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PARTIAL DISTURBANCE DECOUPLING PROBLEM 
FOR STRUCTURED TRANSFER MATRIX SYSTEMS 
BY MEASUREMENT FEEDBACK 

ULVIYE B A § E R 

Partial disturbance decoupling problems are equivalent to zeroing the first, say k Markov 
parameters of the closed-loop system between the disturbance and controlled output. One 
might consider this problem when it is not possible to zero all the Markov parameters 
which is known as exact disturbance decoupling. Structured transfer matrix systems are 
linear systems given by transfer matrices of which the infinite zero order of each nonzero 
entry is known, while the associated infinite gains are unknown and assumed mutually 
independent. The aim in this paper is to derive the necessary and sufficient conditions for 
the generic solvability of the partial disturbance decoupling problem for structured transfer 
matrix systems, by dynamic output feedback. Generic solvability here means solvability for 
almost all possible values for the infinite gains of the nonzero transfer matrix entries. The 
conditions will be stated by generic essential orders which are defined in terms of minimal 
weight of the matchings in a bipartite graph associated with the structured transfer matrix 
systems. 

1. INTRODUCTION 

We consider the transfer matr ix system £ as 

z = Kd+Lu (1) 

y = Md + Nu (2) 

with disturbance d, control u, output z and measurement y, and K, L and M proper 
rational matrices and IV a strictly proper matr ix of suitable dimensions. On the large 
class of control problems related the system given above it is essential to design the 
closed loop transfer function between the disturbance d and the controlled output z. 
The early a t t empts along this line were devoted to zeroing the effect of disturbance 
on the controlled ou tpu t . This problem is usually referred to as the disturbance 
decoupling and is abbreviated by DDP. The reader may refer to [12] for further 
detail. 

When it is not possible to zero the effect of disturbance on the controlled output , 
partial disturbance decoupling problem is considered, which can be defined as zeroing 
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the first, say k Markov parameters. This problem hats been initially introduced in 
[6]. 

Structured systems are linear systems of which each of the coefficients either is 
fixed to zero or is an independent free parameter. Structured transfer matrix systems 
are linear systems given by transfer matrices for which each of the entries either is 
fixed to zero or has a zero at infinity of a known order, while the associated infinite 
gains, which are the parameters are unknown and assumed mutually independent 
values. Hence a structured transfer matrix system is partially given by the zero-
nonzero structure of its matrices. The zero-nonzero structure can be represented by 
means of a bipartite graph. The edges in the graph representation of a structured 
transfer matrix system can be given weights equal to the infinite zero orders of the 
associated nonzero entries. 

In this paper we examine the partial disturbance decoupling problem by mea­
surement feedback for structured transfer matrix systems. We derive necessary and 
sufficient conditions for the generic solvability of the problem in terms of the generic 
essential orders which are calculated by the edge weights in the bipartite graph rep­
resentation of the structured transfer matrix system. We also present an algorithm 
which is the modified version of the Algorithm 5.2 in [11] to our problem that enables 
us to check the generic solvability of the problem. 

In the literature the infinite structure of the structured systems is presented in 
[1, 8] and [9] and corresponds to the sets of vertex disjoint input-output paths. 
The graph characterization of the generic essential orders are deduced from infinite 
structure of the system. DDP for structured systems are obtained in [1, 9, 10] and 
[4] in the state space sense. In [2] and [11] this problem are approached from a 
frequency domain point of view using transfer matrices. Partial DDP for structured 
systems by static state feedback is examined in [7] by geometric approach. 

2. PROBLEM FORMULATION 

In this section we formulate the problem studied here. Consider the transfer matrix 
system E given in (1). The objective for the partial DDP is to find a measurement 
feedback 

u = -Cy (3) 

with a proper C such that the closed-loop matrix 

K-L(I + CN)-lCM (4) 

between z and d, which is a proper matrix has first A: + 1 Markov parameters 
zero. Since N is assumed as strictly proper, then (I + CN) is biproper and X := 
(I + CN)~~lC is proper. When X is known then C is obtained as C = X(I — 
NX)'1. Thus, we can define partial DDP by a measurement feedback for a given k 
(PDDPM(A:)) as in the following way. 
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Definition 2.1. (PDDPM(fc)) Given the transfer matrix system E and a nonneg-
ative integer k. Find a proper matrix X such that 

K - LXM = 
1 

5fc+i (5) 

for some proper matrix P. 

