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DISTRIBUTED NASH EQUILIBRIUM TRACKING VIA THE
ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Ji Ma, Zheng Yang and Ziqin Chen

Nash equilibrium is recognized as an important solution concept in non-cooperative game
theory due to its broad applicability to economics, social sciences, computer science, and engi-
neering. In view of its importance, substantial progress has been made to seek a static Nash
equilibrium using distributed methods. However, these approaches are inapplicable in dynamic
environments because, in this setting, the Nash equilibrium constantly changes over time. In
this paper, we propose a dynamic algorithm that can track the time-varying Nash equilibrium
in a non-cooperative game. Our approach enables each player to update its action using an
alternating direction method of multipliers while ensuring this estimated action of each player
always converges to a neighborhood of the Nash equilibrium at each sampling instant. We prove
that the final tracking error is linearly proportional to the sampling interval, which implies that
the tracking error can be sufficiently close to zero when the sampling interval is small enough.
Finally, numerical simulations are conducted to verify the correctness of our theoretical results.

Keywords: game theory, time-varying Nash equilibrium tracking, alternating direction
method of multipliers
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1. INTRODUCTION

In recent years, non-cooperative games have attracted extensive attention due to their
diverse applications in various engineering fields, such as power systems [2, 3], com-
munication networks [4, 7], and multi-cloud systems [1]. The fundamental problem in
non-cooperative games is finding the Nash equilibrium (NE), which serves as the basis
for understanding and predicting the outcomes of strategic interactions between multi-
players. Recently, the rapid development of multi-agent system and distributed opti-
mization theory provide new perspectives and ideas for solving NE seeking problems in a
distributed manner [5,10,15,19,20]. In these distributed NE seeking algorithms, players
determine their actions individually and reach the NE after certain rounds of iterations
by exchanging partial information with neighbors through a communication network.

Note that the above mentioned distributed NE seeking algorithms [5, 10, 15, 19, 20]
mainly focused on static games with time-invariant cost functions. However, in many
realistic situations, such as real-time traffic networks, online auctions, and dynamic
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wireless environment [12], the cost functions within the game are time-varying. Tra-
ditional distributed NE seeking algorithms have difficulty tracking fast-changing NEs
within short time intervals. To address this issue, researchers have developed dynamic
approaches. A notable approach is the online distributed algorithm [11, 13]. This ap-
proach enables each player to decide their current actions based on the values and
gradients of past cost functions available to them. By leveraging historical information,
the online algorithm ensures that the tracking error (referred to as a regret function)
is bounded by the product of a term that depends on the deviation of the varying NE
sequence and a sublinear function of learning time.

In addition to online algorithms, another approach is the distributed tracking algo-
rithm. Unlike online algorithms for minimizing regret functions, distributed tracking
algorithms aim to directly track the time-varying optimal point, resulting in a minimal
tracking error (the norm of difference between the tracking variables and the optimal
point). This approach has been successfully applied to solving distributed dynamic opti-
mization problem. For example, the authors in [9] presented a dynamic alternating direc-
tion method of multipliers (ADMM) and the authors in [14, 16] designed a distributed
prediction-correction algorithm. Both of them can achieve a bounded tracking error.
However, to the best of our knowledge, distributed tracking algorithms have not been
applied to solving time-varying NE problems. Note that some distributed continuous-
time NE tracking algorithms [6,17,18] have been proposed, while these methods rely on
ODE solutions and may not be implemented using digital computation.

In this paper, we are devoted to solving the distributed NE tracking problem. Our
basic idea is to treat the time-varying NE tracking problem as a sequence of static
NE seeking problems and solve them one by one. However, for the real-time tracking
requirement in some applications, traditional NE seeking algorithms cannot afford to
spend the time required to precisely solve every static problem. To address this dilemma,
we proposed a distributed dynamic algorithm, which approximately solves each static
problem by using distributed ADMM, and then uses the current step’s approximate
solution as the initial point for the next step. We prove that the proposed algorithm
can effectively track the time-varying NE with a bounded tracking error, whose size is
determined by the variation of cost functions and the sampling interval. Our numerical
experiments with a Nash–Cournot game problem confirm that the proposed algorithm
can indeed track the time-varying NE.

The contributions of this paper are summarized as follows.

• We propose a distributed dynamic algorithm for tracking time-varying NE in a non-
cooperative game, in which the cost functions constantly change over time. To the
best of our knowledge, it is the first to propose a distributed tracking approach to
real-time tracking of the time-varying NE.

• We prove that the proposed algorithm ensures that the tracking error is approx-
imately linear with the product of a term that depends on the variation of the
cost function and the sampling interval. This result can include the linearly con-
vergent result of distributed NE seeking in terms of time-invariant cost functions
in [5, 10,15,19,20].

• The recursive method is used to analyze the tracking accuracy of the proposed
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algorithm. This is in sharp contrast to the analysis method for existing distributed
continuous-time NE tracking algorithms [6, 17,18] that relies on ODE solutions.

• We experimentally evaluate the proposed dynamic algorithm using a practical
Nash–Cournot game. Results show that the tracking error of our algorithm de-
creases as the sampling interval decreases.

