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INTERPRETABLE RANDOM FOREST MODEL FOR
IDENTIFICATION OF EDGE 3-UNCOLORABLE CUBIC
GRAPHS

Adam Dudáš and Bianka Modrovičová

Random forest is an ensemble method of machine learning that reaches a high level of
accuracy in decision-making but is difficult to understand from the point of view of interpreting
local or global decisions. In the article, we use this method as a means to analyze the edge 3-
colorability of cubic graphs and to find the properties of the graphs that affect it most strongly.
The main contributions of the presented research are four original datasets suitable for machine
learning methods, a random forest model that achieves 97.35% accuracy in distinguishing edge
3-colorable and edge 3-uncolorable cubic graphs, and the identification of crucial features of
graph samples from the point of view of its edge colorability using Shapley values.
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1. INTRODUCTION

Proper edge 3-coloring of a cubic graph is an NP-complete problem, which consists of
assigning colors to the edges of the cubic graph in such a way that none of the vertices
of the graph is incident to two edges colored with the use of the same color. From the
point of view of edge coloring of a cubic graph, we can distinguish two groups of graphs –
standard edge 3-colorable cubic graphs and snarks, or edge 3-uncolorable cubic graphs.
The research presented in this article is focused on searching for properties and design
of methods, which could be used to identify the number of colors needed to edge color
a graph more effectively. Since the random forest method used in this article reaches a
high level of accuracy in classification but is hard to interpret, we aim to use techniques
of explainable artificial intelligence in order to understand how the model classifies the
graphs into considered classes.

Graph coloring can be used in order to model several interesting practical problems.
When compiling code from a high-level source language to machine-interpretable in-
structions, a method for correct and efficient assigning of variables used in the program
to registers of the system can be carried out through the solution of graph coloring prob-
lem [3]. Scheduling problems such as scheduling of planes to flights during specified time
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intervals without overlap, scheduling of a set of tasks to a set of processors while each
task has to be executed on number of processors simultaneously or frequency assignment
of radio stations without interferences are all typical instances of problem modeled by
graph coloring [9].

The presented research contains a novel approach to the solution of the edge 3-coloring
problem with the use of machine learning models. The contribution of the article can
be summarized as follows:

• Presentation of graph property datasets usable in any machine learning model.
This type of dataset is for the moment unique to our approach.

• Building of model based on interpretable random forest method which uses created
datasets in order to classify input graph sets into one of two considered classes –
properly edge 3-colorable graphs or improperly edge 3-colorable graphs.

• Evaluation of the model on the basis of its classification accuracy, precision, and
interpretability of the decisions made. The interpretability of the model is impor-
tant from the point of view of identification of properties that are significant in
the context of graph edge coloring. If these properties can be computed in lower
time complexity than edge coloring itself, we can obtain the edge colorability of
the graph in a lower time.

In addition to the presentation of the problem of proper edge 3-coloring of cubic
graphs and a brief overview of related works, which are both described in other subsec-
tions of this section, the presented work contains three chapters. Section 2 is focused on
the description of the created graph property datasets, the tools used for data collection
and computation of graph properties, and the specification of the interpretable model
that uses the random forest approach in order to classify graphs into two categories
based on their edge 3-colorability. The following section contains the evaluation of the
model for graph classification, while we focus on the evaluation from the point of view
of the prediction quality of the model and the interpretation of decisions made by the
model. In the Conclusion section, we summarize the findings presented in the article,
describe the strengths and weaknesses of the work, and offer several other directions for
the development of research in the given area.

1.1. Edge coloring of cubic graphs

Graph G is described as pair of sets V (vertices) and E (edges) while [2]

G = (V,E), E ⊆ V 2.

We refer to the graph G as cubic if each of the vertices of G is incident to exactly
three edges – every vertex is of degree equal to 3.

