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On Sets Generated by Context-Free Grammars 
JOZEF GRUSKA 

The set E of strings is said to be definable (strongly definable) if there is a context-free grammar 
G such that E is the set of all terminal strings generated from the initial symbol (from all nonter
minal symbols) of G. The properties of definable and strongly definable sets are investigated. 

1. INTRODUCTION AND SUMMARY 

Context-free grammars are a constructive means for the generation of the sets of strings in 
a given alphabet of so called terminal symbols. With a given context-free grammar it is possible 
to associate in a different way the set of terminal strings. Most frequently the case is investigated 
that an initial nonterminal symbol is given in a grammar G and the set L(G) of all terminal strings 
generated from this initial symbol is considered to be the set generated by grammar G. The sets 
defined in such a way are called definable [6]. The properties of definable sets have been investi
gated in many papers [2, 6, 3]. 

In this paper also the set LS(G) is associated with a given grammar G; it is the set of all terminal 
strings which are generated by at least one nonterminal symbol of grammar G. The sets LS(G) 
are called strongly definable and it is said that grammar G strongly generates LS(G). 

This paper is devoted to the study of definable and strongly definable sets. The technical 
results achieved in this paper are as follows: 

In Section 2 two families of sets (of strings), the family of definable and strongly definable sets, 
are described and studied. The two families of sets are not identical although every strongly de
finable set is also definable. The relation of strongly definable sets to some classes of definable 
sets is investigated in Section 3. The closure properties of strongly definable sets are studied in 
Section 4. If A, B are definable sets and J? is a regular set, then AB, A—R are also definable. 
These results are shown not to be true if A, B are strongly definable. However, if A is strongly 
definable and R is finite then A — R is also strongly definable (Theorem 3). One definable and 
one strongly definable set correspond to every grammar. It is shown to be undecidable whether 
they are identical (Section 5). In Section 6 some results about ambiguous definable sets are given. 
It is shown that there exists an ambiguous set which is strongly generated by unambiguous 
grammar. However it is not true for definable sets which are ambiguous of unbounded degree. 



2. DEFINABLE AND STRONGLY DEFINABLE SETS 

In this Section the basic concepts will be introduced. Especially, the classes of 
definable and strongly definable sets are defined and it is proved that they are not 
identical. 

Let si be an alphabet. Its elements will be called symbols. A finite sequence of 
symbols will be called string over sf. e will be the empty string. If x is a string then 
by A(X) we shall denote the length of x and by x(i) the i-th symbol of x. If x, y are 
strings, x = at... an, y = b1 ... bm where ax, ..., an, bl, ..., bme si, then xy denotes 
the string a1 ... anbt ... bm. 

If A, B are two sets of strings over si, then the set product AJ3 of the sets A and B 

is defined by AB = {xy; xe A, y e B}. Moreover, let A00 = U A1, A,yj° = U A* 
i = l t = 0 

where A0 = {e} and A; + 1 = A;A for i = 0 , 1 , . . . 

Definition 1. A context-free grammar G is a quadruple <Vr, VN, M,Sy where VT 

and VN are non-empty, finite sets of terminal symbols and non-terminal symbols 
(or metasymbols), respectively; VT n VN = A (the empty set); M is a finite set of 
(syntactical) rules a = A -* t where A e VN, t e (VN u VT)'° and S e VN is the initial 
symbol of G. 

(Occassionally, as when specifying a grammar for illustrative purposes, the given 
grammar G will be written as the set of rules Tf -» th i = 1,2, ..., n with Tt as the 
initial symbol.) 

A sequence xu x2, • •., xn, n > 1 of strings from (VT u VN)aj is said to be a deriva
tion of x„ from xt if for every i, 1 _: i < n there are strings ph qt and the rule 
A,- —> f; such taht X( = PiAfii, xi + 1 = Pit^i. If x, ye(VT u VN)°° then we write 
x => y if and only if there is a derivation of y from x. (If there is no danger of mi-

G 

sunderstanding, the symbol specifying the grammar will be deleted.) 
For every XeVN let G(X) = {x; X =» x e V?}; L(G) = G(S) and LS(G) = 

= U G(X). It is said that G generates the set L(G) and strongly generates the set 
XeVN 

LS(G). 