This paper is organized as follows. Section 2 introduces some related preliminaries on
basic notations, graph theory and formulates the distributed time-varying NE tracking
problem. Section 3 provides the proposed distributed time-varying ADMM and analyzes
its convergence performance. Then, Section 4 gives a numerical example and Section 5
concludes the paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Basic notations and notions

We denote Rn as the set of real vectors with n-dimension, Rn+ as the set of vectors with
nonnegative coordinates of n-dimension and Rn×m as the set of real matrices with n-
rows and m-columns. Let ‖·‖ and ⊗ be the standard Euclidean norm and the Kronecker
product, respectively. Denote by 1N and 0N the column vectors of N dimension with
all entries being 1 and 0, respectively. Let In be the compatible identity matrix with
dimension n. For any vector x, y ∈ Rn, let xT be the transpose of x. Denote [xi]i∈Ω as
the column vector by stacking up xi associated with i ∈ Ω. For any square matrix H,
denote ρ(H) as the spectral radius of H.

For a differentiable function f(x) : Rn → R, its gradient is defined as ∇xf(x) =
col( ∂f∂x1

, . . . , ∂f∂xn ) ∈ Rn and its component gradient is defined as ∇if(x) = ∂f
∂xi

.We say
that a function f(x) : Rn → R is m-strongly convex for µ > 0 if for any x, y ∈ Rn, we
have f(y) ≥ f(x) + 〈∇f(x), y−x〉+ µ

2 ‖x− y‖
2 and a function f(x) : Rn → R is radially

unbounded on Rn if for any xn ∈ Rn satisfying ‖xn‖ → ∞, we have f(xn)→∞.

2.2. Graph theory

We assume that the information sharing between players is modeled as a connected
and undirected graph G = (V, E). We denote V as the player set with cardinality
|V| = N and E as the directed arcs set with cardinality |E| = m. Let Ni be the set of
neighbors of node i with cardinality |Ni| = di. We define the block arc source matrices

as As ∈ RmN×N2

and Ad ∈ RmN×N2

. If an arc l goes from i to j, then the block (As)l,i
and the block of (Ad)l,j are both IN ∈ RN×N and are null, otherwise. Furthermore,
we define the signed incidence matrix Eo = As −Ad and the unsigned incidence matrix
Eu = As + Ad. The extended signed Laplacian matrix is given by Lo = (1/2)ETo Eo
and the extended unsigned Laplacian matrix is given by Lu = (1/2)ETuEu. The degree
matrix D = diag(d1, . . . , dN ) satisfies D = (1/2)(Lo + Lu). We denote λLu0 and λLo0
as the smallest singular values of Lu and Lo, respectively. Correspondingly, we denote
λLuN and λLoN as the largest singular values of Lu and Lo, respectively.

We give the following assumption on the communication graph:

Assumption 1. The graph G is undirected and connected.
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2.3. Problem formulations

We consider a non-cooperative game Gt(V, f ti , xi) with N players. V = {1, . . . , N} is
the set of all players and f ti (xi, x−i), t ≥ 0 is the time-varying cost function for player
i ∈ V associated with the player i’s action xi ∈ R and all players’ actions x−i ∈ RN−1

except player i’s. At any time t, each player i aims to minimize his own cost function
selfishly with respect to xi. That is, each player i, i ∈ V tracks an optimal solution
trajectory of the following time-varying optimization problem:

min
xi∈R

f ti (xi, x−i), ∀i ∈ V. (1)

Note that at any time t, each player’s optimal action is dependent on the other players’
actions. An NE lies at the intersection of the solutions set for Problem (1), such that
no player can reduce his cost by unilaterally deviating from his action. We assume that
there exists a NE trajectory for the problem (1), and introduce the following assumption
to guarantee the uniqueness of this NE trajectory.

Assumption 2. For every player i ∈ V , the cost function f ti (xi, x−i) is µ-strongly
convex in xi(t) for any fixed x−i(t), and uniformly in t.

Problem (1) can be interpreted as a sequence of static NE seeking problems. Specif-
ically, the cost functions f ti (xi, x−i) are sampled at time instant tk with k = 1, . . ., and
sampling interval h = tk− tk−1 can be chosen as a small number. Then, the problem (1)
can be approximated by

min
xi∈R

f tki (xi, x−i), ∀i ∈ V. (2)

In the distributed framework, the actions of all players cannot be accessed by each
player. Hence, the augmented problem (2) is addressed by introducing local estimations
of players’ actions and using a consensus constraint to reach an agreement on these
estimations. The notations below are used to represent players’ estimations.

• xi−i ∈ RN−1: Player i’s estimations of all others’ actions except himself.

• xii ∈ R: Player i’s estimation of his action, which is indeed its actual action, i. e.,
xii = xi for i ∈ V .

• xi = (xii, x
i
−i) ∈ RN : Player i’s estimations of all players’ actions.

• x = [x1; . . . ;xN ] ∈ RN2

: The stacked vector of all estimations for all players.