When L does not have full row rank and M full column rank, there exist biproper 
matrices B\ and B2 such that 

BXL = 
L 
0 

MB2 = M 0 (6) 

where L and M are full row rank and full column rank, respectively. Also partition 
B1KB2 compatibly as 

" K K2 B1KB2 = 

Let A: be a positive integer such that 

c * + l 

RЗ KA 

0 K2 

Л'3 K4 

(7) 

(8) 

is proper and let k* denote the greatest integer among them. Then, 

Theorem 2.2. PDDPM(Ar) is solvable for a system E if and only if 

(i) k < k* 

(ii) PDDPM(ifc) is solvable for the system E, where E = E(A', Z, M, IV). 

P r o o f . The condition (i) is given in [5] . Since B\ and B2 are biproper and P is 
proper B1PB2 is proper. So, the necessity part is obvious. For sufficiency, assume 
that (i) and (ii) holds. Then, there exists a proper matrix X such that it satisfies 
K — LXM = j^prP for a proper matrix P and an integer k < k*. Then, we have 

к к2 
KЗ K4 

L 
0 

M 0 
1 

5* + l 
P E2 
Pz Pл 

(9) 

for sh+lK2 = : ^2, sk+lK3 = : P3 and sk+lK4 = : P 4 , which are proper. Thus, 
PDDPM(ib) is solvable for E. D 

As a result of the conditions of the theorem above we can assume without loss 
of generality that L has full row rank and M has full column rank. To reduce the 
number of computations we also assume the followings. 
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Assumption 2.3. Let L have full row rank, say r and M have full column rank, 
say q. Then, we can assume without loss of generality that L is replaced by one of 
its r x r submatrices that has a determinant of maximum degree and M is replaced 
by one of its q x q submatrices that has a determinant of maximum degree. 

P r o o f . See the Appendix. • 

Let t(s) be a rational function written as t(s) = ^W, with n(s) and d(s) poly­
nomials. Then, we define the degree of t(s) as degtf(s) = degn(s) — degd(s), where 
deg n(s) and deg d(s) are the degrees in the usual sense of the polynomials n(s) and 
d(s), respectively. Note that —deg/(s) is equal to the order of the zero at infinity of 

The following lemma will be used in the proof of the sufficiency part of the main 
result. 

Lemma 2.4. Let g be a proper function and k a nonnegative integer. We have 
the following relations between degg and the integer (k + 1): 

(i) If degg < —(k + 1), then for every proper function p, which is different from 
sk+xg we have deg (g - pcW) < - ( * + 1) 

(ii) If deg <7 > — (k +1), then for every proper function p we have deg (g — ^ r p ) = 
degg. 

P r o o f . The results of this lemma can be easily seen. D 

3. NOTATION AND PRELIMINARIES 

We will give some notation that we use throughout this paper. A proper rational 
function t(s) can be factorized as t(s) = s~p\b(s)i where p is the infinite zero order 
of t(s), b(s) is biproper function which is equal to 1 when s goes to oo and A is real 
number called the infinite gain of t(s). A proper transfer matrix T(s) is said to be 
structured if each of its entries either is fixed to zero or has a zero at infinity of a 
known order while the associated infinite gains and biproper functions are unknown 
and the infinite gains are mutually independent values. A property of a structured 
system is said to be generic if it is true for almost all values of the parameters, where 
'almost all' is to be understood as for all except for those in some proper algebraic 
variety of the parameter space, see [13] for further details. 

We will associate with a bipartite graph G = (U, Y, £) of the structured transfer 
matrix T. Here U = {i/i, 1-2, • • •, u>m} 1s the set of input vertices, Y = {2/1,2/2. • • •. 2/p} 
is the set of output vertices, and £ denotes the edge set defined as £={(UJ , yi)\Uj(s) ^ 
0}, where Uj is the ( i . j ) entry of T. The edges are given weights equal to the infinite 
zero order of the corresponding entry in the transfer matrix T. A matching in the 
bipartite graph G = (U, Y, £) is a subset M of the edge set £ consisting of the edges 
that pairwise do not have any vertex in common. The number of edges in a matching 
M is called the order of the matching and the weight of a matching is defined to be 
equal to the sum of the weights of the edges of which the matching consists. 
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Proposi t ion 3.1 . The generic rank of T is the order of a maximum matching in G. 

