
K Y B E R N E T I K A ČÍSLO 1, R O Č N Í K 4/1968

Non-Deterministic Behaviour
of Deterministic Computer

JIŘÍ SOUKUP

Current computers are usually regarded as deterministically working machines. The article
shows that in circumstances resembling living conditions of live organisms computers can also
work non-deterministically. The fundamental theme is illustrated on a program for non-determi
nistic learning. The article simultaneously touches two fields of questions: problems of design and
operation of control systems of living organisms on the one hand, and non-deterministically
working programs on the other.

When analyzing the behaviour of living systems we come to the conclusion that
there is a certain non-determinateness in their behaviour. So far it is difficult to
decide whether it is really non-determinateness, or a sign of their great complexity.
It is a fact that in this very non-determinateness one of the fundamental differences
between contemporary computers and the control systems of living organisms is seen.
Besides this it is known that the range of problems that can be solved by deterministic
computers (the Turing machine) is limited and future computers are supposed to be
at least partially non-deterministic.

The aim of this article is to show that the non-determinateness of living systems
could be concealed in the fact that these systems must react to their surroundings
not at the moments which they choose by themselves but at the moments defined
by their surroundings, that means randomly from the point of view of the inner
rhythm of these systems. This reflection has two significations: 1. Then it would be
possible to presume that even living systems working non-deterministically are
combined from elements working deterministically (similarly as contemporary
computers). 2. This advance would show how to gain non-deterministic behaviour
of contemporary computers.

The fundamental idea is illustrated by the program for non-deterministic learning.
The program serves for teaching the computer by repeated tearing to find the result z
to two input signals x, y. The program given below is in Algol 60 with the proceedures
of the computer SAAB D 21, which the program has been verified on.

TAPECODE (1,2,0,0) is a declaration of the procedure of input and output.

READ (N,l) means a statement to read the variable JV from the punched tape.

PRINT (<£ 2CR ANSWER 3SP > , X,2,3) means an order to print 2 empty lines,
the text ANSWER, 3 spaces and the values of the variable X with 3 decimal places
and 2 integer places.

PRINTTEXT has the same meaning as PRINT, but the value of no variable is
printed.

YVR has the value of a whole number adjusted binarily on the push buttons of the
panel.

The heart of the program is in the part Al, which forms a kind of roulette for the
number K, stopped at random by an outside impulse (by pushing a button). The
other parts of the program only serve to load or read information on the basis of this
K — see description of activity shown after the program.

PROGRAM

begin
comment non-deterministic learning of the deterministic computer;
integer N;
TAPECODE (1,2,0,0);
read(N,l) ;

begin integer J, K;

real E. F , G;
real array X [1 : N] , Y [1 : N] , Z [1 : N] ;
switch SI : = A6, A2, A6, A2;
switch S 2 . = Al, A3, A3, A3;
sw i tchTl:= Al, Al, A4, A4;
switch T2 := Al, A5, A5, A5;
K : = 1;

Al: if K = N then 1 else K + 1;
go to SI [YVR + 1];

A2: read (X [K] , 1); read (Y [K] , 1); read (Z [K] , 1);
print(<Kcr > , X [K] , 1,0);
prin t (< i :2sp>,Y [K] , 1,0);
p r i n t (^ 2 s p > , Z [K] , 1,0);
printtext(H; 2sp learning >);

A3: go to S2 [YVR + 1];

A4: read (E, 1); read (F, 1); read (G, 1);
print (<£ cr > , E, 1, 0); print (<C 2sp > , F, 1, 0);

for J : = 1 step 1 until N do
begin if K = NthenK := 1 else K := K + 1;

if E = X [K] then begin if F = Y [K] then

begin print (<t 2sp > , Z [K], 1,0);
if G noless 0 then
begin if G = Z [K]

then printtext (<f. 2sp correct answer >)
else print («fc 2sp bad answer to 2sp > , G, 1, 0)

end else
printtext (<fc 2sp answer only >) ;
go to A5

end
end

end;
printtext («fc 6sp no answer >) ;

A5: gotoT2[YVR + l] ;

A6: go to Tl [YVR + 1] ; end end

USE OF PROGRAM

The tape containing the number N (maximum number of relations that can theoret
ically be remembered) is inserted into the tape reader. Then the punched tapes with
the triples of numbers X, Y, Z are inserted. If Z is non-negative a process of learning
takes place which is directed by the push buttons on the desk like this: If button No. 1
(YVR = 2°) is depressed and released the phase of learning takes place. If button
No. 2 (YVR = 21) is depressed and released the computer answers the control
question evaluating the result. If Z is negative it means that the answer to the question
is not known and the computer answers without regard to Z and without regard to
the fact which button was depressed and released (text "answer only").