The edge coloring of a graph is a problem consisting of assigning colors to the edges
of the graph. This coloring is called proper, in the case there is one instance of each
color incident to every vertex, which makes such coloring an instance of an NP-complete
problem. Figure 1 presents an example of edge coloring of the smallest cubic graph (K4)
which is properly edge 3-colorable (the left side of the figure) in comparison with the
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graph (right side of the figure). As can be seen in Figure 1, there is coloring confPetersen
graph, which is the smallest known instance of edge 3-uncolorable cubic lict solved with
the use of the fourth edge color (twodased line).

Fig. 1. Example of smallest cubic graph colored properly (L), and

smallest know edge 3-uncolorable cubic graph (R).

Vizing’s theorem [17] for graph G is formulated as

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

where χ′(G) is the so-called chromatic index of the graph G (minimal number of colors
needed in order to properly edge color the graph G) and ∆(G) is the maximum degree
of the graph G. From the point of view of this theorem, we consider two possibilities for
edge coloring of cubic graphs – either with the use of three colors or edge coloring using
four colors.

Therefore, there are two considered classes of cubic graphs from the point of view of
edge 3-coloring:

• Standard cubic graphs, where ∆(G) = 3 and χ′(G) = 3.

• Snarks or edge 3-uncolorable cubic graphs, where ∆(G) = 3 but χ′(G) = 4.

1.2. Previous approaches to graph coloring

Over the years of research focused on the edge colorability of cubic graphs, several
algorithms and optimizations of already existing algorithms have been proposed. The
most basic approach to determining the edge colorability of a cubic graph is the naive
backtracking algorithm, which works on the principle of the gradual coloring of the edges
of the graph with a predetermined sequence of three colors. When the algorithm finds
a contradiction in the coloring of the graph, it returns to the previous edge, which is
recolored and the algorithm continues with the next coloring of the graph. If neither of
the possible colorings of the problematic edge is proper, the algorithm returns to the edge
preceding both recolored edges. The algorithm continues this procedure until the entire
graph is properly edge colored or until the algorithm goes through all the possibilities
of coloring the graph. The time complexity of edge backtracking is O(2|E(G)|), where
|E(G)| is the number of edges in graph G.

Kowalik [8] proposed an optimization of older existing algorithms. The time complex-
ity of the edge coloring using Kowalik’s EdgeColor algorithm is O(20.427|V (G)|), where
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|V (G)| denotes the number of vertices of the colored graph G. The algorithm itself
consists of EdgeColor, FittingMatching, and SetSwitches procedures while using the
approach of generating inclusionmaximum matchings of the graph.

Our previous work [6] examines the possibilities of increasing the efficiency of the
computation of proper edge k−coloring of cubic graphs with the use of machine learning
methods. The main focus of the research is the use of a machine learning model of
decision trees for the problem of identification of properly edge 3-uncolorable graphs
(snarks) while reaching an average accuracy of 93 %. In the presented work, we build on
these results with the objective of increasing the accuracy and precision of the binary
classification of cubic graphs.

30 vertex 32 vertex 34 vertex 36 vertex
Min Max Min Max Min Max Min Max

Clique
number

2 3 2 3 2 2 2 2

Diameter 4 10 5 11 4 11 5 8
Edge
connectivity

1 3 1 3 2 4 3 3

Matching
number

14 15 15 16 17 17 18 18

Planar 0 0 0 0 0 1 0 0
Radius 3 8 4 7 4 8 4 6
Vertex
connectivity

2 3 1 3 2 3 3 3

Largest
L-eigenvalue

5,36 6 5,48 6 5,42 5,97 5,41 5,84

Second largest
Eigenvalue

2,18 2.96 2,24 2,96 2,20 2,95 2,27 2,91

Smallest
Eigenvalue

-3 -2 -3 -2,48 -2,86 -2,42 -2,84 -2,41

Laplacian
spectrum

0,043 0,82 0,04 0,76 0,05 0,79 0,19 0,61

Chromatic
number

3 3 3 4 3 3 3 3

Girth 3 7 3 6 4 7 5 7
Group size 1 3 1 4 1 384 1 2
Domination
number

8 10 8 10 9 10 10 11

Independence
number

10 15 13 16 14 16 15 17

Chromatic
index

3 4 3 4 3 4 3 4

Tab. 1. Description of the range of measured graph property values.
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2. MODEL FOR GRAPH CLASSIFICATION

