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Static Programming of Data Handling 
PAVEL KOVANIC 

The presented method splits the process of the optimum digital data handling into two 
stages: in the first stage the vectors—operators are calculated, in the second one they are applied 
on measured data. In this way the demands to the computers can be substantially diminished. 

INTRODUCTION 

Many operations effected during data handling can be understood as an application 
of some "filters". A "signal" is induced on the input of handling process which con
tain a useful information, and also unwanted random disturbances. The task of the 
"filter" is to offer on the output the best approximation to the useful component 
of input signal or to the quantity obtained by the given transformation of this com
ponent. For the region of continous signals L. A. Zadeh and J. P. Ragazzini [1] 
have formulated and solved a problem which is an important generalization of the 
Wiener's problem [2]. The development of digital technique enforced, however, 
solution of similar problem also for discrete filters. The solution was a continuation 
of paper [3] by A. N. Kolmogorov and was gradually developped in many papers 
from which we mention: A. B. Lees [4], M. Blum [5], [7], K. R. Johnson [6], 
V. P. Perov [8], Ya. Z. Cypkin [9], V. V. Solodovnikov [10], P. D. Krut'ko [11], 
L, N. Volgin [12]. 

In these papers time sequences of signals are discussed which are separated by 
regular time intervals. Methods of solution are in accordance with the regularity of 
the time sequence of signals. These methods, however, have a limited applicability 
for solution of practical problems where the handled "signal" is presented as a set 
of digital values of input function, given for other distribution of values of the in
dependent variable (the variable need not mean time) within the interval of observ
ation. 

The mathematical statistics solves problems which are essentially related i.e. 
estimation of linear forms, handling of indirect observations, linear and nonlinear 



158 regression, smoothing of measuring by means of given functions [13], [14]. The 
matrix solution which is often applied in this field is very comprehensible and allows 
not to limit oneself by a regular distribution of the interval of observation. The 
attention, however, is here paid more to the statistical properties of deviations of 
measured values from the smoothed curves than to the properties of functionals of 
those curves. Nevertheless, in problems of the Zadeh-Ragazzini type the securing 
of optimality of those functionals plays the essential part. Moreover, in the known 
problems connected with the method of least squares [13], [14] the useful random 
component is not considered. Therefore in paper [15] the author tried to use the 
matrix method for solving the generalized problem of Zadeh and Ragazzini and for 
a proof that the optimality of solution of this problem and the optimality of smoothed 
curves are in a connection. The main results of paper [15] as a theoretical basis of 
method of static programming are necessary to be presented in this article. The 
proposed procedure tends to the calculation of finished and in a certain sense un-
variable matrices for effecting of the optimum digital operations and does not tend to 
the algorithmes for computing operation matrices within the process of data handling 
as we can see in paper [16] by P. E. Kalman and other papers e.g. [17]. These dynamic 
methods allow to solve an essentially broader range of problems, however, with much 
higher requirements to the computer. 

GENERALIZED DISCRETE ZADEH-RAGAZZINFS PROBLEM 

We are given a set of measured values y(tj) (j = 1, 2 , . . . , n) of the input variable 
y(t) being a function of the independent variable t. Variable t may represent e.g. time 
or space coordinate. The distribution of the points tj on the i-axis is not necessary 
to be uniform. Let us suppose the input function being a composition 

(1) y(t) = ' f W t ) + *(*) + x(t) 

of m given nonrandom linearly independent functions xt(t), of a useful stationary 
random function x(t) and of a stationary random function x(t) representing noise, 
measuring errors, statistical fluctuations of measured variables etc. The ai are any 
unknown numbers. All functions and numbers are real. Correlation functions of x 
and x are given. The ensemble average of both x and x can be taken as zero after 
including their means into the sum. 

The set of y(tj) can be considered as a random vector V and the Eq. (1) can be 
rewritten as 

(2) Yln = AUmXl>a + xUn + x1>B. 

The first index indicates the number of rows of the matrix, the second one the number 
of columns. The size of the matrices will be shown in necessary cases only. T denotes 



the transposed matrix. The matrix X represents the given functions x,(f) by their 
numerical values: 

(3) X = X,, „, = 
| |x1( t1) . . .xm( í1) 

x,(tn)...xm(tn) 

The number of points (n) is supposed to be greater or equal the number of func
tions (m). 