Based on the actions’ estimations xi, ∀i ∈ V , Problem (2) can be reformulated as

min
xi∈RN

f tki (xi),

subject to xi = xj , ∀i ∈ V, ∀j ∈ Ni. (3)
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The consensus constraint in (3) ensures that all local estimations xi are identical. Hence,
(3) is equivalent to (2). By introducing a slack variable zij ∈ RN , ∀(i, j) ∈ E to separate
the consensus constraint, we can rewrite (3) as

min
xi∈RN

f tki (xi),

subject to xi = zij , zij = xj , ∀ i ∈ V, ∀j ∈ Ni. (4)

3. MAIN RESULT

In this section, we propose the distributed dynamic algorithm and establish its conver-
gence analysis.

3.1. Algorithm Design

In this subsection, we develop a distributed time-varying ADMM to track the NE tra-
jectory. Let αij ∈ RN and βij ∈ RN denote Lagrange multipliers associated with two
constraints in (4). Then, the augmented Lagrange function of (4) is designed as

Ltki (xi, zij , αij , βij) = f tki (xi) +
∑
i∈V

∑
j∈Ni

[
(αij)T (xi − zij) + (βij)T (xj − zij)

]
+
c

2

(
‖xi − zij‖2 + ‖xj − zij‖2

)
, (5)

where c is a positive parameter. Note that the last term of the right hind of (5) is a
correct quadratic penalty term for two constraints in (4).

Next, we propose our algorithm, which includes two steps: i) Each player estimates
the actions of all other players based on exchanged information with his neighbors over
the communication graph; ii) then, based on the estimations of other players’ actions,
each playerupdates his own action. The first step is characterized by

xi−i(tk+1) =
1

2

(
xi−i(tk) +

1

di

∑
j∈Ni

xj−i(tk)
)
− 1

2cdi

∑
j∈Ni

(
αij−i(tk) + βji−i(tk)

)
. (6)

Based on the estimation xi−i of other players’ actions in (6) and the augmented Lagrange
function in (5), each player updates its strategy using the following distributed ADMM:

xii(tk+1) = arg min
xii∈R

{
f
tk+1

i (xii, x
i
−i(tk+1)) +

∑
j∈Ni

[αij(tk) + βji(tk)]T (xii, x
i
−i(tk+1))

+ c
∑
j∈Ni

‖(xii, xi−i(tk+1))− zij(tk)‖2
}
. (7)

By using (5), we obtain the update rule for the auxiliary variable zij :

zij(tk+1) = arg min
zij∈RN

{
− (αij(tk) + βij(tk))T zij +

c

2

(
‖xi(tk+1)− zij‖2

+ ‖xj(tk+1)− zij‖2
)}
,
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which is equivalent to

zij(tk+1) =
1

2c
(αij(tk) + βij(tk)) +

1

2
(xi(tk+1) + xj(tk+1)). (8)

The updates of the dual Lagrange multipliers of each player i are described as

αij(tk+1) = αij(tk) +
c

2

(
xi(tk+1)− xj(tk+1)

)
, (9)

βij(tk+1) = βij(tk) +
c

2

(
xj(tk+1)− xi(tk+1)

)
. (10)

By setting αij(t0) = βij(t0) = 0N , the equations (9) and (10) imply

αij(tk) + βij(tk) = 0N ,

which implies that the updated rule of zij in (8) can be simplified as

zij(tk+1) =
1

2
(xi(tk+1) + xj(tk+1)). (11)

Substituting (11) into (7), the update of xii(tk+1) can be rewritten as

∇if
tk+1

i

(
xii, x

i
−i(tk+1)

)
+
∑
j∈Ni

(αiji (tk) + βjii (tk))

+ 2c
∑
j∈Ni

(
xii −

1

2
(xii(tk) + xji (tk))

)
= 0. (12)

We summarize the proposed algorithm in Algorithm 3.1.

Algorithm 3.1 Distributed time-varying ADMM for each agent i

Initialization: Initialize αij(t0) and βji(t0) to zero and set the positive constant c > 0.

1: For k = 0, 1, 2 . . . do,

2: Each player i exchanges his estimation of other players’ actions with his neighbors j, ∀j ∈ Ni.
Then, he updates his estimation xi−i by c.f. (6).

xi−i(tk+1) =
1

2

(
xi−i(tk) +

1

di

∑
j∈Ni

xj−i(tk)
)
−

1

2cdi

∑
j∈Ni

(
αij
−i(tk) + βji

−i(tk)
)
.

3: Obtaining the local cost function f
tk+1
i (xii, x

i
−i(tk+1)), each player updates his real action xii

by c.f (12).

∇if
tk+1
i

(
xii, x

i
−i(tk+1)

)
+
∑
j∈Ni

(αij
i (tk) + βji

i (tk)) + 2c
∑
j∈Ni

(
xii −

1

2
(xii(tk) + xji (tk))

)
= 0.

4: The updated rules of dual Lagrange multipliers αij and βij are described by c.f. (9) – (10).

αij(tk+1) = αij(tk) +
c

2

(
xi(tk+1)− xj(tk+1)

)
,

βij(tk+1) = βij(tk) +
c

2

(
xj(tk+1)− xi(tk+1)

)
.

5: End
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We stack dual variables as λ = [α;β] ∈ R2mN , where α = [αij ]i∈ ∈ RmN and
β = [βij ]i∈ ∈ RmN , while stacking z = [zij ]i∈ ∈ RmN . Then, we obtain the compact
form of the updates in Algorithm 3.1.