Random forest is an ensemble method of machine learning, whose decision-making pro-
cess consists of partial decisions of the decision trees forming this forest. When creating
a random forest, a defined number of decision tree classifiers is created on subsets of the
input data, which take care to preserve the principles of balance and purity of each tree.
Every tree in the forest classifies the input data into one of the considered categories,
while the final decision of the random forest is an aggregation of these decisions using a
voting mechanism [5].

Since the random forest method exchanges the interpretability of a single decision
tree for a high level of accuracy in decision-making, the local or global decisions of the
model need to be interpreted through other devices [10].

This section of the article focuses on:

• description of graph property datasets for the random forest model and their col-
lection using selected graph portals and software tools,

• description of the model that uses interpretable random forest methods to classify
the created graph data into considered categories.

2.1. Graph datasets created for the model

Data suitable for the needs of building machine learning models, which are focused on
working with graph properties, are not available. However, without such datasets, it
is not possible for the model to learn to distinguish between the types of cubic graphs
we are considering. Therefore, the first part of this work is focused on a collection of
datasets that are created for this specialized purpose.

As the main source of data for interesting graphs (snarks and some of the standard
cubic graphs), we used the House of Graphs portal [4]. However, the portal does not
list the properties of the graphs in a consistent format, and, above all, it does not contain
a sufficient number of standard cubic graphs that met our criteria. Therefore, we used
the software tools graphFilter [7] and SageMath [14] to compute some graph properties
and generate number of cubic graphs.

The presented datasets are structurally defined as follows:

• We have created four datasets containing measurements of properties of cubic
graphs. These datasets differ from each other only based on the size of the graphs
– we distinguish dataset for 30 vertex cubic graphs, dataset for 32 vertex cubic
graphs, dataset for 34 vertex cubic graphs, and dataset for 36 vertex cubic graphs.

• Each of the created datasets contains the measurement of 27 graph properties. We
can divide these properties into two basic groups:

– Consistent properties usable in the identification of the basic properties of
the graph, which are not usable in the actions associated with the proposed
random forest model directly. There are 10 of these properties, such as the
number of vertices of the graph, the number of edges of the graph, the density
of the graph, the number of triangles in the graph, the average degree of the
graph, and so on.



812 A. DUDÁŠ AND B. MODROVIČOVÁ

– Properties whose values range in certain intervals (see Table 1). These prop-
erties represent features for the decision-making process of random forest.
There are 17 of these properties, our datasets contain measurements of [6]:

∗ The clique number of a graph is the size of the largest complete graph
that can be constructed out of the input graph.

∗ Diameter of a graph denotes the length (number of edges) of the longest
path in this graph.

∗ Edge connectivity of a graph is the minimum number of edges, which can
be deleted in such a way, that the graph is disconnected into more than
one component.

∗ Matching number of a graph is number of edges that do not share a set
of common vertices.

∗ Any input graph is planar in the case, we can visualize the graph on a
plane without any edge, vertex or other graph component crossing each
other. This property of a graph is called planarity.

∗ Radius of a graph is the minimum graph eccentricity of any graph vertex
in a graph. Such eccentricity of graph vertex is measured as the maximal
number of edges between the vertex and any other vertex of the graph.

∗ Vertex connectivity of a graph denotes the smallest number of vertices,
the dropping of which causes the input graph to be disconnected into
several components (discrete subgraphs).

∗ Since a graph consisting of n vertices is commonly represented as a matrix
A = n × n called adjacency matrix, we are able to measure eigenvalues
of the adjacency matrix of a graph as one of the graph’s properties. In
this study, the largest, second largest and smallest eigenvalues of the
adjacency matrix are considered.