Note that the generic rank is the number of infinite zeros of structured system. 

Proposi t ion 3.2. The generic degree of the determinant of T equals —1 times the 
minimum weight of a maximum (= t) order matching in G from U to Y. 

The generic essential orders can also be given by the edge weights in the bipartite 
graph,like as the infinite structure of a structured system, [3]. 

Proposi t ion 3.3. Let T be a structured transfer matrix with generic rank t and 
G be the associated bipartite graph. The ith generic (or structured) row essential 
order is given by; 

tV = n(T).-n(r).ii 
where U(T)t is the minimun weight of a matching of order t from U to Y and 
U(T)l

t
r_l is the minimal weight of a matching of order t — \ from U to Y\{yi}. 

To get the generic column essential orders we proceed dually by deleting inputs 
instead of outputs. Also note that in case T(s) is generically invertible with generic 
rank t then, det T = X \ = 1 tijTij, where TJ;- is the cofactor of (i,j)th-entry of T(s), 
and from Propositions 3.2 and 3.3 we have that 

tie
r = — (deg detT — max, degTij) 

ior i , j e {1 ,2 , . . . , *} , (see [11]). 

4. GENERIC SOLVABILITY AND ITS GRAPH INTERPRETATION 

As mentioned before, we study structured transfer matrix systems in this paper. 
Hence we consider S and we assume that K, L, M and IV are structured transfer 
matrices. Suppose that the number of infinite gains in the matrices K, L, M and 
N is f and each infinite gain can have any real value. We then say that: 

Definition 4 .1 . PDDPM(£) for a structured system is generically solvable if it 
is solvable for all combinations of the infinite gain values except for those in some 
proper algebraic variety in R*. 

Now, assume that L is r x r and M is q x q and both are generically invertible 
matrices and write K = (kab), L = (Ua) and M = (rribj). Furthermore, we denote 
by Lia the cofactor of Ua and by Mbj the cofactor of rribj, where i, a £ {1 ,2 , . . . , r} 
and j , 6 6 { 1 , 2 , . . . , ? } . Let 

deg det L — max,- deg Lai -=: —Aa 

deg det M — maxjdeg Mjb =- -<$6 
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Aa and 6b are the so-called essential order of row a of L and column 6 of M, respec­
tively. 

Let us state the main result of this paper: 

Theorem 4.2. For the structured transfer matrix system S, under the Assump­
tion 2.3, the PDDPM(fc) is generically solvable if and only if it holds generically 
that 

degk(j < max{-(At- +6j), -(k + 1)} (10) 

for all i G {1, 2 , . . . , r} and j G {1, 2 , . . . , q}. 

P r o o f . Assume that PDDPM(Ar) is generically solvable. Then there exists a 
generically proper matrix X such that it satisfies the equation (5) generically, for 
some generically proper matrix P. Since P is known proper matrix, L and M are 
generically invertible matrices then, from Proposition 3.1 in [11] the entry Xij of the 
solution X of the equation (5) can be written explicitly as 

1 r q 1 
Xii = det L det M ^ £ Lai{kah ~ 7&Pah)Mih (11) 

a = l 6 = 1 

and, from Theorem 4.1 in [11] we have generically that 

M deg Xij = max < deg Lai + deg f kab j^jPab J + deg Mjb > -deg det L-deg det 

(12) 
for all i G {1, 2 , . . . , r} and j G {1 ,2 , . . . , q}. If xi;- / 0 , because of the properness 
of X we have that deg-c»;- < 0. Thus, from equation (12) we can write 

max I degLa i + deg f kab k+iPab ) + deg Mjb > < deg det L + deg det M (13) 

for all i G {1, 2 , . . . , r} and j G {1, 2 , . . . , q}. Then, it holds generically that 

deg ( kab - ^+TPa6 J < (deg det L - deg Lai) + (deg det M - deg M j6) (14) 

for all a, i G {1 ,2 , . . . , r} and j , 6 G {1, 2 , . . . , q} and also 

deg f kab k+iPab J < (deg det L - max,-degLai) + (deg det M - max^degMjb) 

