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Information-Theoretic Risk Estimates 
in Statistical Decision* 

ALBERT PEREZ 

In this paper we give some information-theoretical estimates of average and Bayes risk change 
in statistical decision produced by a modification of the probability law in action and, in particular, 
by reducing or enlarging the sample space as well as the parameter space er-algebras. These 
estimates, expressed in terms of information growth or generalized f-enrotpy not necessarily of 
Shannon's type, are improved versions of the estimates we obtained in previous papers. 
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0. INTRODUCTION 

Following the line of investigation of our previous papers [1, 2, 3], we try in the present paper 
to further extend and improve some information-theoretical estimates of the average and Bayes 
risk change in a statistical decision problem implied by the change of the probability iaw in action 
and, in particular, by reducing or enlarging the sample and/or parameter space c-algebra. 

As underlined namely in paper [11, the need for such estimates is growing with the complexity 
of the decision problems encountered in many fields of application. Due to the boundedness 
of the available capabilities, theoretical and/or material, for decision making it is desirable and 
sometimes even unavoidable to reduce complex decision problems to more simple ones as com
pared to the state of these capabilities. In such situations the need arises of course foi indirect 

* This paper partly coincides with the author's communication Decision Quality Improvement 
Versus Information Growth in a Statistical Decision Problem presented on International Congress 
of Mathematicians, Moscow, 16th —26th August, 1966. 



methods of attack allowing to perform rationally the process of simplification or reduction in 
order to pick out, if it exists, a good approximation or admissible version of the initial decision 
problem. By "admissible" we understand such a version that its solution and the realization of the 
corresponding decision procedure are possible in the frame of the existing capabilities and, at the 
same time, the change or loss of decision quality connected with this reduced version as compared 
to the unreduced one is still acceptable. 

In face of such a task it is only natural for a worker in the field of information theory to get 
the idea that the methods of information theory suitably developed could be useful in solving 
this task for a growing variety of decision problems. Indeed, all the theorems of Shannon's 
type deal essentially with criteria of transmissibility of an information source through a communic
ation channel, i.e. criteria of discernibility or decidability in a certain asymptotic sense of the 
transmitted messages on the base of the received signals. These criteria, formulated in information-
theoretical terms, may of course inform in certain cases on the existence or non-existence of 
suitable encoding and decoding procedures allowing the transmission, but they say nothing 
about the structure of these procedures. What we need in our case is something analogue to 
these criteria permitting us to judge if a given reduced version of the initial decision problem is 
admissible or not. Our information-theoretic risk estimates are conceived just as a contribution 
in the above sense. 

By introducing in LI] the information-theoretical concept of s-sufficiency as a natural generaliza
tion of the concept of sufficiency used in mathematical statistics (to which it reduces for e = 0) 
we observed that it would be possible to part from other definitions of information generalizing 
that of Shannon, namely, the f-informations or f-divergences of Renyi and Csiszar [4], which also 
have the property to be conserved only with respect to sufficient transformations (in the sense 
of mathematical statistics) and otherwise to decrease as well as some other fundamental properties 
similar to those of the Shannon's information (but not the well-known additivity properties of 
its density which are so important in proving limit theorems of the Shannon-McMillan's type 
[5]). And we added that in any case it would be interesting to try to improve our estimates by 
using the other definitions of information. To a certain extent this plan is realized in the present 
paper in combination with a suitable application of the Lagrange method of multipliers for ob
taining certain constrained extremum (minimum) of the corresponding generalized /-entropy. 
Thus, it was possible, in particular, to improve some previous estimates of the average and Bayes 
risk change we obtained in [1, 2, 3] in terms of the corresponding Shannon's information change 
or in terms of the generalized entropy [6] of the initial probability law with respect to the modified 
one. 

1. GENERALIZED /-ENTROPY 

The information-theoretic risk estimates obtained in [1, 2, 3] are based to a great 
extent on certain properties of the generalized Shannon's entropy or Kullback-
Leihlefs information of a probability measure P with respect to a probability mea
sure Q defined on the same measurable space (Z, 3)> i-e- °f the quantity* 

(1-1) HQ(P)= u log i /dQ if P< Q, 

= + co otherwise , 

* In the sequel by "log" we understand the natural logarithm. 



where u = dP\dQ in the first equality is the Radon-Nikodym density of P with 
respect to Q. These properties are essentially due to the convexity of the function 
f(u) = M log u which assures for every probability measure /< on the Borel sets of the 
interval [0, + oo] with fp0 u d/u(u) < GO the validity of the inequality 

(1.2) [ f(u)dn(u)^f([ u d/i(«) 

of Jensen. If, moreover, the function f(u) is strictly convex, as in the case above, 
then the sign of equality in (1.2) holds if, and only if, the measure n is concentrated 
on the unique point 

"o = u d/u(u) 

To the convexity of f(u) = u log u are essentially also due the well-known semi-
martingale properties of the stochastic process {/(«„), 3n, n =2 1} where 
{«„, 3„; n ^ 1} is the martingale process of the Radon-Nikodym densities «„ = 
= dP/d(2(3n) corresponding to an increasing sequence 3 i c 32 c ••• c 3 of 
sub-(T-algebras of the cr-algebra 3 under the assumption that the restrictions P„ and 
<2„ of P and Q on 3„ c 3 . « •= L satisfy the condition P„ <̂  Qn of absolute conti
nuity (cf. [6]). 

