Generalization of the Non-additive Measures of Uncertainty and Information and their Axiomatic Characterizations*

P. N. Rathie

The object of this paper is to define generalized non-additive (i) entropy of order \(a \) and type \(\beta \) and (ii) information of order \(a \) and type \(\beta \) and to give their axiomatic characterizations. Further generalizations are indicated towards the end of the paper.

1. INTRODUCTION AND THE GENERALIZATIONS

Let \(P = (p_1, \ldots, p_n) \), \(n \geq 1 \) be a finite discrete probability distribution with \(p_i > 0, W(P) = \sum_{i=1}^{n} p_i = 1 \). \(W(P) \) is called the weight of the distribution \(P \). Let \(\mathcal{A} \) denote the set of all finite discrete generalized probability distributions. Introducing a parameter \(\beta \), we call \(W(P; \beta) = \sum_{i=1}^{n} p_i^{\beta} \leq 1, \beta > 0 \), as the generalized weight of the distribution \(P \). Clearly, \(W(P; 1) = W(P) \).

In what follows, \(\sum \) will stand for the sum \(\sum_{i=1}^{n} \) unless otherwise specified.

Now we introduce a new generalization of the non-additive entropy \([2,4]\) as

\[
H_a(P; \beta) = (1 - \sum p_i^{a+\beta-1})^{(1 - 2^{a-1})},
\]

where \(a \neq 1, \beta > 0, a + \beta - 1 > 0 \); which we shall call as the generalized non-additive entropy of order \(a \) and type \(\beta \).

Let \(P = (p_1, \ldots, p_n) \in \mathcal{A} \) and \(Q = (q_1, \ldots, q_n) \in \mathcal{A} \) be the two generalized probability distributions, the correspondence between the elements of \(P \) and \(Q \) is that given by their subscripts. Then we define a new generalized non-additive information of

* The author is thankful to Professor A. M. Mathai of McGill University for providing financial assistance through his N.R.C. grant No. A 3057-282-08 which made this work possible.
order α and type β as

\begin{equation}
I_\alpha(P; \beta | Q) = (1 - \sum P_i^{\alpha + \beta - 1} Q_i^{1-\alpha}) \sum P_i^n (1 - 2^{\alpha - 1}),
\end{equation}

$\alpha + 1, \beta > 0, \alpha + \beta - 1 > 0$.

For $\beta = 1$, (1.2) reduces to the non-additive measure of information of order α which has recently been characterized by means of a functional inequality by the author [3].

The additive entropy of order α and type β [5,6] is defined by the expression,

\begin{equation}
H_\alpha(P) = (1 - \alpha)^{-1} \log_2 \left(\sum P_i^{\alpha + \beta - 1} \right),
\end{equation}

$\alpha + 1, \beta > 0, \alpha + \beta - 1 > 0$;

where as the additive information of order α and type β [7] is defined as,

\begin{equation}
I_\alpha(P; Q) = (\alpha - 1)^{-1} \log_2 \left(\sum P_i^{\alpha + \beta - 1} Q_i^{1-\alpha} \right),
\end{equation}

$\alpha + 1, \beta > 0, \alpha + \beta - 1 > 0$.

It is easy to find from (1.1) and (1.3) that*

\begin{equation}
H_\beta(P; \alpha) = (1 - 2^{1-\alpha} H_\alpha(P)) / (1 - 2^{1-\alpha});
\end{equation}

and from (1.2) and (1.4), we get

\begin{equation}
I_\beta(P; \alpha | Q) = (1 - 2^{(\alpha-1)H_\alpha(P)}) / (1 - 2^{1-\alpha}).
\end{equation}

The conditions $\beta > 0$ and $\alpha + \beta - 1 > 0$ are put so that some of the p's may be allowed to take zero values.

The object of this paper is to prove some characterization theorems for the generalized non-additive measures of uncertainty (1.1) and information (1.2) respectively by assuming certain sets of postulates. On specializing the parameter β (i.e., $\beta = 1$), one can easily obtain similar results for the ordinary non-additive measures of uncertainty and information.

2. CHARACTERIZATION OF THE GENERALIZED UNCERTAINTY

This section deals with the characterizations of the generalized non-additive measures of uncertainty, $H_{\alpha}(P; \beta)$ by two sets of postulates. The axiomatic characterizations are given below in the form of two theorems which generalize the recent results of [4].