(15) 
for all a G {1, 2 , . . . , r} and 6 G {1 ,2 , . . . , <1}. From definition of the essential orders, 
the inequality (15) can be written as 

deg í kab - ~^-[Pab) < - (A a + 66) (iб) 
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for all a £ { l , 2 , . . . , r } and b E {1,2, . . . , g } . On the other hand, it is clear that 
cleg (kab - jrrrPab) < max{deg kab) -(k + 1) + degpab}. Since pab is proper, then 

deg f kab - ^+TPa6 J < max{deg kah) -(k + 1)} (17) 

Now, consider the case 

deg í^ab-^j^Pab) = max{deg.ta Ď,-(A:+ 1)}. (18) 

If max{deg£a&, —(k + 1)} = —(k + 1) we have that 

degA: a 6 <-(A:+l ) . (19) 

So, from (16), (18) and (19) the following inequalities hold for all a E {1 ,2 , . . . , r} 
and be {1 ,2 , . . . , g} . 

deg kah < -(A: + 1) < - (A a + 6b) (20) 

When max{degfca&, — (k + 1)} = degfca6, we have —(k + 1) < degkab . Then, by 
(18) and (16) we have 

-(k + 1) < deg kab < - (A a + 6b) (21) 

for all a E {1, 2 , . . . , r} and 6 E {1, 2 , . . . , q}. The other possibility for the inequality 
(17) is 

deg f kab k+YPab) < max{deg kab) -(k + 1)}. (22) 

This would happen only if deg kab = deg jrjrPab = degpa& — (k + 1). Since pab is 
proper, then degpa& — (A: + 1) < —(k + 1) and the inequality (19) holds in this case 
too. Hence, by the inequalities (19), (20) and (21) we deduce: 

degkab < max{-(Aa + 66), -(k + 1)}. (23) 

Conversely, assume that the inequality (10) holds. If we define Xij which is of the 
form (11), for a proper pab satisfying the inequality (16) we would obtain degxtj < 0. 
Consequently, X = (x^) solves the equation (5), for P = (pab)- Hence, to prove the 
sufficiency we should define pab satisfying (16). Thus, to define pab satisfying (16), 
first let max{-(Aa + <56), -(A: + l) } = -(k + 1). Then, we have -(Aa+<56) < -(k + 1) 
and, by assumption we have also degkab < -(k + 1). Then, from the Lemma 2.4 (i) 
there exists a proper pab such that deg (kab — jrrrPab) < —(& + !)• Thus, let us 
define pab as in the following form: 

sk+1(kab-s-"ibab)=:pab (24) 

v > (Aa + 6b) (25) 

where bab is an arbitrary biproper rational function and 7 is an infinite gain of 
s~ujbab. We should note that we can also define pab as 

sk+lkab=:pab- (26) 
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Then, we obtain (kab — jjrfrPab) = s~l/jbab or zero. In both case pab is proper. If Xij 
is defined as (11) by means of pab given in (24) or (26), because of the choice of v it 
will be proper or it will be zero. Now, let max{-(Aa + 6b), — ( i + 1)} = - (A a + 6b). 
Then, we have d e g . ^ < - (A a + 6b). In this case (16) is satisfied for pab = 0. 
Besides that from the assumption we have —(k + 1) < - (A a + 6b). Then, there are 
two possibilities. These are degkab < — (k + 1) and —(k + 1) < deg£a&. The first 
case is already examined above. When —(k + 1) < deg kab , from the definition of 
the degree of a rational function, for every proper pab we have 

deg ( kah - -j^T[Pab j = deg kab- (27) 

Thus, in this case (16) is satisfied for an arbitrary proper pab> Consequently, when 
deg kab < ~(Aa + 6b) there exists a proper pab satisfying the inequality (16). • 

Remark 4.3 . The condition degkab < —(Aa + 6b) is also necessary and sufficient 
for the solution of exact disturbance decoupling problem for structured transfer 
matrix systems (see Corollary 4.5 in [11]). The solvability condition for the partial 
disturbance decoupling is weaker than this condition. As it can be shown from the 
sufficiency proof of Theorem 4.2 even if the exact disturbance decoupling problem 
for a structured transfer matrix system is not solvable, i. e. —(Aa + 6b) < deg kab by 
the suitable definition of proper matrix P it is possible to solve PDDPM(i). (See 
the sufficiency part of the theorem above when —(Aa + 6b) < deg kab < —(k + 1)). 