∗ Laplacian spectrum or algebraic connectivity of a graph is the second
smallest eigenvalue of Laplacian matrix L for the input graph computed
as L = D − A, where A is the adjacency matrix of a graph and D is a
diagonal matrix containing degree of the vertex i on each position Di,i.

∗ The chromatic number of a graph is the minimal number of colors needed
for the proper coloring of its vertices.

∗ Girth of a graph is the number of edges contained in the shortest cycle
(in the case of the existence of cycles) of the graph.

∗ The group size of a graph is the size of the automorphism class for the
given graph.

∗ Domination number of a graph with the value of n is the smallest set
of vertices, where every vertex not in the set, is adjacent to at least n
vertices of the set.

∗ The independence number of a graph is number of an independent set of
vertices in the graph. Vertices are independent in the case they do not
share common edges.

∗ Chromatic index of a graph denotes the minimal number of colors needed
in order to color the edges of the graph properly. This property is the
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key to defining whether the cubic graph is a snark (chromatic index of
4) or standard cubic graph (chromatic index of 3) and serves as a class
labelling for the approach used in this work.

• Each dataset consists of 500 cubic graphs while maintaining an even ratio between
standard cubic graphs and snarks – 250 graphs for each class.

Since the work is focused on building a machine learning model of random forest, in
Tables 2 – 5 we present the values of the prediction potential of the created datasets
measured by Pearson and Spearman rank correlation coefficients.

Pearson correlation coefficient is focused on the linear prediction of values and the
relationship between attributes A and B. In this case, the chromatic index of a graph
is considered one of the attributes and the relationship with other graph properties is
measured as follows [11]:

r(A,B) =

∑n
i=1(Ai − µ(A))(Bi − µ(B))√∑n

i=1(Ai − µ(A))2
√∑n

i=1(Bi − µ(B))2
(1)

where µ(A) is the mean of attribute A, similarly µ(B) is the mean value of attribute B,
and n is the number of records in dataset.

The correlation analysis methods for datasets containing non-linear relationships are
necessitated by so-called rank methods, from which, the most representative is the Spear-
man rank correlation coefficient. This method is based on creating a ranking of indi-
vidual attribute values for its functionality and therefore, we measure the monotonicity
of the values within the attribute. Spearman rank correlation coefficient is computed
as [1]:

ρ = 1− 6
∑

(rank(Ai)− rank(Bi))
2

n(n2 − 1)
(2)

where Ai and Bi are considered attributes of the dataset and n is the number of mea-
surements of these attributes in the dataset.

In the tables, we list only the five highest values of correlation coefficients for each of
the datasets.

In the presented tables, we can observe that the datasets containing 30 and 32 vertex
graphs do not have any significant linear or non-linear prediction potential. In datasets
of graphs with 34 and 36 vertices, we can observe stronger relationships between several
graph properties and the chromatic number of graph.

This feature can be typical for the entire population of cubic graphs, but it can also
be present only in the created sample. In further research, it is necessary to verify the
connection between the prediction potential of graph property data and the chromatic
index of the graph.
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Pearson correlation χ′

Clique number 0.48117262
Laplacian spectrum -0.45993645
Second Largest Eigenvalue 0.45808661
Girth -0.37773186
Edge connectivity -0.30008138
Spearman rank correlation χ′

Clique number 0.48117262
Laplacian spectrum -0.34818507
Second Largest Eigenvalue 0.34753374
Diameter 0.3214077
Girth -0.30625721

Tab. 2. Correlation analysis for 30 vertex graph property dataset.

Pearson correlation χ′

Smallest eigenvalue 0.6471203
Largest L eigenvalue -0.6450505
Girth 0.4261262
Edge connectivity -0.3610132
Vertex connectivity -0.3610132
Spearman rank correlation χ′

Smallest eigenvalue 0.64680637
Largest L eigenvalue -0.64561929
Girth 0.4621975
Edge connectivity -0.38287723
Vertex connectivity -0.38287723

Tab. 3. Correlation analysis for 32 vertex graph property dataset.