What would be desired to be the output of handling of input vector Vis a number z, 
being the result of linear transformation S£ of the useful input component 

(4) zl = J?{Zaixi(t) + x(t)}t = tr 

e.g. the predicted value of a linear combination of first derivative and of the value 
of this component for t = tr. But z, cannot be determined exactly because of the 
presence of the statistical disturbance x(t). Thus, it is necessary to limit oneself to 
determining the best estimate z of z,. Here the following conditions must be respected: 

1. The z is searched for as a linear estimate of the form 

(5) z = YW, 

W being a vector (a matrix W„ ,). 

2. The z must be exactly equal to z, in the absence of the both x(t) and x(t) (the 
estimate must be unbiased). 

3. The variance of the z (ensemble averaged square of the deviation of z from the 
mean) must be minimum. 

It can be shown that the constraint equations warranting holding of the condition 2 
are of the form 

(6) XTW= L 

L = 
*{*0„ 

2{xjj)}*r 

where the tr denotes the value of t for which the estimate is determined. In dependence 
on the choice of tr in relation to the "observation interval" (tt -f- t„) the operation 
performed can be characterised as the smoothing (interpolation) prediction (extra
polation) or filtering. The choice of the operator <£ determines what function is to 
be smoothed, predicted or filtered. We can understand the ££ as the symbol denoting 
the derivating, integrating, convolutory integrating or as the symbol for linear com
bination of this and similar operations, if may be the identical transformation also. 



160 Thus, the vector L (7) defines the type of the estimate and the matrix equation (6) 

warrants the analytical properties of the digital operator W. 

The variance of the estimate z denoted by D z _ Z l can be shown as 

(8) DZ_ZI = WTBW - 2CW + d 

where 

(9) B„>n = xTx + F l + 2x^5 

is the covariance matrix of x + x, C and d being given by 

(10) ( C . , ) 1 

Sf{x(t)}tr. (x(tx) + x(tx)) 

nm,,.-ш + x(t„)) 
(ii) dltl = [<?{x(t)}try, 

The line above the symbols denotes the ensemble averaging. The matrix B, vector C 
and number d can be calculated from given correlation functions. 

Three conditions mentioned above define what is meant by the words "best estim
ate": The estimate is linear, unbiased and its variance is minimum. The linearity of 
the estimate (7) leads to an important advantage in regard to the effectiveness of 
using the digital operator W for calculation: The number of numerical operations 
is minimum: for consideration of each measured value y} within the process of hand
ling the vector Vonly one multiplication and one addition is needed. Thus, the estimate 
has a given analytical accuracy, minimum statistical error and minimum require
ments to the computer. 

SOLUTION OF THE PROBLEM AND ITS PROPERTIES 

The Lagrangian method gives the solution in the form of 

(12) W = B- 1 X(X T B- 1 X)- 1 L + [£ - B " 1 X(XT8~,Xy1 XT] B~lCT 

where the £„„ is the unity-matrix and B _ 1 is the invert of the B. It can be shown 
by substitution into Eq. (6) that this equation is satisfied by W of the form (12). 
The minimality of the variance is proved in the Appendix. Another important pro
perties of the solution can be pointed out: 

A. Let us use the operator W for smoothing the input function y(t) having the form 

of (1). Let us estimate the smoothed values y(tj) for all;'. Then not only the variance 

of each separate y(tj) is minimum but also the ensemble average of the sum of 

squared deviations (}(tj) — y(tj))2 reaches its minimum. In the case of x(t) = 0 

the sum of squared deviations is minimized, too. 



B. The smoothing of the smoothed function gives no changes in values y(tj). The 
analytical operation S£ performed on the smoothed function gives the same result 
as the direct using of the operator W calculated for the same operation S£. The 
practical consequence of this fact will be considered below. 

C. Matrices appearing in (12) can be used not only for computing the estimate z. 

The estimate A of the unknown vector A (see Eq. (2)) can be performed as 

(13) A = YB~' X(X T B- , X)- 1 . 