Postulate 1. \(\lim_{p \to 0} H_{\alpha}(1 - p; \beta) = A, \ p \in A. \)

* The author thanks I. Vajda, the reviewer of this paper, for suggesting the relationship between $H_\alpha(P; \beta)$ and $H_\beta(P)$.
Postulate 2. $H_a(1; \beta) = 1.$

Postulate 3. If $p, q \in A$, then

$$H_a(pq; \beta) = H_a(p; \beta) + H_a(q; \beta) + (2^{1-x} - 1) H_a(p; \beta) H_a(q; \beta).$$

Postulate 4. If $P = (p_1, \ldots, p_n) \in A, Q = (q_1, \ldots, q_m) \in A$ and $W(P; \beta) + W(Q; \beta) \leq 1$, then

$$H_a(P \cup Q; \beta) = \frac{W(P; \beta) H_a(P; \beta) + W(Q; \beta) H_a(Q; \beta)}{W(P; \beta) + W(Q; \beta)},$$

where $P \cup Q = (p_1, \ldots, p_n, q_1, \ldots, q_m)$.

It is sufficient to assume postulate 4 for $n = m = 1$, the result for the general case follows by induction.

Theorem 1. A function $H_a(P; \beta)$ satisfying the postulates 1, 2, 3 and 4 is given by (1.1) for $n \geq 2$.

Proof. For $p = 1$ the postulate 3 takes the following form,

$$H_a(1; \beta) [1 + (2^{1-x} - 1) H_a(q; \beta)] = 0.$$

Taking $q = \frac{1}{2}$ and using the postulate 2, we find that

$$H_a(1; \beta) = 0.$$

Now with $q = 1 - \delta p/p$, the postulate 3 takes the form,

$$H_a(p; \beta) - H_a(p - \delta p; \beta) = H_a(1 - \delta p/p; \beta) [(1 - 2^{1-x}) H_a(p; \beta) - 1].$$

Dividing (2.3) by δp and taking limits as $\delta p \to 0$, we get

$$dH_a(p; \beta)/dp = (A/p) [(1 - 2^{1-x}) H_a(p; \beta) - 1].$$

by using the postulate 1.

Solving the differential equation (2.4) under the boundary conditions given in the postulate 2 and (2.2), we arrive at

$$H_a(p; \beta) = (p^{x-1} - 1)/(2^{1-x} - 1).$$

Hence using (2.5) in postulate 4 proves theorem 1.

Postulate 1 implies that $H_a(p; \beta)$ is differentiable. We can weaken this postulate by assuming the following postulate of continuity:

Postulate 1'. $H_a(p; \beta)$ is a continuous function of $p \in (0,1]$.

Now we prove the following theorem:

Theorem 2. A function $H_{\alpha}(P; \beta)$ satisfying the postulates 1, 2, 3 and 4 is given by (1.1) for $n \geq 2$.

Proof. Let

\[(2.6)\]
\[g_{\alpha}(p; \beta) = 1 + (2^{1-\alpha} - 1) H_{\alpha}(p; \beta),\]
then from postulate 3, we have

\[(2.7)\]
\[g_{\alpha}(pq; \beta) = g_{\alpha}(p; \beta) g_{\alpha}(q; \beta).\]

Since $H_{\alpha}(p; \beta)$, by postulate 1, is continuous in $(0,1]$ and therefore $g_{\alpha}(p; \beta)$ is also continuous. Hence the only non-zero continuous solutions \[1, p. 41\] of (2.7) are given by

\[(2.8)\]
\[g_{\alpha}(p; \beta) = \alpha^p,\]
where α is a real arbitrary constant which may depend on α and β.

Now the use of postulate 2 yields $\alpha = \alpha - 1$ giving (2.5). Hence as before, the postulate 4 proves the theorem.

3. CHARACTERIZATION OF THE GENERALIZED INFORMATION

In this section we characterize the generalized non-additive measure of information of order α and type β. We start by assuming the following postulates.

Postulate 1. $\lim_{q \to 0^+} I_{\alpha}(1; \beta | 1 - q)/q = A, \ q \in \Delta.$

Postulate 2. $I_{\alpha}(p; \beta | 1)$ is a continuous function of $p \in (0,1]$.