Remark 4.4. As we explained before A,- and 6j are the structured essential orders 
of row i of L and column j of M, respectively. But, the proper rational functions A,-
and jj in the second condition of the Theorem 4.1 in [5] correspond to infinite zero 
of ith row of L and infinite zero of jth column of M, respectively. Since the degrees 
of the infinite zeros and essential orders are different, solvability conditions of the 
partial disturbance decoupling problem for structured transfer matrix systems are 
also different from the solvability conditions of the partial disturbance decoupling 
problem for the usual transfer matrix systems. 

Remark 4.5. Internal stability for the transfer matrix systems E is equivalent to 
the stability of X, if the system matrices are taken as stable, [5]. But, even if for 
those systems the stability of X do not guarantee the stability of C. 

In the following we will express the results given in Theorem 4.2 in graph theory 

terminology: Let us denote T = ( ) and assume that the dimension of 

K,L,M and N are r x q, r x m, p x q and p x m, respectively. Then, we can 
represent the degree structure of T by means of a bipartite graph G = (V, VV, £), 
where V and W are the vertex sets, £ is the edge set. For the vertex sets, we have 
V = DUU and W = Z U Y , where D = {di, d2)... ,dq}, U = {u1} u2,..., u m } , 
Z = {z1)z2)...,Zf} and Y = {yi , ifc, . . - ,yP}. The edge set £={(dj}Zi)\kij(s) £ 
0}U{(uj)zi)\lij(s) # 0}U{(dj)yi)\mij(s) ± 0 } U { ( u i l M ) h « W * °>-
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Let r and q be the generic ranks of L and M, respectively. Let Ue
r be the ith 

generic row essential order of the subsystem from control inputs U to regulated 
outputs Z and m j e

c be the jth generic column essential order of the subsystem from 
disturbance D to measured outputs Y. Then, 

/ , / = n(L)r - n(z.)£r_. 
mje

c = iKMk-iUAOjL. 

where n(L) r is minimum weight of a matching of order r from U to Z. n(L)J.r_1 is 
the minimum weight of a matching of order r — 1 from U to Z\{z{], U(M)q is the 
minimum weight of a matching of order q from D to Y and finally U(M)J

q
c_l is the 

minimum weight of a matching of order q — 1 from IAfdj } to Y. 

Let us state the graph theoretic interpretation of the main result of this paper: 

Theorem 4.6. For the structured transfer matrix system S under the Assump­
tion 2.3, the PDDPM(£) is generically solvable if and only if the weight of the edge 
from jth disturbance to ith regulated output greater than or equal to the minimum 
of (lie

r + mje
c) and (k + 1), for all i G { l , 2 , . . . , r } and j e {1,2, ...,<?}. 

5. ALGORITHM 

1 Compute the maximum order of a matching in G from U to Z, say r. 
2 - Compute the maximum order of a matching in G from D to Y, say q. 
3 - Compute the minimum weight of a order r matching in G from U to .Z, 

say fi. 
4 - Compute the minimum weight of a order q matching in G from D to Y, 

say v. 
5 - Compute a size r-matching from U to Z with weight equal to /i. Assume 

that the matching links t/i, 1/2,. •., t/r to z\, ^2, • • •, zr. Denote by L\ the square 
matrix made up of the first r rows and columns of L. 

6 - Compute a size g-matching from D to Y with weight equal to /̂A Assume 
that the matching links d\, 0*2,..., dq to y\, 2/2, • • •, Vq • Denote by Mi the square 
matrix made up of the first q rows and columns of M. 

Note that the system Si with transfer matrices A'i, Li, Mi and N\ satisfies the 
Assumption 2.3. Here K\ denotes the matrix made up the first r rows and q columns 
of K, and N\ denotes the matrix made up the first q rows and r columns of 1V. 