In the case of repeated learning the punch tape with all the relations X, Y, Z can
be spliced into an endless loop.

The behaviour of the program is very similar to the process of learning, for instance
learning of human being. As a basis were taken the following properties: 1. The
probability of the correct answer increases (in the sense of statistics) with the number
of learning cycles. 2. The capacity of the memory is limited. 3. The forgeting follows
from the too large demands on the memory or from the fact that the remembering
has not been restored by repeating. 4. The loading of the memory, the forgeting and
the choice of the answer are provided non-deterministically.

This is illustrated by the notes at the partial results of the example mentioned
below. In the case N = 20, the computer has learnt to couple with the numbers 1

and 2 their sum correctly by long repet i t ions. In this s i tua t ion we began t o teach the

computer to couple with the numbers 1 and 2 their p r o d u c t like this:

(The reactions of the computer at the first checking.)

1 1 2 incorrect answer to 1
1 2 3 incorrect answer to 2
2 1 3 incorrect answer to 2
2 2 4 correct answer

(The fourth relation happens to coincide. We shall begin to teach.)

1 1 1 learning ,
1 2 2 learning
2 1 2 learning
1 1 1 learning
1 2 2 learning
2 1 2 learning
2 2 4 learning
1 1 1 correct answer
1 2 2 correct answer
2 1 3 incorrect answer to 2

(still as for adding)

2 2 4 correct answer
1 1 1 learning
1 2 3 incorrect answer to 2

(Although it answered correctly a little while ago. Either it is not sure, i.e. both triples 123 and
1 122 are in the memory, or it has meanwhile forgotten the triple 122.)

f ' 2 1 2 learning
, . 2 2 4 learning
i 1 2 2 learning

2 1 2 learning
2 2 4 learning

' i l l learning
' 1 2 2 correct answer ;

;;' 2 1 2 correct answer
2 2 4 correct answer *'.•-••
1 1 1 correct answer

1 1 2 2 correct answer
2 1 3 incorrect answer to 2

: (It still is not sure id this answer. Sometimes it answers correctly, sometimes not. Let us try
, the checking once more.) (..

,. 2 2 4 correct answer , . . - . :
. . I T 1 correct answer ,

1 2 2 correct answer
'; 2 1 3 incorrect, answer to 2

(The same error again. Let us continue in the teaching!)

, 2 2 4 learning
1 1 1 learning

! 1 2 2 learning' : ,

2 1 2 learning ' '
2 2 4 learning «

I
(Now the computer always answered correctly to repeated questions so that we deduced that
it had "learnt" the multiplication.)

PROBLEMS

The given program is designed so that not only the remembering but also the answer
are not determinated. But it is not clear whether it would not correspond more with
the method of remembering in the human memory (if we should be interested in
such a model) for the question to be formulated as a mean (possibly weighted) of
all the answers loaded in the memory or the answer that appears in the memory
most frequently. As well we could consider the computer reacting to the evaluation
of the control question, for instance, in such a way that in the case of an incorrect
answer it would delete the relation from its memory or remember it>as an incorrect
answer. Modifications of the program for such alternatives are simple and we shall
therefore not deal with them.

(Received .July 17th, 19671)

VYTAH

Nedeterministické chování deterministického počítače

JIŘÍ SOUKUP

Běžné počítače jsou obvykle považovány za deterministicky pracující stroje. Článek
ukazuje, že za podmínek odpovídajících životním podmínkám živých organismů může
počítač pracovat nedeterministicky. Základní myšlenka jě ilustrována programem
pro nedeterministické učení. Uvedené výsledky byly získány na počítači SAAB D'21.
Článek se současně dotýká dvou oblastí problémů: problému konstrukce a činnosti
řízení v živých organismech na jedné straně a nedeterministicky pracujících programů
na straně druhé. To může mít velký význam u různých programů pro učení au pro
gramů, které mají reagovat na nepředpokládané situace v řízených objektech.

Ing. Jiří Soukup, CSc, Výzkumný ústav ekonomiky hornictví, Praha 1, Lazar ská 7\