Based on the update of estimated variables in (6), we have∑
j∈Ni

(
αij−i(tk) + βji−i(tk)

)
+ 2c

∑
j∈Ni

(
xi−i(tk+1)− 1

2
(xi−i(tk) + xj−i(tk))

)
= 0N−1. (13)

Combining with the updates of xii and xi−i in (11) – (13), xi is updated by

∇f tk+1

i (xi)ei +
∑
j∈Ni

(αij(tk) + βij(tk)) + 2c
∑
j∈Ni

(xi − zij(tk)) = 0N , (14)

where the ith dimension element of ei ∈ RN is 1, and the rest elements are zero.

We further define three matrices:

R = diag(e1, . . . , eN ) ∈ RN
2×N ,

A = [As;Ad] ∈ R2mN×N2

,

B = [−ImN ;−ImN ] ∈ R2mN×2mN .

At time tk, we define the extended pesudogradient mapping as Ftk(x) = [∇if tki (xi)]i∈V :

RN2 → RN with the stacked vector of all players’ estimations x(tk) = [xi(tk)]i∈V . Then,
the update of xi in (14) is rewritten as the following compact form:

RFtk+1(x) +ATλ(tk) + cAT [Ax+Bz(tk)] = 0N2 , (15)

with any initial strategy x(t0) ∈ RN2

. According to the update of zij in (8), the stacked
auxiliary variable z(tk+1) is computed by

BTλ(tk) + cBT [Ax(tk+1) +Bz] = 02mN , (16)

with the initial auxiliary variable z(t0) = 1/2Eux(t0). Using the updates of αij and βij

in (9) and (10), the stacked dual variable λ(tk+1) is given by

λ(tk+1) = λ(tk) + c[Ax(tk+1) +Bz(tk+1)], (17)

with the initial values of λ(t0) = 02mN .

Remark 3.1. Equations (15) – (16) is a combination of descent steps on x and z, as
well as an ascent step on λ for the Lagrangian Ltk , which is the compact form of (5)
and given as

Ltk(x, z,λ) = eTi f
tk(x) + λT (Ax+Bz) +

c

2
‖Ax+Bz‖2,

with f tk(x) = [f tki (xi)]i∈V .
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3.2. Convergence analysis

In this subsection, we analyze the convergence of Algorithm 1 by bounding ‖x(tk) −
x∗(tk)‖, where x∗(tk) = 1N ⊗ x∗(tk) is the stacked NE at time instant tk. To proceed,
we establish the following auxiliary conclusion for the subsequent analysis.

Lemma 3.2. Considering the compact updates (15) – (17), the following three equa-
tions always hold.

R(Ftk+1
(
x(tk+1))− Ftk+1(x∗(tk+1))

= cETu (z(tk)− z(tk+1))− ETo (α(tk+1)−α∗(tk+1)), (18)

z(tk+1)− z∗(tk+1) =
1

2
Eu(x(tk+1)− x∗(tk+1)), (19)

c

2
Eo(x(tk+1)− x∗(tk+1)) = α(tk+1)−α(tk). (20)

P r o o f . Substituting (17) into (15), we can obtain

RFtk+1(x) +ATλ(tk+1) + cATB[z(tk)− z(tk+1)] = 0N2 . (21)

According to the definitions of matrices A, Eo and Eu, we have

ATλ = ATs α−ATd β = ETo α, (22)

ATB = −ATs −ATd = −ETu . (23)

Substituting (22) and (23) into (21) yields

RFtk+1(x) + ETo α(tk+1)− cETu [z(tk)− z(tk+1)] = 0N2 . (24)

Similarly, substituting the multiplier update in (17) into z(tk+1) in (16) yields

BTλ(tk+1) = 02mN , (25)

which further derives α(tk+1) = −β(tk+1) by using the initial hypothesis λ(t0) = 02mN .
Then, the multiplier update (17) can be split into

α(tk+1) = α(tk) + c(Asx(tk+1)− z(tk+1)), (26)

β(tk+1) = β(tk) + c(Adx(tk+1)− z(tk+1)). (27)

Summing up the above equations, we arrive at

z(tk+1) =
1

2
(As +Ad)x(tk+1) =

1

2
Eux(tk+1). (28)

Substituting z(tk+1) = 1
2 (As +Ad)x(tk+1) into (26) yields

α(tk+1) = α(tk) +
c

2
Eox(tk+1). (29)
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Next, we prove Lemma 3.2 based on equations (24), (28) and (29).
The KKT conditions of problem (4) can be written as the following compact form:

RFtk(x∗(tk)) +ATλ∗(tk) = 0N2 , (30)

BTλ∗(tk) = 02mN , (31)

Ax∗(tk) +Bz∗(tk) = 02mN . (32)

According to (22), it yields ATλ = ETo α. Then, (30) can be rewritten as

RFtk+1(x∗(tk+1)) + ETo α
∗(tk+1) = 0N2 . (33)

Recalling the definitions of A and B and splitting (32) yield

Asx
∗(tk+1)− z∗(tk+1) = 0mN ,

Adx
∗(tk+1)− z∗(tk+1) = 0mN . (34)

Summing up the two equalities in (34), in view of Eu = As+Ad, we transform (32) into

z∗(tk+1) =
1

2
Eux

∗(tk+1). (35)

Based on Eo = As −Ad and (34), we have

Eox
∗(tk+1) = 0mN . (36)

Up to now, subtracting (33) from (24) yields (18). Subtracting (35) from (28) yields (19).
Multiplying (36) by c/2 and subtracting the result from (29) yields (20).

