation lag value of 150. 

During computation the input data are firstly normalized and possible trends are removed. 
After this the original data are no longer required and the storage capacity of the input data 
can be used for the normalized data. If the raw estimates of the correlation function have been 
calculated, the normalized data are no longer needed for the computations. The memory capacity 
can now be used for the power spectra calculations. 

This technique using the memory during the different phases of the computations several 
times, allows the handling of large amounts of data even with a relatively small computer. 

If magnetic tapes are evailable, the amount of data which can be handled, could be increased. 
So far we use one tape for data input and one tape for output. It is difficult to make assertions 
to the influence of the use of tapes on computer time. A rather sophisticated data organisation 



for the tapes is necessary in every case in order to make full use of the computer's data transfer 
rate of nearly 300 000 words per second. 

The use of magnetic tapes as output for the results and printing out the data later on in off-
time operation, both can help to save computer time and memory capacity because all output 
subroutines with the one exception of the tape handling programs are no longer needed. 

Some characteristic values for the computer time used with the program written at Dornier 
GmbH shall be given. 43 sec are used for analyzing two stochastic processes each having 1000 
sample values. The correlation function values are computed for a maximum lag of 75. The 
program will give the following results for each of the two arrays: 

means and variances, 
probability density functions, 
estimates for the auto correlation functions, 
variance for the estimates of the correlation functions, 
auto-power spectra, 
estimates for the cross correlation function between the two processes, 
variance for the estimates of the cross correlation function, 
cross power spectrum, 
amplitude and phase of the frequency response (calculated only for linear systems if necessary). 

The 43 sec used for the data processing are split up into 14 sec for the effective computer time, 
5 sec for the data exchange from the input of the tape into the memory of the computer and 24 
sec for the on-line output of the results on the printer. One observes that considerable time 
could be saved by using the tapes with off-line operation for the printing as output device discussed 
above. 

IV. PROBLEMS INVOLVED WITH THE APPLICATION OF STATISTICAL 

METHODS FOR IN-FLIGHT MEASUREMENTS 

Statistical methods have been applied to a large extent during the investigation 

of the hovering mode for VTOL aircraft at the Dornier GmbH. The following 

methods have been used: 

a) Transfer function measurements during flight for investigating the dynamics 

of the system and system components. 

b ) Transfer function measurements during flicht for detection of any mal

function of systems, 

c) Measurements to investigate the main sources of disturbances. 

IV. 1 Transfer Function Measurements 

Stability analysis requires the determination of the open loop transfer function 

of the attitude-stabilized hovering rig from in-flight measurenmets (Fig. 11). The 

block diagram is shown in Fig. 12. As it is absolutely impossible to perform an open 

loop transfer function measurement with any stimuli with a plant having a double 

pole in the origin, the open loop transfer function was determined by measuring the 



240 closed loop. This yields 

(29) Ғ 0 = 
1 - ғn 

(Eo — frequency response of the open loop transfer function, Fg — frequency res
ponse of the closed loop transfer function). 

Fig. 11. Hovering rig of the Dornier GmbH. 

It is difficult to ensure sufficient accuracy applying Eq. (29). It is known that a 
closed loop control system should be very insensitive against changes of the open 
loop characteristics. This means that errors of the open loop transfer function 
measurements will have normally only negligible effects on the accuracy of the closed 
loop transfer function computed by the open loop data. If it is required to determine 
the open loop from the closed loop transfer function, the reverse effect occurs. Any 
errors of the closed loop measurement are amplified if the open loop transfer function 
is computed with these data. This fact may be recognized by inspecting the denomi
nator of Eq. (29) 1 - Fg and remembering that in the interesting frequency range 
Fg should be flat and equal to 1, if the control system performs nicely. 

There was sufficient knowledge of the attitude control loop as to assume that the 
system was of a minimum phase type. The problem which had to be decided was, 
whether to use magnitude and phase information of the closed loop or only magnitude 
or phase information for the determination of the open loop. The missing phase 



of magnitude can be computed by means of 

d l n E 
(30) 

with 
4-L dи 

lnctg/j|M|/2dM 

(31) | E И | = |E(oo)| - ł Г 
яj< 

u = ln a//co , 

CO*<p(CO*) — CB<p(cíj) 

co*2 - CO2 
dю*. 