2.2. Model specification

After creating graph property datasets suitable for the needs of machine learning models,
it is necessary to build a system that will be able to find patterns and properties in
considered groups of cubic graphs. In this work, we focus on the use of an interpretable
random forest model in order to classify the graph data.

Therefore, the proposed system consists of three main parts as shown in Figure 2:

• The input for the proposed model is the set of datasets described in Section 2.1,
which are randomly divided into two data subsets – training data, on which the
random forest model is learned, and testing data, which are used to evaluate the
quality of the predictions of the created model. The ratio of the distribution of
input data to the training and testing subset is 80 % to 20 %.
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Pearson correlation χ′

Girth -0.95468871
Second Largest Eigenvalue 0.95213809
Laplacian spectrum -0.95070542
Diameter 0.81449956
Vertex connectivity -0.78006313
Spearman rank correlation χ′

Girth -0.93733609
Group size 0.89698202
Diameter 0.87716856
Second Largest Eigenvalue 0.85811785
Laplacian spectrum -0.85280021

Tab. 4. Correlation analysis for 34 vertex graph property dataset.

Pearson correlation χ′

Girth -0.97644237
Laplacian spectrum -0.91334022
Second Largest Eigenvalue 0.829689
Diameter 0.76745437
Smallest eigenvalue 0.7447873
Spearman rank correlation χ′

Girth -0.97644237
Laplacian spectrum -0.85498749
Second Largest Eigenvalue 0.81567458
Diameter 0.79008435
Smallest eigenvalue 0.77449781

Tab. 5. Correlation analysis for 36 vertex graph property dataset.

• Both subsets of the input data are subsequently used in the classification module
of the system. This module is based on a random forest classifier consisting of
50 decision trees – the number of decision trees was detected heuristically, based
on the accuracy of classification of the graphs into the considered classes. The
output of this module is the classification of the input graph into one of two
classes – properly edge 3-colorable graphs (standard cubic graphs) or properly
edge 3-uncolorable cubic graphs (snarks).

• Since the random forest model achieves a high accuracy of classification but the
interpretability of its decisions is very complex, the proposed model includes an
interpretation module. This interpretation of the decision-making process is per-
formed based on the analysis of the contribution of individual graph properties to
the final classification result. For these needs, we use the evaluation of individual
features using Shapley values.
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Fig. 2. Schema of interpretable random forest model for binary

classification of cubic graphs based on edge colorability

3. EVALUATION OF A MODEL FOR GRAPH CLASSIFICATION

In this part of the article, we focus on evaluating the quality of the model from two
perspectives:

• Evaluation of prediction quality of the created model – to measure the quality of
random forest model predictions, we use two standard metrics – model accuracy
and model precision.

• Interpretation of decisions made by the created model – to interpret the inner
workings of the model, we consider Shapley values with the use of the Shapley
Additive Explanations method.

3.1. Evaluation of prediction quality

In order to evaluate the decision-making quality of the created random forest model,
we measured the classification accuracy and precision for each of the used datasets. By
accuracy we denote the decision-making quality of the model as a whole – we measure
the closeness of the predicted value to the real value of the feature [12]. In our case, this
means that under accuracy we will understand the number of correctly identified edge 3-
colorable cubic graphs and edge 3-uncolorable graphs in proportion to all decisions of the
model. Precision refers to the ability of the created classification model to identify only
the relevant entities [12]. In our case, we are considering the correctness of identifying
the graph as edge 3-colorable and the correctness of identifying the graph as edge 3-
uncolorable.

For us to be able to compute the accuracy and precision of the random forest model,
we need to compile confusion matrices for all graph datasets. In Table 6, we present
all four confusion matrices for the created model – the value False indicates a standard
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cubic graph (properly edge 3-colorable cubic graph) and the value True indicates snark
(properly edge 3-uncolorable cubic graph).