7 - If r 7-. r and q ^ q, then let k* be the minimal weight of an order one 
matching in G from D to Z. If k > k* then, PDDPM(Ar) is not generically 
solvable and we can stop checking its solvability here. Otherwise, we have to 
continue. 

We must note that when r ^ r and q ^ q PDDPM(Ar) for original system with 
transfer matrices I..T, L, M and IV is generically solvable iff (i) k < k* and (ii) it is 
generically solvable for the system generated by A'i, L\y M\ and IVi. Thus, 



482 U. BA§ER 

8 - Compute the row essential orders of L\ and column essential orders of Mi 
which are the same with the row and column essential orders of L and M, 
respectively when L is of full row rank and M is of full column rank. 

9 - Apply Theorem 4.6 to the system E i . 

Example. The example below is taken from [11]. We consider a structured transfer 
matrix system E. Assume that the infinite structure of the matrices A ' ,L ,M and 
IV are given in the following matrices; 

Aк = 
' 2 • " 

. 4 , A i = 

' 1 • " 
1 2 , A м = 

" 1 3 " 
. 2 , AN = 

' • 2 ' 
1 • (28) 

The dot • in an infinite zero order matrix corresponds to an entry that is identically 
equal to zero. Infinite zero order matrices, A/r, A/,, A M and Ayy correspond to the 
matrices A', L, M and IV, respectively which are is of the form; 

(29) K(s) = 
s 2 к ц a ц ( s ) 

0 
0 

S-4K22<*22(s) 

L(s) = 
s-^Xnßnis) 
s-^ҺЉЛs) 

0 

S~2A22/?22(s) . 

M(s) = s _ 1 П i í ц ( s ) 
0 

S-3П2бi2(s) 
S~2T22б22(s) 

N(s) = 
0 

. S_ 16lí?2l(s) 
s-2ţi2mi(s) 

0 

(30) 

where /en, /c22, An, A2i, A22, n i , T12, T22> 6 2 and £21 are the unknown infinite 
gains and a n ( s ) , a220-0, /?n(5)> A-iOO, / M * ) , M 5 ) > 6i2(s), <M*), ^(s) and 
7721(5) are unknown biproper rational functions. The system with the above infinite 
zero order matrices can be represented by means of a bipartite graph as depicted 
in Figure 1. It is immediate from Figure 1 that the maximum order of a matching 
in G from U to Z is equal to 2. In fact, there is only one such matching and its 
weight is equal to 3. Also, the maximum order matching in G from D to Y is equal 
to 2. Again, there is only one matching of order 2 with weight 3. So, in terms of 
Algorithm we have r = 2,g = 2,/i = 3 and v = 3. Since the number of elements of Z 
equals r and the number of elements of D equals g, we can skip steps 5, 6 and 7 and 
compute row and column essential orders. From Figure 1, we calculate n (L ) 2 = 3, 
n(L )} r = 1, U(L)jr = 1 n ( M ) 2 = 3, U(M)\C = 2, Il(M)lc = 1 and then, we obtain 
lle

r = 3 - 1 = 2, l2e
r = 3 - 1 = 2 and mu

c = 3 - 2 = 1 , m2 e
c = 3 - 1 = 2. The 

weights of the edges (di, z\) and (c/2, z2) are 2 and 4, respectively. So, deg k\\ = —2 
and degfc22 = —4. Correspondingly, / 1 / + miec = 3 and /2 e

r + m2 e
c = 4. Since 

-deg Arn < her + ™>\ec\ then from Corollary 4.5 in [11] DDP for structured transfer 
matrix system is not solvable. When k = 1, The weights of the edges (d\, 21) and 
(d2,z2) are greater than or equal to min{(/ie

r + mi e
c ) , (k -f 1)} = min{3,2} = 2 

and min{(/2e
r + m 2 e

c) , (k + 1)} = min{4,2} = 2, respectively. As a result, from 
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Theorem 4.6 we can say that PDDPM(l) is generically solvable. Thus, to exhibit 
the solution let us define P(s) as 

