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Set-Theoretical Operations on k-multiple
Languages

JAROSLAV KRAL

It is shown that the class of k-multiple languages (see [1]) is closed under formation of finite
unions and intersections. The two types of complements are k-multiple modulo e. The class of
k-multiple modulo e languages is closed under the formation of finite unions, not, however,
under formation of intersections and complements.

The k-multiple automaton was introduced in [1] as a generalization of the concept
of finite automaton and as a device for the recognition of the so called k-multiple
languages. For our purposes we reformulate here some definitions from [1].

Definition 1 (Culik). The k-multiple automaton A is defined by the (k + 4)-
tuple VW, V@ VW [ & iy, Fy where

V@ i =1,2,..,k, arc finite nonvoid scts called alphabets, elements of V® are
called symbols;

I is a finite nonvoid set called the set of internal states of 4;

&, the transition function, is a transformation from I ® V? ® ... ® V® into I,
® denotes the cartesian product;

iy, the initial state, is an element of I;

F, the set of final states, is a subset of I.

A is a device which can be in some internal state i € I. Thisdevice has kinputs. After
reading vy, ..., v; by inputs of A4, the internal state i of 4 is changed to iy, i; =
= 45(1', Uy, Uy, ...y D). 4 can be therefore interpreted as a finite automaton with k in-
puts instead of one.

Definition 2. We say that a string
X = X(Xp eor XXgpq eon Xagon Xpg

is acceptable by a k-multiple automaton A if the expression

H(D(.... D(D(ios W1), W) ... ), W),
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where w; = (X;, X4 i Xp54p .oy X—1)s+:)» has @ meaning and defines some state
from F. The string, the length of which is not the multiple of k, is not acceptable by
the definition.

For a k-multiple antomaton 4 and for an k-tuple x of symbols we shall use the terms
such as “x is read by 4™, “x puts 4 into state i”” and so on in the similar sense as
for a finite automaton.

Definition 3. k-multiple language L, is a set of all strings which are acceptable by
some k-multiple automaton 4. The automaton A will be called the automaton of L.

Theorem 1. Intersection or union of two k-multiple languages is a k-multiple
language.

This is proved by a slight modification of the proof that the union or intersection
of two regular events is a regular event again; see [2] or [6]

Definition 4. Complement I of the k-multiple language L, is the set

L=Vx-1L,,
where V* is the set of all strings over V= v u v@ v . v V&,

Example 1. Set L, = {a"b"; n 2 0} is the two-multiple language (see [1]). But
L,= {a, b}* — L,

and L, contains the set {a"; n> 0}, i.e. the strings the lenghts of which are not even
and we have at once:

Corollary 1. Complement of the k-multiple language L, is not necessarily a k-mul-
tiple language.

Definition 4a. The component complement L, of the k-multiple language L, is the
set of all strings x ¢ Ly of the form d,d, ... d,, d;e VW% for i = 1,2,3,..., k.

Henceforward in this paper by 4 = <V, ... V® [ i,, F) an automaton of L,
will be denoted.

Example 2. L, = {a"b™; m & n; m,n = 0} is component complement of L, =
= {a"b"; n > 0} and it follows.

Corollary 2. Component complement I, of k-multiple language L, is not necessarily
a k-multiple language.

Definition 5. Let V", ..., ® be alphabets not containing e. A set L, of the strings
of the form d,d, ... dy, d;e V', i = 1,2, ..., k, is a k-multiple modulo e language
if and only if there exists a k-multiple language L;, with alphabets ¥V U {e} so that
for every x € L, there is a y € L for which x = y (mod e) (i.e. x is equal to the y in the
sense of a free semigroup with the identity symbol e generating y) and vice versa



for every ye Lj there exists x e L, so that y = x(mod e). In other words L, is 317
k-multiple modulo e if every string of L, belongs to a k-multiple language L, if a suit-

able insertion of ¢’s is done and vice versa by erasing e’s in arbitrary y € L; a string

x € L, is obtained.

Theorem 2. [, is a k-multiple modulo e language.

Proof. We shall construct a k-multiple automaton
A% = VOV, L VO I% 90 00 FO, VO =Tu {¢
which accepts I,. Each string x e L, is expressible in the form
(21 x =dd,dy...d;

where d; are strings over V= V" 0 ¥@ o . U V® and if x has the length
sk + j, j < k then d,, ds, ..., d; have the length s + 1 and d;.,..., d; have the
length s. We shall construct A° so that A° accepts only the strings x of the form
(i=0,1,2,3,..)

(2.2) x° = die'dye’ ... die'd;y ettt L dettt

where e'*! = ele, i > 0, ¢° is an empty string and d; has the same meaning as in
(2.1). It follows that the alphabets V) of A% are foralli = 1,2, ..., kequall to V° =
= VU {e}. The construction of ¢°, I® and F° is now straightforward although
rather cumbersome.

If an automaton A4 of L, is given by <V, ..., V&, I, @, iy F) we put iy = iy,

IP=10 {il;w=23,..,k—1} v {ip} v {i}

where all iy, w=2,3, ..., k — 1, i, do not belong to I. #° coincides with & on
IQVY®...@ V¥, 0%, vy, vy ..., 03) = i, fOF vy, 0y, ..., 0 F € and either i =
=i,orieland §°(i, vy, ..., v,) is undefined, i.e. A° is in the state i, if a symbol not
belonging to V® has already been read by i-th input and the symbol e has not been
read yet.

(1,01, V0,8 8) =Ty for w=2,3,..,k—1and iel or i =i (ie.
the reading of the last but one k-tuple of symbols is realized);

9°(i, e,¢,...,e) = i for all ieI° (i.e. reading of (e, ¢, ..., €) causes no change of
the internal state of A°).