This completes the proof. �

Define the variable u = [z;α] ∈ R2mN and the matrix

G = diag(cImN , (1/c)ImN ) ∈ R2mN×2mN .

The following assumption on the extended pesudo-gradient mapping Ftk(x) is needed.

Assumption 3. For any time instants tk ≥ 0, the extended pesudo-gradient mapping
Ftk(x) is cocoercive. That is, for any x, x∗ ∈ RN2

, it follows that(
Ftk(x)− Ftk(x∗)

)T
(x− x∗) ≥ σF

∥∥Ftk(x)− Ftk(x∗)
∥∥2
, (37)

where σF > 0 is a cocoercive constant.

In the following lemma, we bound ‖u(tk)− u∗(tk)‖G.

Lemma 3.3. Under Assumptions 1 – 3, the following inequality always holds for Algo-
rithm 3.1.

‖u(tk+1)− u∗(tk+1)‖G ≤
‖u(tk)− u∗(tk)‖G√

1 + δ
+
g(tk+1)√

1 + δ
. (38)
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where

g(tk+1) =

√
cm√
N
‖x∗(tk+1)− x∗(tk)‖+ 1√

2cλLo0
‖Ftk+1(x∗(tk+1))−Ftk(x∗(tk))‖,(39)

δ = min

{
(µ− 1)λLo0

ςλLuN (µ+ 2(µ− 1)λLo0λLuN )
,
ςµ+ 2ςcλLo0

2cσFλLo0

}
, (40)

with ς = max

{
c

(
c2λLu0

2 −2c2λLuN )
, 1

1−cλLoN

}
and c ∈ [1, 1/λLo0).

P r o o f . See Appendix. �

Lemma 3.3 implies that ‖u(tk) − u∗(tk)‖G linearly converges to a bound ‖ g(tk+1)√
1+δ
‖.

It should be noted that in the static NE seeking problem, ‖g(tk)‖ in (39) is zero. As
a result, our result includes the convergent result of distributed NE seeking in terms of
time-invariant cost functions in [5, 10,15,19,20].

Now, we are ready to present our main result.

Theorem 3.4. Under Assumptions 1 – 3, the following inequality holds for Algorithm
3.1.

‖x(tk)− x∗(tk)‖ ≤ 2

cλLu0(
√

1 + δ)k
‖u(t0)− u∗(t0)‖

+
2− (

√
1 + δ)−k

cλLu0(
√

1 + δ − 1)

(√
cm

µ
+

√
N√

2cλLo0

)
c0h, (41)

which implies lim supk→∞ ‖x(tk)− x∗(tk)‖ = O(h).

P r o o f . Based on the results in (19) and Lemma 3.3, we derive

λLu0

2
‖x(tk+1)− x∗(tk+1)‖2 ≤ ‖z(tk+1)− z∗(tk+1)‖2 ≤ 1

c
‖u(tk+1)− u∗(tk+1)‖2G

≤ ‖u(tk)− u∗(tk)‖G
c
√

1 + δ
+
g(tk+1)

c
√

1 + δ
. (42)

By using (38), we obtain

‖u(t0)− u∗(t0)‖G + g(t1)

≥
√

1 + δ‖u(t1)− u∗(t1)‖G,
. . . . . .

‖u(tk−2)− u∗(tk−2)‖G + g(tk−1) ≥
√

1 + δ‖u(tk−1)− u∗(tk−1)‖G.

Applying the induction argument yields

‖u(t0)− u∗(t0)‖G +

k−1∑
s=1

(
√

1 + δ)s−1g(ts) ≥ (
√

1 + δ)k−1‖u(tk−1)− u∗(tk−1)‖. (43)
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Adding (
√

1 + δ)k−1g(tk) to both sides of (43), we have

‖u(t0)− u∗(t0)‖G +

k∑
s=1

(
√

1 + δ)s−1g(ts)

≥ (
√

1 + δ)k−1
[
‖u(tk−1)− u∗(tk−1)‖+ g(tk)

]
. (44)

By using (42), we have

‖u(tk−1)− u∗(tk−1)‖+ g(tk) ≥ c
√

1 + δλLu0

2
‖x(tk)− x∗(tk)‖, (45)

which further combines with (44) resulting in

1

(
√

1 + δ)k−1
‖u(t0)− u∗(t0)‖G +

k∑
s=1

1

(
√

1 + δ)k−s
g(ts)

≥ c
√

1 + δλLu0

2
‖x(tk)− x∗(tk)‖. (46)

By using g(ts) ≤ gmax for any ts > 0 and the summation formula of geometric series,
we obtain

k∑
s=1

1
√

1 + δ
(k−s) g(ts) ≤

k∑
s=1

1
√

1 + δ
(k−s) gmax =

1−
√

1 + δ
(−k)

1−
√

1 + δ
(−1)

gmax. (47)

Then, we can rewrite (46) as

c
√

1 + δλLu0

2
‖x(tk)− x∗(tk)‖ ≤ 1

(
√

1 + δ)k−1
‖u(t0)− u∗(t0)‖G +

1−
√

1 + δ
(−k)

1−
√

1 + δ
(−1)

gmax.