This estimate is unbiased and the expression (A — A) (A — A)r representing the 
sum of squared errors is minimum for the class of linear estimates of the vector A. 
Proofs of the statements A, B, C are omitted here, they can be found in [15]. 

STATIC PROGRAMMING 

The main idea of static programming consists in the distribution of all operations 
of digital data handling into two stages: 

1. Calculation of optimum digital operators and of variances, resp. of covariance 

matrices of output quantities. 

2. Application of operators. 

The simplest realization of this idea is demonstrated in Fig. 1. For the sake of 
simplicity calculation of variance of the result is not shown in Fig. 1. The input 
vector is Y. By means of a preliminary study of this vector or from theoretical consi
derations the necessary correlation functions were obtained and the matrices B 
and B~l were calculated. Functions .\-,(f) being given, the matrix X is also given. The 
operator S£ and point f,. are determined by requirements for the type of operation 
and therefore the vector L is also determined. The vector C is calculated from correl
ation functions for the given operator S£ and point tr. In the phase a of the first stage 
of static programming the matrix 

(14) M = B" 1 X(X T B- , X)- 1 

is calculated as well as the matrix E — A1 (£ being a unit matrix). In the phase b of 
the first stage the vectors L and B" 'CT are calculated for the required operator S£ 
and point /,. and also the vector-operator W which is an output quantity of the first 
stage. Calculations included in the first stage are effected only once for the given 
conditions. In the second stage which is repeated many times for various input 
vectors Y only the calculation of the required output quantity by means of applica
tion of the operator W is performed, i.e. the scalar product YW is being calculated. 
We proceed as follows 

(S.) 1 a— 1 b—2—2—2—2—2—2 ... 
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Fig. 1. Stages and phases of the first scheme oľstatic programming. 
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Here the first stage can be carried out e.g. by means of an efficient medium size off
line computer and the second stage by means of a small on-line computer. 

The method according to Fig. 1 is advantageous for one or for a few single opera
tions of a given type on many input vectors. Two important cases of the second stage 
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space estimation. 
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of static programming can be mentioned here. In the first case, demonstrated in 

Fig. 2, all values of components of the vector Y are taken in the same instant e.g. the 

independent variable t is a space coordinate. In the computer store the vector W 



calculated in the first stage is stored. The process represented by components of the 
vector Y can be nonstationary. In every instant of estimating z the computer takes 
the operator W off the store and all components of the vector Y off the input to 
effect the scalar product YW. The vector Y has not to be stored after finishing the 
operation. 

The vector Y, however, can be formed by time consequence of values of the input 
function, the independent variable t being time (Fig. 3). In the store of computer 
also the vector Y is stored formed by the last n measured values and supplemented 
by the newest measured value. The oldest value is forgotten in every further step. 

w, fi) p—<Ą yUt) I 
(to ľoгget) Output 

Fig. 3. Second stage of static programming for time estimating. 

If more operations on the same vector Y are required (e.g. k) it is necessary to 
calculate in the first stage vectors —operators for using in the second stage i.e. the 
matrix operator W„k. If the existence of useful random component x(t) is not pre
sumed and when it is necessary to perform a great number of various operations on 
every vector Y then two stages of static programming accord, to Fig. 4 are more con
venient. Calculation of covariance matrices of output quantities is again omitted 
in Fig. 4. The handling proceeds according to the following scheme 

l a — lb-2a—2b—2a—2b—2a—2b—2a—2b ... (S2) 

This case differs from using k vectors W accord, to Fig. 1 only by the requirements 
to the storing of matrices passing from the first stage into the second one: according 
to Fig. 1 it would be necessary to store a matrix with nk elements, accord, to Fig. 2 
to store one matrix with nm elements and one with mk elements. The method accord. 
Fig. 4 enables to condensate the input data for storing and later handling. Then 

la—2a—S—2a—S—2a—S—2a—S—2a—S ... (S3) 

(S denotes the operation of storing the vector A). The later handling proceeds accord, 
to the scheme 

(S4) lb—E—2b—E—2b—E—2b—E—2b ... 