30 vertex 32 vertex 34 vertex 36 vertex
Predicted value False True False True False True False True

False 68 2 64 7 80 0 79 1
True 1 79 4 76 1 70 0 70

Tab. 6. Confusion matrices for the created random forest model

containing 50 trees.

Accuracy is computed on the basis of the confusion matrix for each dataset as follows:

accuracyS =
tn + tp

tn + tp + fp + fn

where S is the number of vertices of graphs in the dataset, tn is the number of true
negative samples, tp is the number of true positive samples, fp is the number of falsely
positive samples and fn is the number of false negative samples.

The created random forest containing 50 decision trees reached average accuracy of
binary classification equal to 97.35 %. The accuracy measured on individual datasets
was:

accuracy30 = 98 %
accuracy32 = 92.72 %
accuracy34 = 99.34 %
accuracy36 = 99.34 %

Compared to previous research in the given area [6], this is an improvement of the
average accuracy of classification by 4.35 %. Similar to the accuracy, the precision of the
model is computed from the values of confusion matrices as follows:

precisionS(C) =
tp

tp + tn

where S is the number of vertices of graphs in the used dataset, C is considered class
(in our case standard cubic graph or snark), tp is the number of true positive samples
and tn is the number of true negative samples.

Random forest created in the presented research reached the following precision of
classification:

precision30(standard) = 97.14 %, precision30(snark) = 98.75 %
precision32(standard) = 90.15 %, precision32(snark) = 95 %
precision34(standard) = 100 %, precision34(snark) = 98.59 %
precision36(standard) = 98.75 %, precision36(snark) = 100 %

With the average precision of the model equal to 97.3 %.

3.2. Interpretation of decision making

To interpret the decisions of the created model, we use Shapley values through the
Shapley Additive Explanations technique. This method measures how individual graph



818 A. DUDÁŠ AND B. MODROVIČOVÁ

properties or sets of graph properties contribute to the overall quality of the created
random forest model.

Even though the Shapley values are a technique of local interpretation of the model,
by correct aggregation, we get a usable global interpretation of the model’s decisions.
The Shapley value φ for the i-th graph property (feature) is computed as [5, 10]:

φi(f, x) =
∑
z′⊆x′

|z′|(M − |z′| − 1)!

M !
[fx(z′)− fx(z′\i)]

where x is the specific graph considered by the model, f is the created random forest
model, z′ is the subset of features whose contribution to the decision is measured, x′ is
the simplified form of the graph x (sum of its’ features) and M is the number of graph
properties active in the used model.

Fig. 3. Visualization of Shapley values for the set of 30 vertex cubic

graphs.



Interpretable random forest for edge 3-uncolorable cubic graphs 819

With the use of Shapley values, we can measure the average contribution of a graph
property value to the prediction in various combinations of features. For the set of 30
vertex graphs, the five properties most important from this point of view are (Figure 3):

• Clique number – Shapley values for this property form two groups. Low clique
number values bring a weak negative contribution to the decision-making model
(Shapley values between -0.05 and -0.2), while high values of this property con-
tribute positively towards the decisions, even though their Shapley values are scat-
tered.

• Girth of a graph – the situation with Shapley values is slightly more complex for
the girth of a graph. From Figure 3 we can observe that the extremes of the value
interval of this property contribute negatively towards the quality of the decision,
but values near the average contribute positively.

• Independence number – with the values of this graph property, we see similar
behavior as with clique number. The difference is that in the case of independence
number, low values of the property are scattered more and the higher values are
grouped in two clusters near the 0 Shapley value.

• Second largest eigenvalue of the adjacency matrix of a graph – the values of this
property are – again – divided into two groups. Large and average values of the
second largest eigenvalue of the adjacency matrix of a graph reach slightly positive
Shapley values, while low values of the property represent low Shapley values.