Neglecting, thus, the additivity property and retaining only the convexity property 
of f(u) one may expect to obtain useful generalizations of the Shannon's entropy. 
The realization of certain aspects of this program (the martingale aspect, for instance^ 
is neglected) was systematically undertaken by Csiszar [4] which considerably 
generalized, namely, the work beginned in this direction by Renyi [7]. In the remain
der of this section we shall often refer to [4] without making a special mention. 

Definition of the generalized /-entropy. Let f(u) be a continuous and convex 
function of u defined for u E (— oo, oo) resp. u e (0, oo) with, by definition, / (0) = 
= l im/(M)andO./ (0) = 0. 

u->0 

Let (Z, 3 ) be a measurable space* and P and Q two probability measures on it. 
Let, further, C be the set of absolute continuity of P with respect to Q, the corres
ponding density being denoted by u. 

By generalized f-entropy (f-divergence, according to [4]) we understand the 
quantity 

(1.3) Hf(P, Q) = [f(u) dfi + P(Z - C). hm M 
Jc — " 

which in the case P < Q becomes 

(1.4) Hf(P,Q)=[f(u)dQ. 

That is Z is a non-empty set and 3 is a u-algebra of subsets of Z. 



For / ( H ) = u log it the generalized /-entropy coincides with the generalized Shan
non's entropy (1.1), i.e. 

(1.5) HuloiU(P,Q)=HQ(P). 

For 

(i.6) / ( « ) = { - : T o<a<[ 
[ u for a > 1 

we obtain the generalized entropies of order a related to the well-known Renyi's 
relative informations of order a (cf. [7]) by the relation (we write Ha instead of H„a 

resp. ./_„<.) 

(1-7) U P | I Q ) = - - • - log \Ha(P, 6 ) | . 
a — 1 

It is possible to see that for a -» 1 the latter quantity converges to the generalized 
Shannon's entropy (1.1). Similarly for a converging to 1 from above we obtain 

(1.8) l i m _ _ _ _ _ _ _ ! _ » a ( P ) 

n \ i a - 1 

and for a converging to I from below we obtain 

,,.9) bmmm±i,H<Jin. 
a/1 1 — a 

On the base of these relations it is possible by extension to conceive the generalized 
entropy HQ(P) as a relative information or generalized entropy of order 1 and denote 
it by H,(P, Q). 

The total variation of P and Q may be also considered as a special case of the 
generalized/-entropy (1.3) obtained for / (u) = |M — l|. 

Let us now recall some important properties of the generalized/-entropy coinciding 
with those we obtained in [6] for the special case of the generalized Shannon's 
entropy. 

It always holds 

(1.10) Hf(P,Q)^f(\)^Hf(P,P), 

whereas for / («) strictly convex (i.e. with a graph not containing a linear segment) 
the sign of equality in the first inequality holds if, and only if, P = Q, 

If, for P and Q given on the measurable space (Z, 3) , d = (AUA2, ..., Aj is 
a finite measurable partition of (Z, 3) and P^ = (P(A,), P(A2), •••, P(Aa))< Q.«/ = 
= (Q(AX Q(A2), ..., Q(A„)), then it holds 

(1-H) Hf(P, Q) = sup / _ / ? „ . QJ). 



Let now, besides (Z, 3) be given another measurable space (Z', 3') a n d let 
(3> vz> 3 ) be a transmission channel with input space (Z, 3), output space (Z', 3') 
and transition probabilities given by v.. As known, for every z e Z it is, thus, vz a pro
bability measure on (Z', 3') a r |d for every E e 3 ' is the function v.(E) a 3 _ m e a _ 

surable function of z. 
Let, further, P and 2 De the marginal distributions induced on (Z', 3') by the chan

nel (3 , vz, 3 ') and the distributions P and Q, respectively, given on (Z, 3)> '-e-

(1.12) P(£) = f vz(E) dP(z), 2(E) = f vs(£) do(z) . 

Then, for every convex function f(u) and arbitrary probability distributions P 
and £> on (Z, 3), it holds 

(1.13) Hf(P,Q)^Hf(P,Q). 

If, moreover, the function/((/) is strictly convex, then the equality sign in the above 
inequality holds if, and only if, either Hf(P, Q) = oo or 

(1.14) vs({V : U(z') = u(z)}) = I [ 0 ] 

where by u(z) we denote the density of P with respect to Q on the set of absolute 
continuity of the first with respect to the second, and, otherwise, we put u(z) = oo and 
by w(z') we denote the corresponding function for the pair of P and Q. (As usually, 
the notation [Q] in (1.14) means that the respective relation holds everywhere on Z 
with the possible exception of a set belonging to 3 of measure Q equal to zero.) 

From the above result (cf. Theorem 1 and Complement of [4]) it follows in parti
cular: 

1. If the channel (3 , v., 3') is such that vZ| and vZ2 are never mutually orthogonal 
(singular) whatever be z, e Z and z2 e Z, then the sign of equality in (1.13) holds 
only in the case P = Q, provided that the function f(u) is strictly convex and that 
Hf(P, Q) < oo. 