A theoretical investigation of the attitude control system shows that using magnitude 
information only will give the best results for the open loop transfer function. The 
reason for this fact will be explained shortly. 

Fig. 12. Block diagram of the attitude-stabilized rig. 

(32) 

The open loop transfer function is determined by 
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where opg is phase of the closed loop transfer function. 
Fig. 13 shows an illustrative example of an open loop transfer function of the 

attitude stabilized ring. 
By partial differentiation and substitution of Fg by E0 in an adequate form one 

obtains 

(33) AEo = (1 + E0) E0 - ^ - + j(l + Eo) F0 Aęg F„ 

II 



The resulting error AF0 is plotted in Fig. 14. It is assumed here that A|Fg|/|Tfl| = OT 
and Acpg = 10°. 

If one measures the magnitude one may calculate the phase cpg with the aid of 
Eq. (30). The phase error due to the magnitude error of e. g. 0-1 can be computed, 
too. A quick look at Fig. 14 shows that the overall error AF0 is considerably smaller, 
compared wit the measurement of both phase and magnitude. 

According to this theoretical analysis and to practical experience in the majority 
of inflight measurements where minimum phase system could be assumed only 
magnitude information is used at Dornier GmbH for transfer function analysis. 

Fig. 13. Open loop frequency response of the attitude-
stabilized rig. 

KeiL Fig. 14. Total error plot 
AFft. 



I V . 2 Measurement of the Sources of Disturbances 

Transfer function measurements can provide a very successful too l to investigate 

the ma in sources of dis turbances in a system. Dur ing the operat ion of the hover ing 

rig, the na tu re and the source of the dis turbances h a d to be investigated. F r o m the 

0-2 0-4 0-6 

Fig. 15. Source of disturbances detect
ion by two different measurements. 
Magnitude- and phaseplots of the at-

1-6 /[Hz] titude-stabilized hovering rig. 

block diagi . ;m (Fig. 12) it is obvious tha t three major sources of dis turbances will 

d is turb the a t t i tude cont ro l system. These are the pi lot- introduced noise, the gusts 

and the je t engine noise. T o investigate the main source of the d is turbances , the 

following measurements have been made . T h e closed loop transfer function was 

de te rmined by applying artificial p se udo - r andom signals as stimuli with t he stick 

as inpu t and the a t t i tude as the ou tpu t . After this , tests have been m a d e measur ing 

the ra t io stick inpu t to roll a t t i tude of the closed loop wi thout artificial stimuli by 

means of calculat ion SkipjSkk. Assuming the inherent noise sources as in Fig . 12 these 

measurements mus t yield 

S„a(co) 

(34) Sjja?) _ 
i - ғ.ғ, 

Skk(a>) * 

ŞM 

1 + \FSFP 
s » 
Sw(æ) 



(Fs — frequency response of the attitude stabilized rig, Fp — frequency response of 
the human operator, Saa — power spectra of the gusts and jet engine noise, Spp — 
power spectrum of the pilot induced noise, FpFs — complex conjugate). 

Fig. 15 shows some results. No remarkable difference between the measurements 
with and without artificial stimuli is observed. Therefore one can conclude that 
SPP < S„a. 

V. CONCLUSIONS 

Digital data processing of stationary stochastic processes proved to be a successful 
tool for in-flight measurements. Many problems could be investigated with these 
methods within the frame of a VTOL transport development program. 

At the present time the problems of the regression analysis are studied, to investig
ate whether the regression analysis or the statistical methods of the control theory 
described here are more powerful for parameter identification. 

(Received March 3rd, 1967.) 
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Určování přenosů statistickými metodami s použitím číslicového 
počítače 

W. KREIL, W. SCHNITZLER, G. SCHWEITZER 

Článek je věnován problematice výpočtu statistických charakteristik náhodných 
procesů a jejich použití pro určování přenosů leteckých konstrukcí. Vychází se 
z údajů naměřených na fyzikálním systému s náhodnými komponentami. Použití 
číslicového počítače se diskutuje zejména z hlediska programu pro nejrychlejší 
zpracování údajů. 

Kromě teoretického odvození a popisu metodiky článek uvádí i uspořádání 
experimentů a několik užitečných postřehů, které vyplynuly z praktického ověření 
a které autoři podložili i teoretickou úvahou. 
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