• Laplacian spectrum – the situation with the Laplacian spectrum is reversed com-
pared to the previous property – high values of the Laplacian spectrum are reflected
in low Shapley values, and other values of the property are slightly positive.

Figure 4 presents a visualization of Shapley values for the set of 32 vertex graphs.
The most crucial decision-making properties of the set are:

• Smallest eigenvalue of the adjacency matrix of a graph – when making decisions in
this data sample we see the growing ambiguity of Shapley values. For the smallest
eigenvalue of the adjacency matrix of a graph, we can observe that low values of the
property bring negative Shapley values, high values of the property mean positive
Shapley values, while the average values of the property are scattered throughout
the interval.

• Girth of a graph – in the created model, the girth of a graph appears in the
following way: high values of the property are scattered in the interval of positive
Shapley values, and low values of girth reach negative or near-to-zero Shapley
values.

• Largest L-eigenvalue of the adjacency matrix of a graph – high values of this
property bring negative Shapley values, low values of the property reach positive
Shapley values, and average values of Largest L-eigenvalue of the adjacency matrix
of a graph are mostly slightly positive with outliers in negative.
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Fig. 4. Visualization of Shapley values for the set of 32 vertex cubic

graphs.

• Independence number – with Shapley values of independence number we can see a
clear separation of two groups of values. High property values are grouped on the
positive side, and low independence number values are scattered on the negative
side.

• Second largest eigenvalue of the adjacency matrix of a graph – Shapley values of
this property are highly ambiguous. Average values of the property bring mostly
negative Shaley values for the model, the rest of the values is scattered in the
interval.

In Figure 5 we can see a slight diminution of ambiguity of Shapley values for a set
of 34 vertex graphs compared to the previous set of graphs. The 5 most important
properties of graphs are similar to the previous two cases:

• Girth of a graph – we can observe that the high values of the girth of a graph
contribute negatively towards the quality of the decision, while low values and
values near the average contribute positively.

• Laplacian spectrum – there is a clear separation of Shapley values for the Laplacian
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Fig. 5. Visualization of Shapley values for the set of 34 vertex cubic

graphs.

spectrum. High values of the Laplacian spectrum are reflected in low Shapley
values and vice versa. There are some outliers present on the positive side of the
interval.

• Second largest eigenvalue of the adjacency matrix of a graph – similar to the
Laplacian spectrum, for the second largest eigenvalue of the adjacency matrix of
a graph we can observe a clear separation of Shapley values. High values of the
property bring positive Shapley values, low values of the property bring negative
Shapley values and both are scattered throughout the interval on their respective
side. Similar to the previous cases, we can see a small number of outliers.

• Group size – in the created model, the Shapley values of group size form close to
0. Most of the low feature values are in the interval from 0 to -0.05, other low
group size numbers are mixed with high values of the property and reach positive
Shapley values.

• Edge connectivity of a graph – this graph property contributes low decision-making
values to the model. From Figure 5 we see that the edge connectivity of a graph
reaches lower Shapley values for high connectivity and higher Shapley values for
the low value of this property.
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Fig. 6. Visualization of Shapley values for the set of 36 vertex cubic

graphs.

The last considered dataset consists of cubic graphs with 36 vertices. Figure 6 presents
the Shapley values for graph properties used in the decision-making process, the most
important of which are:

• Girth of a graph – the first of the properties essential for decision-making of the
created model is the girth of a graph. The Shapley values of this property form
two separate groups, with high girth values reaching negative Shapley values and
low property values being reflected in higher Shapley values. We can see a few
outliers scattered among the two main groups of values.

• Laplacian spectrum – with this property, we can observe behavior similar to the
girth of a graph, but with a much less pronounced separation of Shapley values.
Low values of the Laplacian spectrum are also mixed with average values in the
positive Shapley values.