Postulate 3. $I_{\alpha}(1; \beta | \frac{1}{2}) = 1.$

Postulate 4. $I_{\alpha}(-\frac{1}{2}; \beta | \frac{1}{2}) = 0.$

Postulate 5. If $p_1, p_2, q_1, q_2 \in \Delta$, then

\[I_{\alpha}(p_1 p_2; \beta | q_1 q_2) = I_{\alpha}(p_1; \beta | q_1) + I_{\alpha}(p_2; \beta | q_2) +
(2^{1-\alpha} - 1) I_{\alpha}(p_1; \beta | q_2) I_{\alpha}(p_2; \beta | q_1).\]

Postulate 6. If $P, Q \in \Delta$, then

\[I_{\alpha}(p; \beta | Q) = \frac{W(P_1; \beta) I_{\alpha}(p_1; \beta | Q_1) + W(P_2; \beta) I_{\alpha}(p_2; \beta | Q_2)}{W(P_1; \beta) + W(P_2; \beta)},\]

where $P = P_1 \cup P_2$ and $Q = Q_1 \cup Q_2$.

Theorem 3. A function $I_a(p;\beta|q)$ satisfying the postulates 1, 2, 3, 4, 5 and 6 is given by (1.2) for $n \geq 2$.

Proof. Taking $p_1 = p, p_2 = q_1 = 1$ and $q_2 = q$ in postulate 5, we have

$$I_a(p;\beta|q) = I_a(p;\beta|1) + I_a(1;\beta|q) + (2^{-1} - 1)I_a(p;\beta|1)I_a(1;\beta|q)$$

(3.1)

Postulate 5 for $p_1 = p_2 = 1$ gives

$$I_a(1;\beta|q_1q_2) = I_a(1;\beta|q_1) + I_a(1;\beta|q_2) +$$

$$+ (2^{-1} - 1)I_a(1;\beta|q_1)I_a(1;\beta|q_2).$$

(3.2)

Now for $q_2 = 1$, (3.2) yields

$$I_a(1;\beta|1)[1 + (2^{-1} - 1)I_a(1;\beta|q_1)] = 0.$$

(3.3)

Taking $q_1 = \frac{1}{2}$ and using the postulate 3, we have

$$I_a(1;\beta|1) = 0.$$

(3.4)

Again taking $q_1 = q, q_2 = 1 - \delta q/q$ in (3.2), we get

$$I_a(1;\beta|q) - I_a(1;\beta|q - \delta q) = I_a(1;\beta|1 - \delta q/q) \left[(1 - 2^{-1})I_a(1;\beta|q) - 1\right];$$

which on dividing by δq, taking limits as $\delta q \to 0$ and using the postulate 1 gives the following differential equation

$$dI_a(1;\beta|q)/dq = (A/q) \left[(1 - 2^{-1})I_a(1;\beta|q) - 1\right].$$

(3.5)

Solving the differential equation (3.5) under the boundary conditions given in (3.4) and the postulate 3, we have

$$I_a(1;\beta|q) = (q^{1-z} - 1)/(2^{z-1} - 1).$$

(3.6)

Taking $q_1 = q_2 = 1$ in postulate 5, we get

$$I_a(p_1,p_2;\beta|1) = I_a(p_1;\beta|1) + I_a(p_2;\beta|1) +$$

$$+ (2^{-1} - 1)I_a(p_1;\beta|1)I_a(p_2;\beta|1).$$

(3.7)

Let

$$g_a(p;\beta|1) = 1 + (2^{-1} - 1)I_a(p;\beta|1),$$

then from (3.7) we have

$$g_a(p_1,p_2;\beta|1) = g_a(p_1;\beta|1)g_a(p_2;\beta|1).$$

(3.8)

By postulate 2 the continuity of $I_a(p;\beta|1)$ implies the continuity of $g_a(p;\beta|1)$ and hence the non-zero continuous solutions of (3.9) are given by [1, p. 41],

$$g_a(p;\beta|1) = p^z,$$

(3.10)
where a is a real arbitrary constant. Hence

\begin{equation}
I_a(p; \beta | 1) = (p^a - 1)(2^{a-1} - 1).
\end{equation}

Thus (3.1) on using (3.6) and (3.11) gives

\begin{equation}
I_a(p; \beta | q) = (p^a q^{-a} - 1)(2^{a-1} - 1).
\end{equation}

The use of postulate 4 yields $a = \alpha - 1$ giving

\begin{equation}
I_a(p; \beta | q) = (p^{\alpha-1} q^{-\alpha - 1} - 1)(2^{\alpha-1} - 1).
\end{equation}

Theorem 3 can now be obtained on using (3.13) and the postulate 6.