(E denotes extraction of the vector A off the store). A direct storing of p vectors Vlin 

would require pn cells, a condensed storing needs pm cells. (Often n P m.) Moreover, 

there is a possibility in later handling to change the type of operations and repeat 

the chain (S4). Furthermore, there are some important cases, e.g. harmonic analysis, 

where the chain (S4) need not exist at all and the handling proceeds according to (S2) 

only. 
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Fig. 4. Stages and phases of the second scheme of static programming. 

It is necessary to mention that in practical using the chains (S<) up to (S4) can be 
variously modified and that the static programming can be realised in a less pure 
form than it is presented here. It depends both on the complication of solved problems 



and on the necessity to calculate in some cases not only the estimates of the wanted 
quantities but also their errors. 

SOME EXAMPLES OF USING THE STATIC PROGRAMMING 

Following examples can be mentioned from the field of using the computers for 
control of reactors and nuclear power stations and for handling the data in nuclear 
engineering: 

From the temperature of various fuel elements of a reactor it is necessary to calcul
ate in regular time intervals the mean temperature, i.e. to integrate the smoothed 
curve. An on-line computer can carry out this operation according to Fig. 2. Accord
ing to the same scheme e.g. time behaviour of thermal gradient in the most stressed 
spots of a pressure vessel or of cooling piping can be followed. By double using the 
scheme accord, to Fig. 2 we can obtain the local value of buckling as the negative 
ratio of the local value of the second derivative and of the local value of the curve 
representing a smoothed space distribution of neutron flux. 

Examples for the scheme represented by Fig. 3 are as follows: 

Calculation of the predicted value of a controled quantity for using in the optimum 
control. 
Calculation of the exact value of the instantaneous period of a reactor as a ratio 
of an instantaneous value and of an instantaneous value of the first derivative of 
the smoothed reactor power function. 
Calculation of the predicted value of temperature of important elements of a reactor 
for alarm or scram signalisation. 
Calculation of the instantaneous value of reactivity as a convolution integral from 
the neutron flux. 

For functionning accord, to Fig. 3 the sampled interval (i.e. the interval between 
two values of an independent variable t) is accepted as a constant one. For proceeding 
accord, to Fig. 2 the distribution of the points f, is determined by constructional 
aspects (by the possibility of situating the detectors) and often it is not regular. This 
must be respected when calculating the matrix X. 

As an example of the method of calculations accord, to Fig. 4, we can mention 
a digital registration of the space distribution of neutron flux for a later further 
handling: for the phase a of the first stage a system of linearly independent functions 
A',(f) and thus also the matrix X is chosen so that a small number of functions x,(?) 
could characterize the approximated curve with sufficient accuracy. In the phase a of 
the second stage an analysis of measured curves as a linear combination of given 
vectors of the type AXT, calculation and storing of the vector A accord, to the chain 
(S3) is effected in necessary time intervals. In a later phase of handling the accumulated 
data accord, to the chain (S4) it is possible e.g. to carry out an analysis of time depend-



ence of some functionate from measured curves. Another example of a supplementary 
handling is an analysis of time dependence of components of the vector A. In this 
case, e.g. the i-th components of these vectors form a new input vector (YA)t which 
can be further analysed according to any of the mentioned schemes after a new 
choosing of suitable matrix X and after absolving the calculations of the new first 
stage. Thus we can effect e.g. a time interpolation of components of the vectors A 
for the moment for which the measuring was not carried out and obtain the time-
interpolated distribution curve. The advantage of this method is the reduction of the 
influence of random errors, storing the condensed data and little extra demand on 
the on-line computer. 

One Example in More Details: Optimum Digital Harmonic Analysis 

To get a real idea about the importance of redundance (being represented here 
by the difference n — m, by using the n measured values for calculation of the m un
knowns) for reduction of errors of the result and for illustration of the effectivity of 
using the optimum digital operators, let us introduce a simple example of using the 
static programming for a harmonic analysis. 

The method of reactor oscillator is one of the most important methods for ex
perimental determination of dynamic properties of a reactor as well as of the cooling 
systems of the reactor. Evaluation of results of this measuring meets with following 
difficulties (particularly in the power range): 

a) The measured quantity is disturbed by statistic fluctuations. 
b) For practical reasons the amplitude of periodical disturbance must be small, 

compared with the mean value. 
c) It is difficult to warrant that the mean values of all measured quantities are being 

constant throughout the whole duration of the experiment. 
d) It is necessary to handle a great deal of experimental data for an analysis of the 

response not only of the reactor but also of a great number of further elements 
of a nuclear power plant at different frequencies. 