Definition 2. A set E is said to be definable (strongly definable) if there is a context-
free grammar G such that E = L(G) (= LSG)* 

Remark. The concept of strongly definable set is identical with the concept of the 
set generated by a context-free grammar within the meaning of paper [4] if one writes 
"e" not "e G E" on page 47, [4], 12th last line. (It came to occur there inadvertently 
and alters the whole definition very disadvantageously although the results of paper 
[4] are correct.) 

* Our concept of definable set is identical with the concept of definable set without £ used 
in paper [6]. 



Having specified two families of sets, namely, the family of definable sets and the 
family of strongly definable sets, it is natural to inquire as to whether or not the two 
families are equivalent. Since the sum of two definable sets is also definable (see [1]), 
one gets immediately: 

Lemma 1. Every strongly definable set is definable. 
The converse of this assertion is not true. To set that we shall prove 

Lemma 2. Let E be a set of strings and let x be a non-empty string such that the 
following conditions are satisfied for every integer n: 
(i) there are strings P„, Qn (may be empty) such that Pnx"Qn e E. 
(ii) If y is a substring of x" and X(y) ^ l(x), then for no string Q, Qy e E, yQe E. 
Then E is not strongly definable. 

Proof. Suppose on the contrary that there is a grammar G = <Vr, VN, 8%, S} 
strongly generating E. Let n > max {A(t); U -> teM}. According to (i) there are 
strings P„ and Qn such that Pnx"Qn e E. With respect to choice of n there is a rule 
U -» u e 3k such that u => P„x"Qn. But it is possible, with regard to choice of n, only 
if there are y and i such that y is a a substring of x", X(y) 2; A(x) and either u(i) => 
=> Qy e E or u(i) => yQ e E for some string Q. But this contradicts the condition (ii). 

According to this lemma (taking x = b) the set E0 = {ab"a; n i l } is not strongly 
definable although E0 is obviously definable. This result and the result of Lemma 1 
are summarized in the following theorem: 

Theorem 1. The family of strongly definable sets is a proper subset of the family 
of definable sets. 

Remark. Context-free grammars are used as a means for the definition of the 
syntax of artificial languages, especially, modern programming languages. For 
example the set of ALGOL'S programs (if the limitations given in the non-formal 
part of Report [9] are not considered) is the definable set. In this connection there 
arises a question whether the set of texts of an artificial language is strongly defi
nable. According to Lemma 2 (taking x = a;) the set of ALGOL'S programs under 
discussion is not strongly definable. Similary (taking y = a,) the set of arithmetic 
expressions in ALGOL is not strongly definable. But if one considers the arithmetic 
expressions without functions and index variables, then we have a strongly definable 
set. This result indicates that strongly definable sets are not withouth interest in 
the study of artificial languages. For example the set of well-formed formulas of 
the prepositional calculus (or of the predicate calculus), with a fixed finite num
ber of variables is a strongly definable set. 

An important practical problem, which arises in connection with the use of con
text-free grammars for the definition of the syntax of programming languages, is 
that of the construction of an algorithm for determining given an arbitrary grammar 
G and a string x, whether x e L(G). Such algorithms were constructed by many 
authors on the base of different principles. At some approaches to their construction 
(see, for example [2],) it is more easy to construct the algorithm for determining, 



given a grammar G and a string x, whether x e LS(G). Hence if a set (of strings) Mis 
strongly definable then, at least from the point of view the effective recognition of 
strings, it may be more convenient to construct a grammar G1 which strongly genera
tes M than a grammar G2 which only generates M. 

3. STRONGLY DEFINABLE SETS AND SPECIAL CLASSES 
OF DEFINABLE SETS 

Often the special classes of definable sets, namely the classes of sets generated by 
finite state grammars,* linear grammars and metalinear grammars, respectively, 
are considered [3]. These sets will be called regular, linear and metalinear, respecti
vely, and the relations between these classes and the class of strongly definable sets 
will be investigated. 