2. If the channel (3 , vz, 3') is such that there exists a partition {Ez, z e Z } of the 
output measurable space (Z', 3 ) with the property that v.(Ez) = 1, z e Z, (i.e. if the 
channel is noiseless) then Hr(P, Q) = Hf(P, Q) for every pair of probability mea
sures P and Q. 

3. If the channel (3 , v., 3') is such that there exists a measurable transformation T 
from (Z\ 3) to (Z, 3') with the property that vz({Tz}) = 1, z e Z, then P and Q in 
(1.12) coincide with the probability measures PT" 1 and Q T - J induced on (Z',^') 
by P and Q, respectively through the transformation T and, thus, the inequality 
(1.13) may be written 

(1.15) Hf(P,Q)^ Hf(PT-\QT-"). 



Ifj(u) is strictly convex and Hf(PT~{, QT~') < co, the sign of equality in (1.15) 
takes place if, and only if, the transformation Tis sufficient (in the sense of mathe
matical statistics) with respect to the system of measures {P, Q). 

4. If 3 ' c 3 is a sub-CT-algebra of 3 a n d P' a n d Q' the measures induced by P 
and Q on 3 ' (i.e. the restrictions of P and Q on 3 ' <= 3)> t n e n 

(1.16) Hf(P,Q)^Hf(P',Q'), 

the sign of equality taking place (for f(u) strictly convex and Hf(P', Q') < oo) if, 
and only if, 3 ' is a sufficient a-algebra (in the sense of mathematical statistics) with 
respect to the system of measures {P, Q). 

As to the martingale properties mentioned at the beginning of the present section, 
we shall not insist here. 

2. EXTREMAL METHOD OF RISK ESTIMATION IN TERMS OF THE 
GENERALIZED / E N T R O P Y 

Let us consider, as in [ l , 2, 3], a classical statistical decision problem 17 with 
parameter (input) measurable space (X, X), sample (output) measurable space 
(Y,Vj), decision measurable space (D,X>), probability law P on the Cartesian 
product measurable space (X x Y, X x SJ)) of the input and output, and weight or 
loss function w(x, d), xeX, d e D, supposed non-negative and X x D-measurable. 
(This function serves as a measure of the "loss" implied by taking a decision d while x 
is the realized value of the parameter at the input). Finally, let & be the set of possible 
decision functions or decision procedures applicable in connection with this problem. 
They may be of the pure or mixed (randomized) type, i.e. either measurable trans
formations of the measurable sample space (Y, s))) to the decision space (D, X>) or 
random transforms-channels of the type (%), PDb, D) with input measurable space 
(Y, 9)) and output measurable space (D, D), (cf. Section 1). In the latter case, to 
every sample value y e Y there corresponds in general not a single decision d e D 
but a probability distribution on (D, D), so that the final choice of the decision d 
is made randomly according to PD/y, 

As a consequence of the application of a decision function b e3S there is induced 
by P on the Cartesian product (X x D, X x T>) a probability measure which will 
be denoted by Pb~l or P (cf. (1.12)). 

The average risk r(n, b) corresponding to the decision problem IT and to the 
decision function he88 is given by 

(2.1) r(H. b) = r(P, b) = f w(x, d) APb~l = | w(x, b(y)) dP = r(b) . 
J X x D J X x Y 

Let, now, TT be a new decision problem differing from the above decision problem 
17 only in what concerns the probability law in action: in the place of P we have 



now the probability distribution P on (X x Y, X x 9)). By applying to H the deci- 7 

sion function* fcei there is induced by P on (X x D, X x £>) a probability mea

sure Pfc~' = P and the corresponding average risk is given by 

(2.2) , -(77, b) = r(P, b)=\ w(x, d) dPb~} = j w(x, b(y)) dP = r(b) 
J Xx I) J XxY 

In Lemma 3.1 of [1] or [3] we proved, in particular, the following inequality for 
the average risks (2.1) and (2.2): 

(2.3) ~r(b) - r(b) g x'[2r(vv2, b) Hpb-,(Pb~1)] 

where by HPb-i(Pb~l) we denote, as in (1.1), the generalized Shannon's entropy of 
Pb~l with respect to Pb~1 and by 

(2.4) r(w\ b) = I vv2(x, d) dPb 

the average risk corresponding to the decision problem fl(w2) resulting from 77 by 
only changing the weight function w to w2, and to the decision function b. 

This inequality served as a basis in papers [ l , 2, 3] for obtaining upper estimates 
of the average risk change on passing from the decision problem H to the decision 
problem 77 or conversely, namely, under different conditions concerning the choice 
of the decision functions b and b applied in the two cases. We can, for instance, take 
b = b or, more generally, b = bT, where Tis a measurable one-to-one transformation 
of (Y, s3)) onto itself conserving, thus, the information. We can also consider the 
Bayes risk change on passing from 77 to 77. As known, by Bayes risk corresponding 
to the decision problem /7 and to the related set of available decision functions 33 
we understand the following quantity. 

(2.5) r0(n, ®) = inf r(77, b) , 
buM 

where the average risk r(77, b) is defined by (2.1). 
In face of such a task the direct method would be to solve in each case the cor

responding decision problem. However, this method, if realizable at all, is not 
always economic to apply, so that every indirect method of estimation of the decision 
possibilities (i.e. of the decision quality attainable) before beginning to solve a deci
sion problem is always desirable. 