(48)

Next, we compute the upper bound of gmax. Based on the definition of g(tk), we have

g(tk+1) =

√
cm√
N
‖x∗(tk+1)− x∗(tk)‖+

1√
2cλLo0

‖Ftk+1(x∗(tk+1))− Ftk(x∗(tk))‖. (49)

The first term is bounded by

‖x∗(tk+1)− x∗(tk)‖ ≤
√
N‖x∗(tk+1)− x∗(tk)‖ ≤

√
N

µ
‖∇txif

ts
i (x(ts))‖(tk+1 − tk)

≤
√
Nc0h

µ
. (50)

By using

x∗ = 1N ⊗ x∗ and Ftk+1(x∗(tk+1)) = Ftk+1(1N ⊗ x∗(tk+1)) = F tk+1(x∗(tk+1)),
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then the second term of (49) is bounded by

‖Ftk+1(x∗(tk+1))− Ftk(x∗(tk))‖ ≤ ‖F tk+1(x∗(tk+1))− F tk(x∗(tk))‖

≤
√
N‖∇xif

tk+1

i (x∗(tk+1))−∇xif
tk
i (x∗(tk))‖

≤
√
N‖∇txif

ts
i (x(ts))‖(tk+1 − tk), s ∈ (k, k + 1).

≤
√
Nc0h. (51)

Summing up (50) and (51), we have

gmax =

√
cmc0h

µ
+

√
Nc0h√
2cλLo0

. (52)

Substituting (52) into (48) arrives at

‖x(tk)− x∗(tk)‖ ≤ 2

cλLu0(
√

1 + δ)k
‖u(t0)− u∗(t0)‖

+
2− (

√
1 + δ)−k

cλLu0(
√

1 + δ − 1)

(√
cm

µ
+

√
N√

2cλLo0

)
c0h. (53)

When k → ∞, the first term in the right-hand side of (53) tends to zero. The second
term reaches a limit value 2

cλLu0(
√

1+δ−1)
gmax, where gmax is related to the sampling

interval h.
This completes the proof. �

Remark 3.5. We observe that the parameters λLo0, µ, δ, m, N and c0 can be de-
termined when the problem and the underlying network under study are given. With
these fixed parameters, Theorem 3.4 demonstrates that the asymptotic tracking error
is approximately linear with the sampling interval h. In this case, it can be said that
the tracking accuracy is in the order of O(h). For practical applications, especially for
large-scale or complex NE systems, the bound provided in Theorem 3.4 can help users
adjust the sampling interval to improve tracking accuracy and obtain a better estimate
of the NE trajectory.

4. SIMULATION

To evaluate the performance of the proposed algorithm, we consider the Nash–Cournot
game presented in [11]. Assume that there are four players, whose communication graph
can be shown as in Figure 1. The cost function of each player is described as follows.

f ti (xi, x−i) = pti(xi)− xidti(xi, x−i),

where pti(xi) and dti are called as the production cost and the demand price respectively,
and are assumed to satisfy

pti = α(t)xi, d
t
i(xi, x−i) = βi(t)−

4∑
j=1

xj .
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1 2

3 4

Fig. 1. Communication graph.

In this example, we set α(t) = sin( t2 ) and βi(t) = 45 + 5i − 0.5i sin( t2 ). The time
intervals are chosen as h = 0.1s, h = 0.2s and h = 0.5s. The parameter c = 0.1. The
initial states xi(0), i = 1, 2, 3, 4, are determined as x1(0) = [1, 3,−1,−1]T , x2(0) =
[−1, 1, 0, 2]T , x3(0) = [0,−2,−1, 3]T and x4(0) = [0.5, 3,−1, 1]T . The initial dual La-
grange multipliers are set αij(0) = βij(0) = 0, (i, j) ∈ E .
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Fig. 2. Trajectories of the players’ actions xi(tk), i = 1, 2, 3, 4 and

the time varying NE x∗(tk) = [x∗1(tk), x∗2(tk), x∗3(tk), x∗4(tk)]T with the

sampling interval h = 0.1s.