The set E0 from Section 2 is obviously a regular one and so there exists even 
a regular set which is not strongly definable. On the other hand, there exists a strongly 
definable set which is not regular. (Indeed, the set Et = {a"b"; n >. 1} is not regular 
[6] but it is (strongly) generated by grammar Gl with the rules A -> aAb, A -> ab. 

A set E of strings will be called strongly regular if there is a finite state grammar G 
such that LS(G) = E. According to previous results the family of strongly regular 
sets is a proper subset of the family of regular sets. The regular sets correspond to 
finite automata with a given initial state and strongly regular sets correspond to 
finite automata without an initial state. However, the family of strongly regular sets 
is not identical with the family of sets which are both strongly definable and regular. 
Indeed, the set {aa} consisting of just one string is strongly definable and regular but 
not strongly regular. 

As to the relation between the family of strongly definable sets and the families 
of linear and metalinear sets one gets the following: The set Et = {a"b"; n 2: 1} 
is strongly definable and linear but non regular [6]. Next, there is a strongly definable 
set which is metalinear but not linear. (The set E2 = {a"b"ambm; n + in > 0} is 
(strongly) generated by grammar G2 with the rules 

S -> SjSj , S -> Si, Si -> flSib , S! -> ab 

and hence E2 is metalinear although it is, as can be easily seen, not linear). Finally, 
there is a strongly definable set which is not metalinear. By [3] the set (strongly) 
generated by grammar G3 with the rules S -> a, S -> bSS is not metalinear. 

In all examples given above there were considered grammars G for which both 
sets L(G) and Es(G) were of the same character. For example, both sets E(Gt), 
L^Gj) were linear but not regular. Is it so in general? The answer is in the negative. 
Indeed, consider grammar G4 defined by the rules: 

* Finite state grammars are defined as grammars all the rules of which are either of the form 
A -* Ba or of the form A -> a where A, B are non-terminal symbols and a is a terminal symbol. 



S-*T, S -> cU , T^aTb, T-* ab , U-* ab , U ~* aU , U -* Ub 

with the initial symbol S. Then the set L(G4) is linear but not regular and the set 
L,(G4) is regular. 

4. CLOSURE PROPERTIES 

It is obvious that the sum of two strongly definable sets is again strongly definable. 
Moreover, if E is a strongly definable set, then the set E00 is also strongly definable. 
Indeed, let G = <VT, VN, 0?., S> be a grammar such that LS(G) = E. Let Z be a symbol 
such that Z <£ VT u VN. Denote Gt the grammar defined by the quadruple 
<VT, VN u {Z}, m u mx, Z>, where 0lt = {Z -* T; Te VN} u {Z -* ZZ}. It is readily 
seen that Ls(Gt) = Ej^G)00. However, if A and B are strongly definable sets, then set 
product AB need not be strongly definable. Indeed, the set E0 = {ab"a; n ^ 1} 
is not (see Section 2) strongly definable although E0 = A0B0, where A0 = 
= {ab"; n ^ l }andB 0 = {a} are strongly definable sets. (They are strongly generated 
by grammars Gt with 0tt = {A -* Ab, A -* ab} and C2 with ffl2 = {A -* a}, 
respectively). 

Consider the grammars Gt and G2 defined as in (l) and (2), respectively: 

(1) A -* aaAc , A -» bAc , A -> be , 

(2) A -* aAcc , A ~* aAb , A -* ab . 

The intersection of the sets (strongly) generated by grammars Gt and G2 is the set 
{a2"b"c2n; n § 1} which is not definable (see [3], Sec. 4.3). This example (along 
with the fact that the set union of two strongly definable sets and the iteration of 
a strongly definable set are strongly definable sets) establishes that 

Theorem 2. The family of strongly definable sets is closed under set union and 
iteration* but it is not closed under set product, intersection and complement. 

It is known [1] that if A is definable and B is regular, then A-Bis also definable. 
This result is not true for strongly definable sets. Indeed, if A = {ab"a; n 3; 1} u 
u {6}°°, B = {b}™, then A is strongly definable, B is regular and A-B is just the 
set E0 from the Section 2 and hence A- B is not strongly definable. 