The extremal method of risk estimation in terms of the generalized j-entropy given 
in the present section serves as a better basis than inequality (2.3) for obtaining 
estimates of the above kind as we shall prove in the following sections. 

* Note that, in general, the set 5? of decision functions related to the decision problem fl 
may differ from the set 38 of decision functions related to the decision problem II. 



The general method consists to determine the minimal value of the generalized 

/-entropy (cf. (1.3) and (1.4)) of Pb'1 = P with respect to Pb~l = P introduced 

above given P, the weight function w(x, d) (and, thus, also the value r of the average 

risk r(fi, b) through (2.2)) and the value /• of the average risk r(H, b) defined by (2.1). 

In the sequel we shall suppose that the second derivative/"(M) of the convex function 

f(u), involved in the definition of the generalized /-entropy, exists and, thus, due 

to the strict convexity of/we suppose in the sequel, 

(2.6) f"(u) > 0 . 

Further, we shall suppose here for the sake of simplicity that always the probability 

measure P = Pb'] is absolutely continuous with respect to the given probability 

measure P = Pb~' : P <? P, the corresponding Random-Nikodym density being 

denoted by u. 

By an heuristic application of the Lagrange multipliers method for obtaining the 

extremum value of the generalized /-entropy 

Hf(P, P) = JДЙ) àP (2.7) 

under the two constraints 

(2.8) |wdP = 

and 

(2.9) I w(x, d) ~(x, d) dP = 

we find that the "minimizing density" M0 must satisfy the equation 

(2.10) f(u0) = Xw + /i 

where the constants X and n are such that the conditions (2.8) and (2.9) are satisfied 
if one replaces u by the solution u0 of (2.10). 

Note. It may happen that the "minimizing density" u0 obtains with positive probability 
P negative values, so that the signed measure P 0 defined by dP0 = ~0 dP is not 
necessarily a probability measure and, as a consequence, the expression 

(2.11) H°f = f/(-0) dP 

may in some cases (for some combinations o f / and w) not to be a "true" generalized 
/-entropy. However, even in such cases an interesting result may be expected since 



anyway the strong inequality 

(2.12) Hf(P,P)>H°f 

holds for every probability measure P giving an average risk \w dP equal to r, 
provided of course that the quantity Hf given by (2.11) is a minimum indeed, what 
we are going to prove. 

Lemma 2.1. Provided that there exists a function u0 satisfying simultaneously 
(2.8), (2.9) and (2.10) for suitable values of the constants X and u, the inequality 

(2.13) Hf(P, P) ^ H°f = f/(ff0) dP 

holds for every probability measure P 4 P on £ x 35 giving an average risk 
\w dP equal to r. 

Proof. Let us denote by u the density of P with respect to P. Then it holds 

(a) (dP = |i7dP = 1 ; jwdP = jwi7dP = r 

and 

(b) U70dP = 1 ; wt70dP = r . 

Further, on account of the fact that for some v e <u, u0> 

(c) f(u) - f(u0) = f'(u0) (u - u0) + if"(v) (u - u0)
2 

based on the assumption of the existence of the second derivative of j , we can suc
cessively write 

(2.14) Hf(P, P) - H°s = f[/(ff) - /(ff0)] dP = 

= f/'("o) (« - u0) dP + i \f"(v) (« - w0)
2 dP = 

= [(Xw + n)(u - u0)d'P + i {f"(v)(u - t70)
2 dP = 

= Xr + n - (Xr + fi) + i ff"(v) (u - u0f dP = 

= if/"(t))(i7 - i 7 o ) 2 d P ^ 0 . 



Here, the second equality follows from (c), the third equality follows from (2.10). 
the fourth equality follows from (a) and (b) and the last inequality from (2.6) expres
sing the (strict) convexity of/. Thus, the lemma is proved. 

Lemma 2.2. If the decision functions b and b applied in the decision problems 11 
and f] introduced above are related by the equality 

(2.15) b = bT 

where T is a measurable one-to-one transformation of the sample space (Y, 1,|)) 
onto itself, then it holds 

(2.16) Hf(P, PT~l) ^ ff° 

where Hf is given by (2.11) and Hf(P,PT~r) is the generalized f-entropy of P 
with respect to PT~l, provided of course that the conditions of Lemma 2.1 are 
fulfilled. 

In particular, it holds 

(2.17) Hf(P,P)^H°f 

for b = b, where of course the decision functions b and b may be of the pure or 
mixed (randomized) type (cf. Section 1). 

Proof. The inequality (2.16) results from the inequality (2.13) of Lemma 2.1 
on the base of the inequality (1.13) which here takes the form 

(2.18) Hf(P, PT~ v) ^ Hf(P, P) 

since, according to (2.15), we have: P = Pb~l and P = Pb~' = PT~lb'. 
As to the inequality (2.17), it is a special case of (2.16) obtained for b = b. Thus, 

the lemma is proved. 

Lemma 2.3. / / in Lemma 2.2 we interchange the roles of b and b by taking in the 
place of (2A 5) the equality 

(2.19) b = bT 

then it holds 

(2.20) Hf(PT~[,P)^H°f . 

Proof. It is completely similar to the proof of Lemma 2.2. 