These difficulties can be essentially moderated by using the static programming 
according to Fig. 4, chain (S3). 

An example: the vector Y is formed by values of one of the investigated quantities 
taken in the moments ty up to tN. Functions x,(<) will be chosen as follows: 

Xl(t) = sin (t), xA(t) = cos (t) , x7(f) = 1, 

x2(t) = sin (2f) , x5(t) = cos (2t), x8(t) = t, 

x3(r) = sin (3.), x6(t) = cos (3t) , xg(t) = t2 . 

Let the matrix B be a diagonal matrix with the equal diagonal elements SY- The 
useful random component is identically zero. Let the points tj be equally distributed 



on the interval from tx up to tN = tt + 2K. The interval 2ir is therefore divided into 
N — 1 equal intervals. By calculation of the phase a of the first stage one obtains 
the matrix of the operators M for calculation of the vectors A. Its first six components 
form in this case the best estimates of amplitudes of harmonic components and the 
three remaining components are estimates of coefficients of the quadratic polynomial. 

Calculation of the phase a of the first stage for the considered case was effected 
for various values of N and the obtained operators were used in the stage 2a for 
handling of measured values of frequency transfer functions of real parts of a steam 
generator of a nuclear power plant. It will be of interest to mention that in the given 
case for N = 31 the computer Elliot 803 B needs several hundred times more time 
for calculation of the stage la than for calculation of the stage 2a which needs a few 
seconds for one vector V. Codes for both stages of calculation were written in 
ALGOL 60. Using of the machine code for calculation of the stage 2a would not 
represent any problem and could further increase the effectivity of using the con
sidered method. 

For the considered case (after calculation of the matrix M) it is easily possible to 
determine variances of every component of the vector A by effecting the product of 
the number Sr and of the sum of squares of elements of the respective column of the 
matrix M. (The number SY represents variance of the measured values yj.) Variance 
of the amplitude of the A>th harmonic will be determined as the sum of variance 
of sine and cosine amplitudes of this harmonic. Variances of amplitudes and coef
ficients of the polynominal calculated for several values of N are demonstrated in 
Tab. I. When N = 9 the redundance equals zero and variances of the output values 
are very high. With the increase of N the variances quickly decrease. 

Variance of amplitudes of the harmonics and of the coefficients of the polynomial at 
optimum digital harmonic analysis 

n — number of points tj on the investigated interval 2JI, 
Sak — variance of the amplitude of A-th harmonic, 

2 
Sbk — variance of A-th coefficient of the polynomial S bktk, 

Jt = 0 

Sy — variance of components of the input vector Y i. e. of the measured values. 

n Sal Sa2 SaЪ SҺO ~м 
1 

Sы 

9 
15 
31 
61 

22-9345y 

8-3815,, 
5-4225v 

3-4395,, 

2-500 Sy 

0-92625v 

0-52175,, 
0-30465,, 

1-190735* 
0-452245v 

0-227665,, 
0-122195,, 

178-53 Sy 

42-3795,, 
19-8255,, 
10-7845,, 

46-906 5,, 
4-783 5 V 

0-61347 5 y 

0-0933825,, 

4-6875. 10- '5, , 
1-8646. 10- 2Sy 

5-9759. 10" 4 5,, 
2-4229. 1 0 ~ 5 5 v 



The calculation effected for N = 31, for the same polynomial component and for 
the same distribution of the points tj on the interval of 2n shows how the increase of 
the number of analysed harmonics (H) lowers the accuracy of determining the ampli
tude of basic harmonic and of coefficients of polynomial component. Results are 
summarized in Tab. II. 

Variance of amplitude of the first harmonic and of the coefficients of the polynomial 
at optimum digital harmonic analysis at n = 31 

H— number of harmonics considered in the analysis. Remaining symbols are the same as 
as in Table I. 

0-85815,, 
5-422 Sy 

15-836 5 

2-56035,. 