However, we have 

Theorem 3. If A is a strongly definable set and B is a finite set, then the set A — B 
is strongly definable. 

The proof of this theorem will be omitted because it is rather cumbersome. It 
would be desirable to prove this theorem under weaker assumptions about B. Howe
ver, this problem seems to be rather difficult because Theorem 3 is not valid, as 
the example given above shows, even for such simple infinite sets B as the set of all 
strings in an alphabet of just one symbol. 

* If E is a set of strings then the set EK will be called the iteration of E. 



Finally, the influence of reduction and extension of gammars upon strongly de
finable sets associated with given grammars is investigated.* 

If Gi and G2 are context-free grammars such that G2 is a reduction of G1; then 
LS(G2) c LS(G,). Indeed, if G2 = <VT, VN, @, S>, then G, = <Vr, VN u V;,«', S'> 
for some V^, .3?', S' and G,(T) = G2(T) if Te VN. Therefore, LS(G2) = (J G2(T) 

TsKN 

= U GX(T) c (J Gj(T) = LlGi). Both cases: Ls(G,) # L5(G2) (Gt : S -> aU, 
TeFjv TeFjvuK'jv 

U -> b; G2:S-+ab) and Ls(Gj) = LS(G2), (Gy : S -» a[/c, S -> b, U -> 6; 
G2 : S -> abc, S -> b) are possible. The same is true for the case that Gt is an 
extension of G2. 

5. UNDECIDABLE PROPERTIES 

It is easily seen that for a given grammar G the sets L(G) and LS(G) have not to 
be equal. However, as remarked in the Introduction, there is no algorithm for deter
mining whether equality holds (Theorem 5). Moreover, it shall be proved that it 
is true even when only "well-formed" grammars, i.e. grammars which have no need
less rule are considered. 

Definition 3. A grammar G = <VT, VN, 01, S> is said to be well-formed if for 
every a e VT u VN there are strings x, y and integer i such that S = > . x ^ ) ' e V™, 
x(i) = a. 

Remark. For a given grammar G it is easy to construct a new grammar Gt (by 
omitting those rules which are not used in generating the set L(G)), such that Gx is 
well-formed and L(G) = L(Gj). However, in general the sets LS(G) and LjGi) need 
not be equal. 

Theorem 4. There is no alogorithm for determining given an arbitrary well 
-formed grammar G, whether L(G) = LS(G). 

Proof . Let G = <VT, VN, M, S> be a well-formed grammar such that there are 
two different symbols a0, ax in VT. To grammar G we can construct well-formed 
grammar G1 = <VT, VN, m\ Sx} such that VN n VN = A, L(GX) = V?. Now let 
Z, ZJL <£ (VT u VN u V^) be two different symbols. Denote for i = 0 , 1 : 

G0i = <VT, Vv u V^ u {Z, Z J , i u f ' u {Z -> S, Z -> Z1 ; Zj -> AjSj , Z> . 

G"' are well-formed grammars. There is 

Lemma 3. L(G) = V? if and only if 

(i) L(G) = LS(G) and L(Gai) = L(Gai) for i = 0, 1 . 

P roof of the Lemma. First let (i) hold and suppose that there is a x e VT - L(G). 

* For the concepts "reduction" and "extension" of context-free grammars see paper [5]. 



Let 0 5S i ^ 1 be such that x(\) =f= a,. Consider grammar G"\ Since L(Gai) = Ls(G
ai) 

and G°'(Sj) = VT one has L(G"') = VT and hence x e L(Gai). Since VN r\VN = A 
and G"i(Z1) contains all strings from F T with the exception of the strings beginning 
with at, one has x e G"'(S) = G(S) = L(G) which is a contradiction and hence 
L(G) = V?. On the other hand, if L(G) = KT, then obviously (i) holds and this 
completes the proof of the Lemma. 