Theorem 2.1. Let the decision functions b and b applied in the decision problems 
H and IT introduced above be of the pure type (i.e. measurable transformations 
of the measurable sample space (Y, 1)) to the measurable decision space (D, T>) 
and satisfy the equality 

(2.21) b = b. 



Provided that there exists a function u0(x, y) defined on the Cartesian product 
X x Y of the parameter and sample space which is X x ^-measurable and satis
fies simultaneously the following three relations 

(2.22) L 0 d P = l , 

(2.23) [w(x, b(y))u0(x, y)dP = r, 

(2.24) f'(u0) = Xw + ft. (w = w(x, b(y))) 

or suitable values of the constants X and n, then the inequality 

(2.25) Hf(P, P) ^ H°f = [f(u0) dP 

holds for every probability measure P <? P on X x "•)) giving an average risk 
\w(x, b(y))dP equal to r. 

Moreover, it holds 

(2.26) Hi = H" = [f(u0) dP = [f(u0)dPb 

where u0 is defined as in Lemma 2.1 (cf. (2.8) — (2.11)) for b = b of the above type. 
(As to the convex function f involved in the definition of the generalized f-entropy 
we suppose that it possesses a second derivative (cf. (2.6))). 

Proof. Inequality (2.25) may be obviously derived from the assumptions above 
in a completely analogue manner as inequality (2.13) in Lemma 2.1. It is sufficient 
to replace the entities represented by a letter with a bar by those without a bar and. 
moreover, w(x, d) by w(x, b(y)) and u(x, d) = dP/dP = d P b ^ / d P j T 1 by u(x, y) = 
= dPJdP since here, by hypothesis, b and b are of the pure type and identical accord
ing to (2.21). 

As to the equality (2.26) of the constrained minimal "entropies" (which cor
respond to true generalized /-entropies if the respective "minimizing densities" 
uo(x> y) ar>d u0(x, d) may be chosen non-negative; cf. Note preceding Lemma 2.1), 
it results from the fact that here i/0(x, y) may be chosen equal to w0(.v, b(y)), 

(2.27) u0(x, y) = u0(x, b(y)), 

since if the first satisfies simultaneously the three conditions (2.22), (2.23) and (2.24), 
then (under (2.21)) the second satisfies simultaneously the three conditions (2.8), 
(2.9) and (2.10) for the same values of the constants X and j.t, and conversely. 

Thus, the theorem is proved. 

An alternative extremal method of risk estimation in terms of the generalized 
/-entropy is the following. 



The problem is formulated in a somewhat different way: For P and Hf(P, P) = h 
given, to find P <̂  P maximizing the absolute difference \r(P, b) — r(P, b)j = 
= \r — r\ of average risks (for given w and b). 

Applying heuristically as before the Lagrange multipliers method for obtaining 
the extremum value of the average risk 

(2.28) r(P, b) = r = \w(x, b(y)) dP = \wu dP (u = ^ 

under the conditions (constraints) 

(2.29) i u d P = 1 

and 

(2.30) \f(u) dP = h . 

we find (under the hypothesis that the second derivative of the (strictly) convex 
function / exists) that "the minimizing density" must satisfy the equation 

(2.31) f'(u0) = Xw + p. (w = w(x, b(y))) 

where the constants X and p. are such that the conditions (2.29) and (2.30) are satis
fied if one replaces u by the solution u0 of (2.31). 

A similar note as that preceding Lemma 2.1 applies also here. The analogue of 
Theorem 2.1 is the following 

Theorem 2.2 Let the decision functions b and b applied in the decision problems 
fl and fl introduced above be of the pure type and satisfy the equality b = b. 

Provided that there exists a function u0(x, y) defined on the Cartesian product 
X x Y of the parameter and sample space which is X x %-measurable and satis
fies simultaneously (2.29), (2.30) and (2.31) for suitable values of the constants I 
and ft, then the inequality 

(2.32) \r(P, b) - r(P, b)\ = \r - r\ S \r - r0\ with r0 = \wu0 dP 

holds for every probability measure P <| P on X x fj giving a generalized f-entropy 
with respect to P equal to h. 

Proof. Let us denote by u the density of P with respect to P. Then it holds 

(a) \udP = 1 ; \f(u)dP = h , 



and 

(b) | м 0 d P = l ; \f(u0)dP = h. 

Further, on account of the fact that for some ve <M, W0> 

(c) /(«) - /(HO) = r(«0) ( « - «o) + u'V) ( « - "o)2 

or, for some u' e <1, M0>, 

(d) / ( l ) =/(«o) + / ' ( « o ) 0 - «o) + i / > ' ) 0 - «o)2 • 

we can successively write 

(e) 0 = f [./(") - f(«o)] dP = j/'(« 0) (H - H O ) dP + 4 (/"(„) (u - « 0) 2 dP = 

= [(Aw + n) (u - M0) dP + \ \f"(v) (u - M 0 ) 2 dP = 

= /••('-- r 0) + i |f '(f) (« - u 0 ) 2 d P 

(cf. (a), (b), and (2.31)), or 

(f) / ( l ) = j/(u 0 ) dP + j/ '(« 0 ) (1 - H0) dP + i ! / > ' ) (1 - M 0 ) 2 dP = 

= /i + f(Aw + fi) (1 - u0) dP + i ( / > ' ) (1 - « 0) 2 dP = 

= h + A(r - r 0 ) + i (/"((;') (1 - u 0 ) 2 dP . 