19-825 5, 

59-991 5„ 

0-0743395, 

0-61347 5,, 

1-8716 5„ 

7-1726. 10 " 3 5 
5-9759. 10 " 4 5 
1-8259 . 1 0 " 3 5 

ACCURACY OF OUTPUT QUANTITIES 

Error of the output quantities may be caused by four reasons: 

1. Representation of the nonrandom component of the input signal is not satisfactory, 
the chosen functions x[i) do not enable a sufficiently accurate approximation to 
this component. 

2. The output quantities contain a disturbing random component which is intro
duced into the input of the process together with the useful component. 

3. Representation of the input and output values and of components of vectors — 
operators as well as operations with those members are not sufficiently accurate. 

4. Correlation functions which were supposed by us do not sufficiently meet the real 
properties of the input random components. 

Reason of the type 4 causes that at a certain "analytical" accuracy of output quanti
ties the variance of this quantity is greater than it could be if the information of the 
input random components were more complete. Sometimes, however, even a rather 
nonaccurate knowledge of properties of the input random components is no hindrance 
for practical using of results. Beside that, knowledge of statistical properties of input 
data can be supplemented and made more accurate within its handling and the digital 
operators can be additionally corrected by means of a new calculation la. 

Reason mentioned under 3 is essentially of technical character. For the second 
stage of the calculation i.e. for the proper ensemble data handling the usual accuracy 



of an on-line computer will be sufficient, requirements to the accuracy of its input 
equipment can be even lower because of the utilization of redundance. On the other 
hand, calculations of the first stage require an accuracy which is usually necessary 
for effecting of scientific calculations. These calculations, however, even because of 
speed and because of requirements to the store are usually necessary to be effected 
by means of a medium-size off-line computer warranting the demanded accuracy. 

Two components thus remain under 1 and 2 i.e. the analytical and the statistical 
component. Unfortunately, decrease of the influence of one of those components 
leads to an increase of the other one, the quantity of the input information remaining 
constant. The increase of quantity of the input information (the inrease of n) enables 
to decrease the result error, however, either for the price of increasing the demands 
to technical equipment or for the price of time retardation of the output information 
or for the price of both those complications. Therefore it is necessary to consider 
even the calculation of variations resp. of covariance matrices of output quantities 
as an important component of the first stage of static programming. This calculation 
makes it possible to estimate still before the beginning of the second stage the statisti
cal component of errors of results (supposing a covariance matrix B of the input 
vector Y). The calculation of the variance Dz_Zl of the output quantity z for the scheme 
according to Fig. 1 is effected according to Eq. (8). One can easily see that the co-
variance matrix KA of the vector A which is the output quantity of the phase 2a 
(proceeding accord, to Fig. 4) is given by the expression 

(15) KA = (XTB- lX)-< 

and the covariance matrix Kz of the vector Z which is the output quantity of the 
phase 2b (accord, to Fig. 4) is given by the expression 

(16) Kz=L1(X1B~1Xyi L 

where Lmk is the matrix composed of the vectors L calculated for each individual 
operation. We see that for calculation of variances or of covariance matrices we need 
(beside the given quantities) the matrices which are calculated in the first stage as well. 

The question of suitability of the choice of type of the functions x,(f) and of its 
number m is more complicated and cannot be definitely solved in a general case 
without a deeper investigation of properties of the input vectors V although it is 
often possible to give the matrix X only by intuition or apriori knowledge of character 
of the vector Y and although the analytical error can be roughly estimated under 
certain prepositions about properties of the nonrandom part of the input signal. 
The verification of suitability of choice of the matrix X is a task of mathematical 
statistics, it requires a testing of the hypothesis that the quantities yi — y} (the errors 
of smoothing) have really a random character. Even for calculation of the smoothed 
vector Y and thus also for the testing of this hypothesis one can use matrices calcul
ated in the first stage. This test, being not comprised in the mentioned schemes, 



would be effected, if necessary, between the stages 1 and 2 to get a warranty of 
the correctness of the method. First then many repeating of the stage 2 would follow. 

CONCLUSION 

Method of static programming consists in splitting of the handling process into 
two stages. In the first stage, the digital operators are prepared, in the second stage 
the operators are applied in the calculation of the scalar product into which the 
vector-operator as well as the vector of measured values enter. The method allows 
to perform operations of an mass data handling most economically and with best 
results from the point of view of using the input informations. 