P(s) = 
кn(l - ţ)cxn(s) 0 

0 s~2fлy(s) 
(31) 

where /i is the infinite gain of the corresponding entry of P(s) and 7(5) is an arbitrary 
biproper rational function. We should note that fiy(s) is a known proper function. 
Since deg^22 = —(her + ™>2ec) = —4 exact disturbance decoupling is possible on 
this channel. So, we can choose fJ.~f(s) = 0, for the simplicity in calculation. But, 
to reduce the degree of k\\ we have to choose p n which is of the same infinite gain 
with A:n and satisfying the degree condition degkn = deg -VPn- Then, the solution 
X(s) of K - LXM = 77 P, for a given P(s) in (31) is 

X(S): 

" l l " l l ( g ) 
* A 1 1 r 1 1 / 3 1 1 ( 5 ) < 5 1 1 ( s ) 

- A 2 i / 3 _ i ( a ) K 1 1 a i 1 ( j ) 

A l i r 1 1 A 2 2 / 3 i i ( a ) < S i i ( - 0 / 3 2 2 ( * ) 

- > K 1 1 a 1 1 ( 5 ) r 1 2 < 5 1 2 ( a ) 
a 2 A 1 1 r 1 1 r 2 2 / 3 1 1 ( 3 ) t 5 1 1 ( a ) < 5 2 2 ( í ) 

^ 2 l / 3 2 l ( ^ ) ^ l l Q l l ( ^ ) r 1 2 ^ l 2 ( * ) - r g K 2 2 a 2 2 ( j ) A 1 1 I 3 1 1 ( 3 ) r 1 1 t 5 1 1 ( 3 ) 

sA 1 1 r 1 1 ,Q 1 1 ( s )<5 1 1 (a )A 2 2 r 2 2 /922 (*)^22 (a ) 

which is generically proper. Since N(s) in (30) is strictly proper (I — N(s)X(s)) is 
biproper and it has a proper inverse. Hence, the compensator C(s) can be solved 
by straightforward calculations from the equation C(s) = X(s)(I — N(s)X(s))"1. 
C(s) is not presented here since, because of the parameters the expression would be 
messy. Consequently, PDDPM(l) is generically solvable for a system given in this 
example. 

u 

6. CONCLUSIONS 

Fig. 1. 

We examine the partial disturbance decoupling problem for structured transfer ma­
trix systems by dynamic output feedback and we obtain the necessary and sufficient 
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conditions for the generic solvability of this problem. The conditions are stated by 
the generic essential orders defined in terms of minimal weights of the matchings in 
a bipartite graph associated with structured transfer matrix systems. 

Stability issues are not considered in this paper. This is a subject of the further 
research. 

APPENDIX 

P r o o f of the Assumption 2.3: Suppose that L has full row rank, say r and M has 
full column rank, say q. Assume that they are not square. Also assume that after 
some column and row permutations we have 

L = L, M = 
M\ 

M2 

(33) 

with L\ being r x r and deg (det L\) equal to the maximum degree of any rth-order 

minor of L and Mi being q x q and deg (det Mi) equal to the maximum degree of 

any ath-order minor of M. Accordingly, denote A' =: I\i and N =: N\. Hence, 

there exist biproper matrices B\ and B2 such that 

LB\ = 0 B2M = 
M\ 
0 

(34) 

In order to show the result, we should prove the following claim that is "the solvabil­
ity of PDDPM(fc) for E is equivalent to the solvability of PDDPM(fc) for Ei, where 
Ei = Ei(Ai,L i ,Mi,IVi)". To prove the necessity part assume that PDDPM(fc) is 
solvable for E then there exists a proper X which satisfies the equation (5), for some 
proper matrix P. Then, by (34) we can define 

X :=[ I 0 ] B^XB, - i 
2 

which is proper. Then, we have 

A'i - L\XM\ = 
Д + i 

(35) 

(36) 

hence PDDPM(ib) is solvable for Ei . 

Conversely, assume PDDPM(fc), solvable for Ei . This implies the existence of a 

proper matrix X such that (36) holds, for some proper P. Let us define 

X = B\ 
X 0 
0 0 в2 

(37) 

which is also proper and satisfies K\ — 

Together with (34) we will obtain (5). 

L\ 0 B\ xв2 

M\ 
0 

_ 1 -p. 

(Received February 25, 1998.) 
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