Since by assumption /"(y) > 0, \'f"(v)(u — u0)
2 dP = 0 if, and only if, u = 

= u 0 [ P ] , which immediately implies that 

r = WM dP = wu0 dP = r 0 , 

or that (2.32) holds. Similarly, jf"(v')(l - u0f dP = 0 if, and only if, u0 = 1[P], 

which implies u = l [ P ] (cf. (a) and (1A0)), or r = r. 

Hence we can restrict ourselves to the case when simultaneously \f"(v) (u — u 0 ) 2 . 

. dP > 0, J/"(f/)(l - M 0 ) 2 dP > 0; in this case however, 

A . (r - r0) < 0 (cf. (e)) 

A . ( r - r 0 ) < 0 (cf.(f),(1.10)). 



If, now, r > r0 then X < Oand, thus, r > r0 i.e. r 0 = minimum and 0 < r - r0 = 

= maximum. 

If, on the other hand, f < r0, then X > 0, and, thus, r < r0 i.e. r0 = maximum 

and, as a consequence, 0 < r 0 — r = maximum. 

In other words, it always holds |r — r| < |r — r 0 | and, thus, the theorem is proved. 

In the following sections we shall apply the results of the present section and. 

namely. Theorems 2.1 and 2.2. 

3. RISK ESTIMATES IN TERMS OF Hy(P,P) 

In this section we shall apply the extremal method of risk estimation developed 

in Section 2 to the special case of the generalized Shannon's entropy or generalized 

entropy of order I (cf. (1.1) and (1.6) —(1.9)), corresponding to f(u) = u log u. 

Placing us in the frame of Theorem 2.1, we find that the "minimizing density" u0 

must satisfy the following three conditions (corresponding to (2.22) —(2.24)) 

(3.1) ,/0 = eA"'+" (w = w(x, b(y))), 

(3.2) \e'w+*dP = 1 , 

(3.3) j we'w + » dP = r 

(3 

for suitable values of the constants X and p, in order to assure the validity of the 

inequality 

.4) HX(P, P) ^ H\ = | u 0 log u0 dP = [(Xw + p.) d P 0 = Xr + p 

corresponding to the statement of Theorem 2.1 given by (2.25). 

In relation with the Note preceding Lemma 2.1, let us remark that here the "mini

mizing density" is non-negative, so that the signed measure P 0 defined by d P 0 = 

= u0 dP is a probability measure and H° is, thus, a true generalized entropy of 

order 1, 

(3.5) Hi = /f,(P 0, P ) . 

As a consequence, the sign of equality in (3.4) may really occur. 

By assuming that X and p as functions of r are derivable, we obtain from (3.1) — 

(3.3) that 

X'(r) = 

(3.6) 
r(w2) - Ѓ ' 

p'(r) = -
r(w2) - ŕ 



with 

(3.7) r(w2) = L2(x,b(y))dP0 

and, further,* 

(3.8) d tf °(r) _ ;,(r) with i(r) = ,t(r) = tf °(r) = 0 . 
dr 

By developing tf°(r) according to the powers of r — r we, thus, obtain for some 
h e <r, r> 

(3.9) tf°(r) = j i ' ( r ) (r - r)2 + &"(h) (r - r f . 

On the base of (3.4), (3.6) and (3.9) we derive immediately the following result. 

Theorem 3.1. / / 

(3.10) (r - r) A"(h) ^ 0 for h e <r, r> 

then it holds 

(3.11) |r - r\ S J{2[r(w2) - r2] tf ,(P, P)} 

where r(w2) = J'w2(x, b(y)) dP and r = J'w(x, b(y)) dP, r = |'w(x, b(y)) dP. 

Corollary 3.1. Let the weight function w take the values 0 or 1. 
Then, for r g r :S \ it holds 

(3.12) r - rS^J\_2r(\ - r) H\(P', P)] . 

Proof. According to (3.6) and to the fact that here 

(a) r(w2) - r2 = r - r2 = r(l - r) 

we obtain that 

(b) A'(r) = ' = — 
W r(w2) - r2 r(l - r) 

and, thus, 

(c) ( r - r ) r ( h ) = ( " 7 j ) ( 1 ~ 2 / 0 _ 0 for ( , £ ( f , r ) 
/ r ( l - h)2 

according to our assumption that r i£ r _ ^. Thus, the corollary is proved. 
Note that this result is better than that obtained in [1] on the base of Lemma 3.1 

(cf. (2.3)). However, a better result is contained in the following theorem. 

. * The first equality is valid for every f(u) and not only for/(;/) = u log u. 



US Theorem 3.2. Let the weight function w be uniformly bounded from above by 
w0, i.e. w(x, d) :£ w0, x e X, d e D. 