Now we can proceed in proving the Theorem. Suppose that there is an algorithm 
for determining, given an arbitrary well-formed grammar G, whether L(G) = LS(G). 
Then, with regard to Lemma 3, there is an algorithm for determining, given an 
arbitrary well-formed grammar G = <VT, VN, 01, S> such that VT consists of at 
least two symbols, whether L(G) = Vr

c'. However, it is known [3] that there is no al
gorithm for determining given a grammar G = <VT, VN, 01, S>, whether L(G) = VT. 
But the proof is valid even if one considers only well-formed grammars which have 
at least two terminal symbols. Hence the assumption that the assertion of the Theorem 
does not hold yields a contradiction and the Theorem is proved. 

From this one derives the following results immediately. 

Theorem 5. There is no algorithm for determining, given an arbitrary grammar G, 
whether L(G) = LS(G). 

Corollary 6. There is no algorithm for determining, given a grammar G = <VT, 
VN, 01, Sy and S, e VN - {S} such that S => x, x(i) = S, for suitable x and i, whether 
G(SX) c G(S). 

6. AMBIGUITY 

Definition 3. A definable set E is called ambiguous of the degree n where n is an 
integer or oo (in the last case it will also be said that E is ambiguous of unbounded 
degree) if the following conditions are satisfied: 

(i) If a grammar G generates E and n =# oo (n = oo) then, (for every integer m) 
there is a string xeE which is generated in at least n (m if n = oo) essentially 
different ways, that is, x has n distinct structural descriptions (see for example [3], 
p. 367). 

(ii) If n + oo, then there is a grammar G generating E and such that every string 
i 6 £ is generated in at most n essentially different ways. 

A definable set is called unambiguous if it is ambiguous of the degree 1 and it is 
called ambiguous if it is not unambiguous. (If a set E is ambiguous of the degree n 
we shall also say that E is w-ambiguous). 

Consider grammars G0 and G, defined as in (3) to (6) and (4) to (7), respectively: 

(3) S ->• SXS2 , S -> S2S3 , 

(4) Sj -» aS^ , S, -» ab , 



(5) S2 -> S2a , S2 -*• a , 

(6) S3 -> bS2a , S3 - ba , 

(7) S -+S X S 2 , S4^S2S3. 

The set 

M = {a"bmap; n = m or m = p} u {a"6"; n ^ 1} u {6"a"; n 5: 1} u {a}00 

is strongly generated by ambiguous grammar G0 and also by unambiguous grammar 
Gv The set M is ambiguous (of the degree 2). Indeed, according to [7], if E is an 
unambiguous definable set and B is a regular set, then E — B is unambiguous, too. 
The set N = {a}00 {b}™ u {fr}00 {a}°° u {a}00 is regular and the set M. — N = 
= {a"b'"ap; n = m or m = p} = P is ambiguous [3]; hence M is also ambiguous 
(of the degree 2 as can be easily seen). Consequently, one gets the result: 

Theorem 7. There is an ambiguous (of the degree 2), definable set which is strongly 
generated by an unambiguous grammar. 

Definition 4. A grammar G is said to be completely unambiguous if G is unambi
guous and if for every x e LS(G) there is just one metasymbol X such that X => x. 

The conditions for a grammar to be completely unambiguous seem to be very 
strong. But one gets: 

Theorem 8. There is an ambiguous (of the degree 2) definable set which is strongly 
generated by a completely unambiguous grammar. 

Proof. The grammar G1 given above is completely unambiguous; G1 strongly 
generates M and M is ambiguous. 

Moreover, there is 

Theorem 9. There is no algorithm for determining, given an arbitrary grammar G, 
whether or not G is completely unambiguous. 

Proof. If such algorithm exists, then there is an algorithm to decide whether an 
arbitrary grammar with one metasymbol is unambiguous, contrary see in [8]. 

As to the sets strongly generated by unambiguous grammars one gets: 

Theorem 10. If a set E is strongly generated by an unambiguous grammar, then E 
is not unboundedly ambiguous. 