The trajectories of the players’ actions xi(tk), i = 1, 2, 3, 4 and the NE x∗ = [x∗1, x
∗
2,

x∗3, x
∗
4]T with h = 0.1s, h = 0.2s and h = 0.5s are given in Figure 2 – 4, respec-

tively. Denote that tracking error as e(tk) = [x1(tk)− xs1∗(tk), x2(tk)− x∗2(tk), x3(tk)−
x∗3(tk), x4(tk) − x∗4(tk)]T . The trajectories of ‖e(tk)‖ are shown as in Figure 5. The
results show that the tracking errors decrease as the sampling interval decreases. The
convergence trajectories of the cost function f ti (xi, x

∗
−i), i = 1, 2, 3, 4 with the sam-

pling interval h = 0.1s are presented in Figure 6. The results indicate that f ti (xi, x
∗
−i)

converges rapidly to f ti (x
∗
i , x
∗
−i).
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Fig. 3. Trajectories of the players’ actions xi(tk), i = 1, 2, 3, 4 and

the time varying NE x∗(tk) = [x∗1(tk), x∗2(tk), x∗3(tk), x∗4(tk)]T with the

sampling interval h = 0.2s.
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Fig. 4. Trajectories of the players’ actions xi(tk), i = 1, 2, 3, 4 and

the time varying NE x∗(tk) = [x∗1(tk), x∗2(tk), x∗3(tk), x∗4(tk)]T with the

sampling interval h = 0.5s.
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Fig. 5. Trajectories of the tracking error ‖etk‖ = ‖x(tk)− x∗(tk)‖
with the sampling interval h = 0.1s, h = 0.2s and h = 0.5s.
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Fig. 6. The convergence trajectories of the cost function

f t
i (xi, x

∗
−i), i = 1, 2, 3, 4 with the sampling interval h = 0.1s.
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5. CONCLUSION

In this paper, we proposed a distributed dynamic algorithm to solve time-varying NE
tracking problem, in which each player minimizes his time-varying cost function by
using a distributed ADMM at each sampling instant. We proved that our algorithm
ensures the asymptotic tracking error to be linearly proportional to the sampling interval
h. It implies that when the sampling interval is sufficiently small, the tracking error
approaches zero. Future research will explore extensions to distributed NE tracking
with equality and inequality constraints as well as distributed prediction-correction NE
tracking algorithms to further reduce the tracking error.

6. APPENDIX

We prove Lemma 3.3 by using the following two steps.

Step 1: We prove the following inequality.

‖u(tk+1)− u∗(tk+1)‖G ≤
‖u(tk)− u∗(tk+1)‖G√

1 + δ
. (54)

By using Assumption 3, we first bound the term σF‖Ftk+1(x(tk+1))−Ftk+1(x∗(tk+1))‖2
by

σF‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2 ≤ ‖u(tk)− u∗(tk+1)‖2G − ‖u(tk+1)− u∗(tk+1)‖2G
− ‖u(tk)− u(tk+1)‖2G. (55)

Multiplying x(tk+1)− x∗(tk+1) on both sides of (18) yields

(RTx(tk+1)−RTx∗(tk+1))T (Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1)),

= c(Eu(x(tk+1)− x∗(tk+1)))T (z(tk)− z(tk+1))

− (Eo(x(tk+1)− x∗(tk+1)))T (α(tk+1)−α∗(tk+1)).

(56)

Based on Assumption 3 and RTx = x, we have

σF‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2 ≤ c(Eu(x(tk+1)− x∗(tk+1)))T (z(tk)− z(tk+1)),

− (Eo(x(tk+1)− x∗(tk+1)))T

(α(tk+1)−α∗(tk+1)). (57)

Substituting (19) and (20) into (57), in view of the definition of G, it derives

σF‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2

≤ 2c(z(tk)− z(tk+1))T (z(tk+1)− z(tk+1))

+
2

c
(α(tk)−α(tk+1))T (α(tk+1)−α∗(tk+1))

≤ 2(u(tk)− u(tk+1))TG(u(tk+1)− u∗(tk+1)).

(58)



628 JI MA, ZHENG YANG AND ZIQIN CHEN

For any a, b, c ∈ Rn and n× n matrix A � 0, there is

(a− b)TA(a− c) = 1/2‖a− c‖2A + 1/2‖a− b‖2A − 1/2‖b− c‖2A. (59)

By using (58),(55) and (59), we have

σF‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2 ≤ ‖u(tk)− u∗(tk+1)‖2G − ‖u(tk+1)− u∗(tk+1)‖2G
− ‖u(tk)− u(tk+1)‖2G.

Then, we will prove that the term σF‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2 satisfies

σF‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2

≥ δ‖u(tk+1)− u∗(tk+1)‖2G − ‖u(tk)− u(tk+1)‖2G. (60)

We observe (µ− 1)‖a− b‖2 ≥ (1− 1/µ)‖b‖2−‖a‖2 valid for any µ > 1, then we use (18)
to obtain

(µ− 1)‖RFtk+1(x(tk+1))−RFtk+1(x∗(tk+1))‖2 ≥ µ− 1

µ
‖ETo (α(tk+1)−α∗(tk+1))‖2

− ‖cETu (z(tk)− z(tk+1)‖2. (61)

The first term in (61) is bounded by

‖ETo (α(tk+1)−α∗(tk+1))‖2 = (α(tk+1)−α∗(tk+1))TEoE
T
o (α(tk+1)−α∗(tk+1)),

≥ 2λLo0‖α(tk+1)−α∗(tk+1)‖2. (62)

The second term in (61) is bounded by

‖cETu (z(tk)− z(tk+1))‖2 = c2(z(tk)− z(tk+1))TEuE
T
u (z(tk)− z(tk+1)),

≤ 2c2λLuN‖z(tk)− z(tk+1)‖2. (63)

Substituting (62) and (63) into (61) and multiplying µ/(2cλLo0(µ− 1)) on both side of
(61) yield

µcλLuN
(µ− 1)λLo0

‖z(tk)− z(tk+1)‖2 +
µ

2cλLo0
‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2

≥ 1

c
‖α(tk+1)−α∗(tk+1)‖2. (64)

From (18), we have

RFtk+1(x(tk+1))−RFtk+1(x∗(tk+1))− cETu (z(tk)− z∗(tk+1))

= −cETu (z(tk+1)− z∗(tk+1))− ETo (α(tk+1)−α∗(tk+1)).

