Kybernetika 60 no. 1, 90-109, 2024

Distributed optimization via active disturbance rejection control: A nabla fractional design

Yikun Zeng, Yiheng Wei, Shuaiyu Zhou and Dongdong YueDOI: 10.14736/kyb-2024-1-0090

Abstract:

This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm.

Keywords:

distributed optimization, Lyapunov method, nabla fractional difference, active disturbance rejection control

Classification:

68W15, 26A33, 93D05, 93D21, 49N15

References:

  1. Y. Q. Chen, Q. Gao, Y. H. Wei and Y. Wang: Study on fractional order gradient methods. Appl. Math. Comput. 314 (2017), 310-321.   DOI:10.1016/j.amc.2017.07.023
  2. Z. Q. Chen and S. Liang: Distributed aggregative optimization with quantized communication. Kybernetika 58 (2022), 1, 123-144.   DOI:10.14736/kyb-2022-1-0123
  3. S. S. Cheng and S. Liang: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 3, 559-577.   DOI:10.14736/kyb-2020-3-0559
  4. S. S. Cheng, S. Liang and nd Y. Fan: Distributed solving {S}ylvester equations with fractional order dynamics. Control Theory and Technology 19 (2021), 2, 249-259.   DOI:10.1007/s11768-021-00044-0
  5. C. Ding, R. Wei and F. Liu: Prescribed-time distributed optimization for time-varying objective functions: a perspective from time-domain transformation. J. Franklin Inst. 359 (2021), 17, 10,267-10,280.   DOI:10.1016/j.jfranklin.2022.09.047
  6. S. Q. Duan, S. Chen and Z. L. Zhao: Active disturbance rejection distributed optimization algorithm for first order multi-agent disturbance systems. Control and Decision 37 (2022), 3, 1559-1566.   CrossRef
  7. B. Gharesifard and J. Cortés: Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 3, 781-786.   DOI:10.1109/TAC.2013.2278132
  8. C. Goodrich and A. C. Peterson: Discrete Fractional Calculus. Springer, Cham 2015.   CrossRef
  9. G. Guo, R. Y. K. Zhang and I. D. Zhou: A local-minimization-free zero-gradient-sum algorithm for distributed optimization. Automatica 157 (2023), 111,247.   DOI:10.1016/j.automatica.2023.111247
  10. J. Q. Han: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906.   DOI:10.1109/TIE.2008.2011621
  11. X. L. Hong, Y. H. Wei, S. Y. Zhou and D. D. Yue: Nabla fractional distributed optimization algorithms over undirected/directed graphs. J. Franklin Inst. 361 (2024), 3, 1436-1454.   DOI:10.1016/j.jfranklin.2024.01.013
  12. X. L. Hong, Y. H. Wei, S., Y. Zhou, D. D. Yue and J. D. Cao: Nabla fractional distributed optimization algorithm over unbalanced graphs. IEEE Control Systems Lett. 8 (2024), 241-246.   DOI:10.1109/LCSYS.2024.3367917
  13. S. S. Kia, J. Cortés, J. and S. Martínez: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica 55 (2015), 254-264.   DOI:10.1016/j.automatica.2015.03.001
  14. C. Y. Liu, X. H. Dou, Y. Fan and S. S. Cheng: A penalty ADMM with quantized communication for distributed optimization over multi-agent systems. Kybernetika 59 (2023), 3, 392-417.   DOI:10.14736/kyb-2023-3-0392
  15. Y. F. Pu, J. L. Zhou, Y. Zhang, N. Zhang, G. Huang and P. Siarry: Fractional extreme value adaptive training method: fractional steepest descent approach. IEEE Trans. Neural Networks Learning Systems 26 (2015), 4, 653-662.   DOI:10.1109/tnnls.2013.2286175
  16. C. X. Song, S. T. Qin and Z. G. Zeng: Multiple Mittag-Leffler stability of almost periodic solutions for fractional-order delayed neural networks: Distributed optimization approach. IEEE Trans. Neural Networks Learning Systems (2023).   DOI:10.1109/tnnls.2023.3328307
  17. J. Wang and N. Elia: Control approach to distributed optimization. In: The 48th Annual Allerton Conference on Communication, Control, and Computing, Monticello 2010, pp. 557-561.   CrossRef
  18. K. Wang, P. Gong and Z. Y. Ma: Fixed-time distributed time-varying optimization for nonlinear fractional-order multiagent systems with unbalanced digraphs. Fractal and Fractional 7 (2023), 11, 813.   DOI:10.3390/fractalfract7110813
  19. Y. Wang and Y. Song: Leader-following control of high-order multi-agent systems under directed graphs: pre-specified finite time approach. Automatica 87 (2018), 113-120.   DOI:10.1016/j.automatica.2017.09.017
  20. Y. J. Wang, Y. D. Song, D. J., Hill and M. Krstic: Prescribed-time consensus and containment control of networked multiagent systems. IEEE Trans. Cybernet. 49 (2019), 4, 1138-1147.   DOI:10.1109/TCYB.2017.2788874
  21. Y. H. Wei: Lyapunov stability theory for nonlinear nabla fractional order systems. IEEE Trans. Circuits Systems II: Express Briefs 68 (2021), 10, 3246-3250.   DOI:10.1109/TCSII.2021.3063914
  22. Y. H. Wei: Nabla Fractional Order Systems Theory: Analysis and Control. Science Press, Beijing 2023.   CrossRef
  23. Y. H. Wei, Y. Q. Chen, T. Y. Liu and Y. Wang: Lyapunov functions for nabla discrete fractional order systems. ISA Trans. 88 (2019), 82-90.   DOI:10.1016/j.isatra.2018.12.016
  24. Y. H. Wei, Y. Q. Chen, X. Zhao and J. D. Cao: Analysis and synthesis of gradient algorithms based on fractional-order system theory. IEEE Trans. Systems Man Cybernet.: Systems 53 (2023), 3, 1895-1906.   DOI:10.1109/TSMC.2022.3206874
  25. Y. H. Wei, Y. Kang, W. D. Yin and Y. Wang: Generalization of the gradient method with fractional order gradient direction. J. Franklin Inst. 357 (2020), 4, 2514-2532.   DOI:10.1016/j.jfranklin.2020.01.008
  26. Y. Xu, T. Han, K. Cai, Z. Lin, G, Yan and M. Fu: A distributed algorithm for resource allocation over dynamic digraphs. IEEE Trans. Signal Process.65 (2017), 10, 2600-2612.   DOI:10.1109/TSP.2017.2669896
  27. X. J. Yang, W. M. Zhao, J. X. Yuan, T. Chen, C. Zhang and L. Q. Wang: Distributed optimization for fractional-order multi-agent systems based on adaptive backstepping dynamic surface control technology. Fractal and Fractional 6 (2022), 11, 642.   DOI:10.3390/fractalfract6110642
  28. X. L. Yang, J. X. Yuan, T. Chen and H. Yang: Distributed adaptive optimization algorithm for fractional high-order multiagent systems based on event-triggered strategy and input quantization. Fractal and Fractional 7 (2023), 10, 749.   DOI:10.3390/fractalfract7100749
  29. Y. N. Zhu: Research on Solving Network Distributed Optimization Problem Using Continuous-time Algorithms. Ph D. Thesis, Southeast University, Nanjing 2019.} \enlargethispage{5mm   CrossRef