Proof. Let unambiguous grammar G = (VT, VN, &t, S) strongly generate E. 
Let Z $ (VN u VT) be a symbol. Then the grammar G'= <Vr, VN u {Z}, m u {Z -> U, 
U e Vv}, Z> generates E and obviously every string x e £ i s generated in at most n 
essentially different ways where n is the cardinality of the set VN. 

Remark. Theorem 11 given below indicates that presumably it is not possible to 
prove a stronger result. 

Presumably 
(H 1) the set P„ = P" u {a"b"; n ^ 1} u {b"a"; i t i l j u {a}°° is (2H)-ambiguous. 



However, the set Pn is strongly generated by an unambiguous grammar. Only the 

unambiguous grammar G2 strongly generating P2 is given. But from the construction 

of G2 it is obvious how to construct grammar G„ strongly generating P„. The grammar 

G2 is given by the rules. 

St-*XZXZ, S2^XZY, S--+ZYZY, SA->ZYXZ. 

X-*aXb, X -> ab, 

Y-^bYa, Y->bA, 

Z -> Za , Z -> a . 

Hence: 

Theorem 11. 7/ (H 1) holds, then for every integer n there are 2n~ambiguous sets 

strongly generated by an unambiguous grammar. 

A natural question is whether a strongly definable set exists which is neither gener

ated nor strongly generated by an unambiguous grammar. According to Theorem 10, 

in order to prove that such set exists, it suffices to prove that there is a strongly de

finable set which is ambiguous of unbounded degree. The set 

P K = P°° u {a"bn; n ^ 1} u {b"an; n > 1} u {a}00 

is strongly generated by the grammar G^ defined by the rules 

S -> SS , S -> SiS- , S -> S3S2 , 

S. -^aS-b, S.-> ab, 

S 2 —> bS2a , S2 -> ba , 

S~ -> S 3a , Sъ^a. 

Presumably: 

(H2) The set P æ is ambiguoш 

Consequently, one gets the result: 

Theorem 12. If (H 2) holds, then there is a strongly definable set which is neither 

generated nor strongly generated by an unambiguous grammar. 

A question arises whether for well-formed grammars G both sets L(G) and LS(G) 

are ambiguous of the same degree. For the grammar G0 defined as in (3) to (6) both 

sets L(G0) and LS(G0) are ambiguous (of the degree 2) but the following examples 

show that it is not true in general. 

Example 1. Let the grammar G3 be defined by the rules (3) to (6) and the following 

rules: 



S -> S4 , S4 -> cS5c , S5 -> S6S2 , S5 -> S2S7 , 

Se ~* aSe > s e -* S6b , S6 -> ab , 

S7 -> bS1, S7 -> S7a , S7 -* ba . 

Then the set L(G3) = P U {calbjakc; i,j, k ^ 1} is ambiguous and Ls(G3) = 

= {ca'fo-'a'c; i',j, fc 5: 1} u {a'ftma"; n + m + p > 0} is regular and thus unam

biguous. 

. Example 2. Let the grammar G4 be defined by the rules: 

S -> S!S2 , S —> cS4 , Sj -> a S ^ , Sj -> ab , S2 -> aS2 . 

S2 -> a , S4 -> S2S3, S3 -> bS3a , S3 -> ba . 

Then L(G4) = {a"b"ap; n, p >. 1} u {ca"fepap; n, p ^ 1} is unambiguous but 

Ls(G4) = M u {ca"fcpap; n, p ^ 1} is ambiguous. 

(Received August 15th, 1965) 
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O množinách generovaných bezkontextovou gramatikou 

JOZEF GRUSKA 

Množina reťazcov £ sa nazývá definovatelnou (silné definovatelnou) ak existuje 
bezkontextová gramatika G taká, že £ je množinou všetkých terminálnych teťazcov 
odvodených z daného neterminálneho symbola (zo všetkých neterminálnych sym-
bolov) gramatiky G. 

V práci sa vyšetrujú silné definovatelné množiny; ich vzťah k definovatelným mno
žinám (tj. k bezkontextovým jazykom) a ich špeciálnym triedam, uzáverové vlast
nosti, niektoré rozhodovacie problémy a otázky viacznačnosti. 
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