Using the fact that for any a, b, c and d ∈ R, there is

a+ b = c+ d⇒ a2 + b2 ≥ 1

4
c2 − 1

2
d2,
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we can obtain

‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2 + 2c2λLuN‖z(tk)− z∗(tk+1)‖2

≥ 1

2
c2λLu0‖z(tk+1)− z∗(tk+1)‖2 − λLoN‖α(tk+1)−α∗(tk+1)‖2. (65)

Using ‖z(tk)− z(tk+1)‖2 + ‖z(tk+1)− z∗(tk+1)‖2 ≥ ‖z(tk)− z∗(tk+1)‖2, we have

‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2 + 2c2λLuN‖z(tk)− z(tk+1)‖2

+2c2λLuN‖z(tk+1)− z∗(tk+1)‖2

≥ 1

2
c2λLu0‖z(tk+1)− z∗(tk+1)‖2 − λLoN‖α(tk+1)−α∗(tk+1)‖2. (66)

Summing up (64) and (66), we obtain( µcλLuN
(µ− 1)λLo0

+ 2c2λLuN

)
‖z(tk)− z(tk+1)‖2

+
( µ

2cλLo0
+ 1
)
‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1)‖2

≥
(c2λLu0

2
− 2c2λLuN

)
‖z(tk+1)− z∗(tk+1)‖2 +

(1

c
− λLoN

)
‖α(tk+1)−α∗(tk+1)‖2.

(67)

We set c < 1
λLoN

and ς = max{ς1, ς2}, where

ς1 = c/

(
c2λLu0

2
− 2c2λLuN

)
and ς2 =

(1

c

)
/
(1

c
− λLoN

)
.

Multiplying both sides of (67) by ς yields

ς
( µcλLuN

(µ− 1)λLo0
+ 2c2λLuN

)
‖z(tk)− z(tk+1)‖2

+ ς
( µ

2cλLo0
+ 1
)
‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2

≥ c‖z(tk+1)− z∗(tk+1)‖2 +
1

c
‖α(tk+1)−α∗(tk+1)‖2.

Based on the definition of δ in (40), we obtain

c

δ
‖z(tk)− z(tk+1)‖2 +

σF
δ
‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1)‖2

≥ c‖z(tk+1)− z∗(tk+1)‖2 +
1

c
‖α(tk+1)−α∗(tk+1)‖2.

Recalling the following inequality:

σF‖Ftk+1(x(tk+1))− Ftk+1(x∗(tk+1))‖2

≥ δ‖u(tk+1)− u∗(tk+1)‖2 − c‖u(tk)− u(tk+1)‖2,

we can arrive at (60).
Summing up (55) and (60) yields (54).
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Step 2: We prove the following inequality:

‖u(tk)− u∗(tk+1)‖G ≤ ‖u(tk)− u∗(tk)‖G + g(tk+1). (68)

By the triangle inequality, we obtain

‖u(tk)− u∗(tk+1)‖G − ‖u(tk)− u∗(tk)‖G ≤ ‖u∗(tk+1)− u∗(tk)‖G.

Combining with the definition of u(tk), we obtain

‖u(tk)− u∗(tk+1)‖G − ‖u(tk)− u∗(tk)‖G

≤
√
c‖z∗(tk+1)− z∗(tk)‖+

1√
c
‖α∗(tk+1)−α∗(tk)‖. (69)

According to the consensus constraints in (4), we have z∗(tk) = 1m ⊗ x∗(tk). Similarly,
using x∗(tk) = 1N ⊗ x∗(tk) yields

‖z∗(tk+1)− z∗(tk)‖ =

√
m√
N
‖x∗(tk+1)− x∗(tk)‖. (70)

By the KKT condition in (33), we have

‖RFtk+1(x∗(tk+1))−RFtk(x∗(tk))‖ = ‖ETo (α∗(tk+1)−α∗(tk))‖,

which implies

‖α∗(tk+1)−α∗(tk)‖ ≤ 1√
2λLo0

‖Ftk+1(x∗(tk+1))− Ftk(x∗(tk))‖. (71)

Substituting (70) and (71) into (69) yields (68) due to

‖u(tk)− u∗(tk+1)‖G − ‖u(tk)− u∗(tk)‖G

≤
√
cm√
N
‖x∗(tk+1)− x∗(tk)‖+

1√
2cλLo0

‖Ftk+1(x∗(tk+1))− Ftk(x∗(tk))‖.

Using (54) and (68) in Step 1 and Step 2 yields (38).

This completes the proof. �
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