APPENDIX 

Let us consider a vector Wn4 giving a linear estimate 

(Al) _ = YVV 

which is unbiased: 

(A2) XTVV = L . 

The variance D._Zi of z is given by the same formula (8) as the _>_.__,: 

(A3) _V_. = VVTBVV - 2CVV + d . 

After substitution of (12) into (8) and after subtraction of the equation (8) from (A3) 
we have 

(A4) Dz_2l - £>,_., = VVTB[£ - B 1 X(X T B- , X)- 1 XT] VV -

- 2C[£ - B ' X(XTB" 1X)- 1 XT] VV + 

+ C[£ - B"« X(XTB~1X)- ) XT] B !C7 . 

B being a covariance matrix is invertible and symmetrical, it can be therefore repre
sented by the product of a nonsingular matrix S and of its transponse: 

(A5) B = SSJ 

or 

(A6) B " 1 = ( S T ) - I S - 1 . 

Using (A5) and (A6) we can rewrite the equation (A4) as the quadratic form 

(A7) ZV- , - £_-_, = 

[WJS - CSJ] [£ - S'1X(XJB~1X) X T S^»] [WJS - CSJf . 



The matrix 

(A8) R„,„ = E = S- 1 X(X T B" 1 X)XS T - 1 

being a symmetrical matrix can be represented as 

(A9) R = FlMDF0 

where (MD)„,„ is a matrix of diagonal form and F0 is an orthogonal matrix: 

(A10) F0F
T

0 = £„,„. 

We can see from (A8) that 

(All) RR= R 

but using (A9) and (A10) we have also 

(A12) MDMD = MD . 

This may be if and only if the diagonal elements of the diagonal matrix MD (the real 
numbers mj) satisfy the equation 

(A13) m) = mj 

that is they are unity or zero. 

Thus, the quadratic form (A7) can be represented by 

(A14) C£_;, -_> ,_ - , = 2 > ? P j
2 

where the pj denotes the j'-th component of the vector F0[WTS — CSTY- Hence 

(A15) Z)2_ZI - Dx.Zl £ 0 . 

The vector W gives the estimate z the variance £>._., of which is not greater than the 
variance of any unbiased linear estimate which fact had to be proved. 

(Received July 27th, 1965.) 
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Statické programování pro zpracování dat 

PAVEL KOVANIC 

Článek se zabývá numerickým zpracováním dat, jehož cílem je získání nejlepšího 
odhadu hodnoty lineárního funkcionálu od vstupní funkce, dané číselnými hodno
tami v libovolně rozdělených bodech nezávisle proměnné. Vstupní funkce je nezná
mou lineární kombinací daných nenáhodných funkcí a stacionární náhodné funkce. 
Do procesu zpracování vzstupuje vstupní funkce v součtu s rušivou stacionární 
náhodnou funkcí. Korelační funkce obou náhodných funkcí jsou dány. Popisovaná 
metoda statického programování vychází z maticového řešení zobecněné diskrétní 
analogie úlohy Zadeha a Ragazziniho. Rozděluje proces zpracování na dvě etapy. 
V první etapě se pro dané podmínky vypočtou číslicové operátory použitelné pro 
jakákoliv konkrétní data. Ve druhé etapě se provádí vlastní zpracování dat aplikací 
těchto číslicových operátorů vždy jako skalární součin vektoru-operátoru a vektoru, 
tvořeného souborem dat. 



Často se požaduje mnohonásobné opakování procesu zpracování dat získaných 
za týchž podmínek. V takovém případě se mnohonásobně opakuje pouze druhá 
etapa, vyžadující minimální počet numerických operací. Zpracování dat podle 
uvedené metody je v takovém případě optimální nejen z hlediska disperse výsledku 
(která je minimální), ale i z hlediska ekonomického. Jednoduchost druhé etapy 
zpracování dat dovoluje podstatně snížit nároky na počítač (rychlost i paměť), který 
má pracovat v reálném čase. V článku jsou uvedeny některé aplikace metody na 
úlohy, vyskytující se v jaderné technice a použití pro optimální číslicovou harmonicko-
polynomickou analýzu. 
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