Then it holds 

(3.13) HX(P, P) ^ — I r log ': + (w0 - r) log ^ ° - - - _ , P) __ i - [ - log r- + (w0-r) log ^ ^ 1 . 
w0 [_ r w „ - rJ 

For j/ie special case of a weight function w taking the values 0 or 1 (f/ie cor
responding average risk is the so-called probability of error) we obtain the in
equality 

(3.14) Ht(P,P)£ r l o g - + (l - r); 
f 

where the sign of equality may also take place. 
Proof. According to (3.6) and to the fact that here 

(a) r(w2) - r2 ^ w0r — r2 = r(w0 

we obtain that 

(b) ?.'(r) = 

1 - r 

1 - r 

r(w2) - r2 r(w0 - r) 

On the base of (3.8) we obtain by a two-fold integration of (b) the inequality 

(3.15) H\(r, f) = tf ,(P0 , P) _t i - [ r log _ + (w0 - r) log ^ — 1 
w0 [_ r w0 - r j 

for the corresponding minimal generalized entropy of order 1. 
The inequality (3.13) follows immediately from (3.15). 
On the other hand, if w is of the special type "0 or 1", the sign of equality holds 

in (a) by taking w0 = 1 and, thus, the sign of equality holds also in (3.15) for w0 = 1. 
As a consequence, (3.14) holds where the sign of equality is also possible. 

Thus, the theorem is proved. 
Let, under the latter assumptions concerning w, f be the risk corresponding to the 

distribution P on I x s}) and let us assume that X is a discrete (i.e. finite or countable) 
set and that X contains all subsets of X. If we define a new decision problem with 
sample space (Y x X, '}) x X) and with a probability distribution P generated on 
3 £ x ( ? ) x 3E) by Px = Px (marginal cf P on £) and by 

(3.16) PY*x\x(E) - PY\X x PX\X(E), £ e | x l , 

where PX\X on X is defined by PX\X(F) = xF(x), F e X, where XF is the characteristic 
function of the set F and where PY\X or EYxxi* is the conditional distribution on "?) 
or 9) x X given x corresponding to P or P respectively. Under this assumptions it 



is to see that the rick r corresponding to P is equal to 0 and, moreover, that P is 

a restriction of P on 9) <= *}) x X and that the marginal measures Px, Px of P, P on X 

coincide. Hence, according to Corollary 4.1 of [1], there exists a probability distri

bution P on 36 x (s9 x X) satisfying the following relations 

(3.17) 1(P) = I(P), 

Hl(P,~P) = I(P)- I(P), 

where /(•) denotes the Shannon's information (cf. (2.5) of [1]). The first equality 

implies r = r(P) = r = r(P) (cf. Theorem 4.3 of [1]) so that, in view of (3.14), we 

can write for w cf the type "0 or 1" that 

(3.18) r £ 1 - e" " ' ^ p > = l - e - e w - ' ( ' » , 

whereas r(P) = 0 implies that I(P) = H(PX) = H(PX), where H(-) denotes the 
ordinary Shannon's entropy of the parameter space X. Hence we can conclude that 

(3.19) r g l - e"" 

where h = H(PX) - I(P) = H(X | y) is the so-called equivocation (i.e. the average 
conditional entropy of the parameter given the sample value) corresponding to the 
probability law P. 

The value h0 = log (1 — f) of the equivocation h for a given value of the average 
risk (probability of error) equal to r, coincides on the points r = (m — l)/m, m = 
= 1,2,..., with that found by V. A. Kovalenskij [8] who has established the fol
lowing expression for the minimal equivocation given the probability of error r: 

(3.20) hmin(r) = 

for 

log m + m(m + l ) log | 
(m + : 

')( 
m - 1 

log m + m(m + l ) log | 
к m ')( m 

m - 1 . < f < 
m 

m = ] Л: 
m 

f < 
m + 1 ' 

m Л: 

Theorem 3.3. // the dominating measure P is Gaussian, if the weight function 
w(x, d) = (x — d)2 (the parameter and decision measurable spaces coinciding 
with the real Borel line) and if the decision function b is linear, then it holds 

(3.21) W,(P, P ) > ' -_ - 1 - log : > 0 

where r = )'w(x, b(y)) dP and f = J'w(x, b(y)) dP. 

Proof. According to (3.6) and to the fact that here (cf. [3]) 

(a) r(w2) - r2 g 2r2 



for r(w2) = j'w2(x, b(y))dP0 and r = jw(x, b(y))dP0 since our assumptions imply 
that the minimizing probability measure P0 is also Gaussian, we obtain that 

(b) X\r) = — J — j . ^ -L . 
r(vv ) — r 2r 

On the base of (3.8) we obtain by a two-fold integration of (b) the inequality 

(3.22) tf?(r, ?) ^ J f] - 1 - log £ U 0 

for the corresponding minimal generalized entropy of order 1. 
The inequality (3.21) follows immediately from (3.22). 
Thus, the theorem is proved. 
By applying a completely similar procedure as that used in papers [ l , 2, 3] 

it is possible to deduce from the above inequalities, concerning the average risks, 
corresponding inequalities relative to the Bayes risks and, namely, to the Bayes risk 
increase resulting by a reduction of the sample space <r-algebra as well as of the para
meter space er-algebra. The obtained estimates are, in general better. However, we 
shall not insist on these questions in the present paper. 

4. RISK ESTIMATES IN TERMS OF Ha(P, P) 

As in Section 3, we shall in this section apply the extremal method of risk estima
tion developed in Section 2 to another special case and, namely, to the case of the 
generalized entropy of order a(0 < a + \) introduced in Section 1 (cf. (1.6)), i.e. 