In all other cases °(i, vy, v;, ..., 1) = ip.

Putting i = i, and

FO=(-Fjv {iju {issw=2,3,..,k-1}

we see that 4° has all desired properties.
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Theorem 3. L, is a k-multiple modulo e language.
Proof. We shall construct a k-multiple automaton

A5 = VO, VO, L VO IG @, G, FOY

which accepts L. (For the meaning of ¥° see the proof of the previous theorem.)
First we shall construct a k-multiple automaton 4 which accepts the set L™ of
strings being expressible in the form

x=dd,...dy,
d;is a string over V@ fori = 1,2, ..., k. Let
(3.1 A=, v, ..,V L&, 1, F)

A is constructed in order to accept only the strings of the form (2.2). The construction
of 4 is a simple matter if alphabets V¢ are mutually disjoint or if all V¥ coincide.
In the general case the construction is more difficult. As the construction of 4 is
rather cumbersome its main ideas will only be indicated. All alphabets of 4 are iden-
tical and equal to V°, If x € L™ is expressed in the form x = d,d, ... d, where the
lenghts of d; are s or s + 1, then x/ = ddi ... die I for j =1,2,..,s + 1,
where (as well as below) 4} denotes the string formed by the first j symbols of d;.
If follows that after reading x/ there exists a finite set B; of vectors b = (b,, ..., by)
where b; = g, if symbols from V¥ can be read by the i-th input, i = 1,2, ..., k,
so that
= d11'+1d12‘+1 di+1

remains a member of L.

Obviously B; ., having the same meaning for x/*' as B; for x/ is a subset of B;.
Now let I contain the states of the form i, where B is one of the above mentioned sets.
Let &(iz, Vi, ..., Vi) = ip,,, where x/*1 = div,div, ... dlv,, B; containing a vector
t = (ty, ..., ;) so that v;e VD for i = 1,2, ..., k. We note that these relations have
a meaning as B, is uniquely determined by B; and vy, v,, ..., v,. If B; does not con-
tain any vector of such a property some “absorbent” state iy is reached i.e. for ij it
is true that ®(ip, vy, V2, ..., 1) = ip for all (v, v5, ..., v;). The set of all i is finite
and it can be shown that adding some auxiliary states and putting i, = i, By =
={(ti t .. t); 1 S 1, £ 1, £ ... £ 1, S k} it is possible to construct 4 of all
desired properties.

Let us now construct the automaton 4°€. The set of its states is formed by the set of
pairs of the form iy, i,)> where i; € I and i, €I and by some additional states (i.c.
the states of A° are ,,pairs of states* of 4 and an automaton 4 of L, and some aditio-
nal states).

Let v = (v;, V25« s v,) and

Oy, 139, v) = @iy, ¥), Bz, v)> (32)
if both @ and @ are defined;



(i, e e,...,e) =1 (33)
foralliel®

¢C(<i15 i2), V) = <¢(ils V); gy (3‘4)
if @(i,, v) is not defined;

Fe={{iy, iy i eF, i, ¢ Fy U {<iy, ipy; i, e F} . (3:5)

It is easily seen that A° has the desired properties as a state from F° cannot be
reached if x e L; (see (3.3) and (3.4)) or if x is not expressible in the form dyd, ... d,
where d, is a string over V7 for i = 1,2, ..., k (see properties of 4).

Theorem 5. The union of two k-multiple modulo e languages is a k-multiple
modulo e language.

The proof is similar to the proof of the theorem 1. The only difference is that
instead of considering strings x we consider the strings x’ obtaining from x by con-
venient insertion of e’s.

Example 3. Let us have two-multiple modulo e languages:
L, = {a"b"c¢";m, n > 0}

which is accepted by the two multiple automaton {{a} v {e}, {b, c, e}, {8}, S5, S3},
9, S;, {84, S,})> where &(S,, a, b) = Sy, &(S;, e, ¢) = B(S,, ¢, ¢) = Sy, (S, ¢, ¢) =
= Sforall S, d(, , ) =S, in all other cases and

L, = {a"bc"; m, n > 0}
which is accepted by the similar automaton. But then
Ly n Ly = {a"b"c"; n > 0}

is a three-multiple modulo e language, not a two-multiple modulo e language. It
follows

Corollary 3. The intersection of two languages which are k-multiple modulo e is
not necessarily a k-multiple modulo e language.

Corollary 4. The complement of k-multiple modulo e language is not necessarily
a k-multiple modulo e. By the complement of L, we mean the set

L=Cc-1L,

where C is the set of all strings over V.

Proof. We note that for every two sets 4, B

AnB=(4 0 By,

319
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where ( )° denotes the complement and that the assertion of the theorem follows
from corollary 3 and theorem 5.

Corollary 5. The component complement L, of k-multiple modulo e language,
i.c. the set
L,=Cc-1L,,

where C = {d;d =d,d,...d,, d; is for i =1,2,...,k a string over ¥} is not
necessarily a k-multiple modulo e language.
The proof is the same as the proof of the previous corollary.

(Received June 1st, 1966.)
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VYTAH

Mnozinové operace nad k-nisobnymi jazyky

JAROSLAV KRAL

V ¢&ldnku jsou zkoumadny tak zvané ndsobné jazyky tj. jazyky akceptovatelné tzv.
ndsobnymi automaty (viz [1]), jeZ jsou zobecn&nim tzv. reguldrnich vyrazii. Je do-
kdzdno, Ze tfida ndsobnych jazykh je uzaviena vidi pritniku a sjednoceni, ale nikoliv
viidi doplitku. Tfida k-ndsobnych modulo e jazykl je uzaviena viidi sjednoceni, ale
nikoliv viigi primniku a tedy ani doplitku.
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