Now we replace the postulate 1 by a weaker postulate assuming the continuity of $I_a(1; \beta | q)$.

Postulate 1: $I_a(1; \beta | q)$ is a continuous function of $q \in (0,1]$.

Theorem 4: A function $I_a(p; \beta | Q)$ satisfying the postulates 1', 2, 3, 4, 5 and 6 is given by (1.2) for $n \geq 2$.

Proof. As done in the later part of the proof of theorem 3, it is easy to prove in this case that

\begin{equation}
I_a(p; \beta | 1) = (p^a - 1)(2^{a-1} - 1)
\end{equation}

and

\begin{equation}
I_a(1; \beta | q) = (q^b - 1)(2^{b-1} - 1)
\end{equation}

giving

\begin{equation}
I_a(p; \beta | q) = (p^a q^b - 1)(2^{a+b} - 1).
\end{equation}

The use of postulate 3 and 4 yields $a = \alpha - 1$ and $b = 1 - \alpha$ giving (3.13) from which theorem 4 follows by postulate 6.

4. FURTHER GENERALIZATIONS

In this section we give some further generalizations of the non-additive measures of uncertainty and information. They are:

(i) The generalized non-additive entropy of order α and type $\{\beta_i\}$,

\begin{equation}
H_2(P; \beta_i | Q) = (1 - \sum p_i^{z+1} / \sum p_i^z)(1 - 2^{z-1}),
\end{equation}

$\alpha + 1, \ \beta_i > 0, \ \alpha + \beta_i - 1 > 0$.

(ii) The generalized non-additive information of order a and type $\{\beta_i\}$,

\[(5.2) \quad I_a(P; \beta_i | Q) = (1 - \sum p_i^{a-1} q_i^{1-a})/(1 - 2^{a-1}) \cdot \]

\[\alpha + 1, \quad \beta_i > 0, \quad \alpha + \beta_i - 1 > 0. \]

Clearly (5.1) and (5.2) yield (1.1) and (1.2) respectively for $\beta_i = \beta$ for all $i = 1, \ldots, n$. It is proposed to study (5.1) and (5.2) in subsequent papers.

(Received August 12, 1970.)

REFERENCES

VÝTAH

Zobecnění neaditivních měr nejistoty a informace a jejich axiomatické charakteristiky

P. N. RATHE

Budíž $P = (p_1, \ldots, p_n)$ konečné diskrétní rozložení pravděpodobnosti pro $p_i > 0, \sum p_i \leq 1$. Nechť A znamená množinu všech konečných diskrétních rozložení pravděpodobnosti. Pak zobecněná neaditivní entropie řádu a a typu β je definována vztahem

\[(1.1) \quad H_a(P; \beta) = (1 - \sum p_i^{a-1} q_i^{1-a})/(1 - 2^{a-1}) \cdot \]

\[\alpha + 1, \quad \beta > 0, \quad \alpha + \beta - 1 > 0. \]

Rovněž pro $P = (p_1, \ldots, p_n) \in A$ a $Q = (q_1, \ldots, q_n) \in A$ je definována zobecněná
nedělitelní informace řádu α a typu β vztahem

\[L(P; β | Q) = (1 - \sum p_i^{x+β-1} q_i^{1-β} | \sum p_i^\beta)(1 - 2^{α-1}) , \]
\[α + 1, \ β > 0, \ α + β - 1 > 0. \]

Pro (1.1) a (1.2) jsou dokázány čtyři charakterizační věty při uvážení určitých souborů postulátů. Je naznačeno další zobecnění (1.1) a (1.2). První dvě věty zobecnůjí výsledky získané I. Vajdou.

Dr. P. N. Rathie, Visiting Scientist, Department of Mathematics, McGill University, Montreal 110, Quebec, Canada.