(4.1) Ha(P,P) = \uadP for a > 1 , 

Ha(P, P) = - w" dP for 0 < a < 1 . 

where we suppose P <^ P with u = dP/dP. 
As stated in Section 1, the relations (1.8) and (1.9) exist between them and the 

generalized Shannon's entropy or generalized entropy of order 1. 
Placing us again in the frame of Theorem 2.1, we find that the "minimizing density" 

u0 must satisfy here the following three conditions (corresponding to (2.22) —(2.24)) 

(4.2) u-1 = Xw + n (w = w(x,b(y))), 

(4.3) f(Xw + n)U(-l>dP= 1 , 

(4.4) \w(Xw + / . ) 1 / ( a _ 1 ) dP = r 



for suitable values of the constants X and /<, in order to assure the validity of the * 9 

inequality 

(4.5) Ha(P, P) ^ //J; = sign (a - 1) [u"0 dP = sign (a - I) ua
0~' d P 0 = 

= sign (a - 1) |(/w + /()dP„ = sign (a ~ i)(lr + /() 

corresponding to the statement of Theorem 2.1 given by (2.25). 
As it concerns the Note preceding Lemma 2.1, let us remark that in the present 

case it may happen that the signed measure P 0 defined by d P 0 = u 0 dP is not a true 
probability measure. However, even in such a case the strong inequality (4.4) holds. 

Special case: a = 2. In the case of the generalized entropy of order 2 we can 
obtain explicitly the "minimizing density": 

(4.6) un = 1 + 
(ř - r) (r - w) 

f(w2) - r2 

and, thus, the following result holds. 

Theorem 4.1. The following inequality holds 

(4.7) \r - r\ g ^{\r(w2) - F2] . [tf 2 (P, P) - 1]} 

where 

r(w2) = | w2(x, b(y)) dP , r = \w(x. b(y)) dP , r = \w(x, b(y)) dP . 

Special case of w of the type "0 or 1". If the weight function w takes the values 
0 or 1, then the following theorem holds in terms of the generalized entropy of order 
0 < a + 1. 

Theorem 4.2. Let w be of the type "0 or I". Then the inequality 

- 0 (4.8) H„.(P, P) ^ H° = [r('-\ + (1 - f)(~ ~\° sing (a - 1 

holds. The "minimizing density" u0 coincides with that of H°. 
Proof. From (4.2) —(4.4) we derive easily that for such a w 

(4.9) 

л«-' /l 

Џ = 
1 - Л" 
1 - ? 

and, thus, from (4.5) the inequality (4.8) follows immediately. 



On the other hand, from (4.2) we obtain on the base of (4.9) that 

..-(f)-(K;; 
whatever be a > 0. Thus, the theorem is proved. 

(Received October 10th, 1966.) 
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Informačně-teoretické odhady rizika ve statistickém rozhodování 

ALBERT PEREZ 

Článek navazuje na autorovy publikace [1, 2, 3] s cílem dále rozšířit a zlepšit ně

které informačně-teoretické odhady změny středního a Bayesova rizika spojené se 

změnou působícího pravděpodobnostního zákona vdaném rozhodovacím problému, 

a zejména spojené s redukcí nebo rozšířením rj-algeber výběrového nebo paramet

rového prostoru. Potřeba takových odhadů roste úměrně se složitostí rozhodovacích 

problémů, se kterými se setkáváme čím dále tím více v mnoha aplikačních oblas-



těch. Zatímco odhady v [1,2, 3] byly vyjádřeny pomocí zobecněné Shannonovské 
entropie (viz ( l . t)), zde jsou odvozené odhady založeny na širším pojmu zobec
něné f-entropie(f-divergence, podle [4]; viz (1.3) a (1.44), kde/je spojitá konvexní 
funkce, ne nutně typu f(u) = u log u. 

V části 1 (Zobecněná f-entropie) jsou připomenuty některé základní vlastnosti 
zobecněné/-entropie, které jsou založeny na konvexnosti funkce/a které jsou využité 
v dalším. 

V části 2 (Extremální metoda odhadu rizika v termínech zobecněné f-entropie) 
se heuristickou aplikací metody Lagrangeových multiplikátorů dosahuje podmíně
ného extrému (minima) zobecněné /-entropie Hf(P, P) resp. podmíněného extrému 
(maxima) absolutní změny rizika \ř — r\ (viz zejména Lemma 2.1 a Teorémy 2.1 
a 2.2). 

V části 3 (Odhady rizika v termínech Ht(P, P)) se extremální metoda odhadu rizika 
z části 2 aplikuje ve speciálním případě zobecněné Shannonovské entropie nebo 
zobecněné entropie prvního řádu (viz (t . l) a (1.6)-(1.9)), která odpovídá/(u) = 
= (i log u. Jako typické příklady lze uvést nerovnosti (3.12), (3.13) a (3.21). 

V části 4 (Odhady rizika v termínech Ha(P, P)) se extremální metoda odhadu 
rizika aplikuje v speciálním případě zobecněné entropie a-tého řádu (0 < a #= 1) 
(viz (4.1)). Jako typické příklady lze zde uvést nerovnosti (4.7) a (4.8). 
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