• Second largest eigenvalue of the adjacency matrix of a graph – the Shapley values
for this property are reversed compared to the previous two cases. High and
average values of the property contribute positive Shapley values, while low values
of the second largest eigenvalue of the adjacency matrix of a graph reach lower
Shaley values.
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• Diameter of a graph – the Shapley values of the diameter of a graph behave very
similarly to the previous property with the exception of slightly negative Shapley
values for some of the average diameter values.

• Smallest eigenvalue of the adjacency matrix of a graph – the Shapley values of
this property are grouped close to 0, with low values of property achieving lower
Shapley values and high values of the smallest eigenvalue of the adjacency matrix
of a graph yielding higher Shapley values. Average values are scattered in this
interval.

4. CONCLUSION

The presented research points to the possibility of applying prediction analysis tech-
niques to the precise estimation of graph property values. Since most of the algorithms
that are used in the measurement of graph properties do not use data mining meth-
ods, the potential of prediction analysis described in this article can be used in the
optimization of the measurement of graph property values.

In the work, we show the application of interpretable random forests, which use
several graph properties in order to classify cubic graphs into edge 3-colorable or edge
3-uncolorable sets. The approach achieves an average accuracy of classification equal
to 97.35 %. Table 7 contains the time complexity of computation of various properties
which reached the highest Shapley values in the described decision-making process and
their comparison to the time complexity of standard edge coloring algorithms presented
in [8, 13, 16]. As can be seen in this table, all used properties can be computed in a
lower time complexity compared to an edge coloring of a graph.

Graph property Time complexity
Eigenvalues of graph O(V )

Diameter of graph O(V
√
E)

Girth, Radius, Matching number of graph O(V E)

Edge connectivity of graph O(E + k2V ln(V
k ) for k edges

Edge coloring – naive backtracking O(2|E(G)|)

Edge coloring – Beigel & Eppstein O(2
|V (G)

2 )

Edge coloring – Kowalik O(20.427|V (G)|)

Tab. 7. Time complexity of graph property computations.

In a dataset containing 30 vertex graphs, the graph property of clique number reached
the highest Shapley values. The computation of this property represents – just like edge
3-coloring of the graph – an NP-complete problem. If we do not take this feature into
account during classification, we can build a random forest classifier that achieves the
results described in Table 8.

The accuracy of the model for 30 vertex cubic graphs after the exclusion of clique
number from the dataset is 89.34 %, the precision of the standard cubic graph classi-
fication is 88.57 %, and the precision of the snark classification is 90 % with an overall



824 A. DUDÁŠ AND B. MODROVIČOVÁ

False True
False 62 8
True 8 72

Tab. 8. Confusion matrix for random forest model built on 30 vertex

cubic graph dataset without clique number property.

precision of the model equal to 89.29 %. The ambiguity of Shapley values, which was
present in previous measurements, is also reflected in this sample. All graph properties
that reached high Shapley values are scattered in the considered interval. The distribu-
tion of Shapley values of this model is presented in Figure 7.

Fig. 7. Visualization of Shapley values for the set of 30 vertex cubic

graphs without graph properties with high time complexity.

Graph properties, which were most influential for the decision-making process were
the girth of a graph, the Laplacian spectrum of a graph and the eigenvalues of the
adjacency matrix of a graph. The authors of [15, 18] specify these properties as having a
relationship with the chromatic index for certain groups of graphs – most of which specify
bounds on the chromatic index in relationship with one of the influential properties. The
novelty of the findings of the presented study lies in the combination of these bounds
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with the use of machine learning models in order to find deeper relationships between
the cubic graph properties. As mentioned before, in further research, it is necessary to
verify the connection between the prediction potential of graph property values and the
chromatic index of the graph, and the way this potential behaves with the growing size
of graphs.

Other future work in the research area is inspired by the fact that achieved results
are measured on a relatively small sample of data. Therefore it is necessary to create
similar graph datasets in the size of millions of graphs in the future.

The last of the objectives of future work is the design and implementation of an
interpretable neural network for binary classification of larger sets of cubic graphs with
the aim of increasing the accuracy and precision of the classification.
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