Kybernetika 59 no. 4, 592-611, 2023

Parallel navigation for 3-D autonomous vehicles

Shulin Feng, Shuning Zhang, Mingming Xu and Guanlong DengDOI: 10.14736/kyb-2023-4-0592

Abstract:

In this paper, parallel navigation is proposed to track the target in three-dimensional space. Firstly, the polar kinematics models for the vehicle and the target are established. Secondly, parallel navigation is derived by using polar kinematics models. Thirdly, cell decomposition method is applied to implement obstacle avoidance. Fourthly, a brief study is given on the influence of uncertainties. Finally, simulations are conducted by MATLAB. Simulation results demonstrate the effectiveness of the parallel navigation.

Keywords:

uncertainties, parallel navigation, track, obstacle avoidance

Classification:

93C85

References:

  1. F. Belkhouche and B. Belkhouche: Ball interception by a mobile robot goalkeeper using the parallel navigation. In: Proc. 35th Int. Symp. on Robotics, Paris, WE14-145, 2004.   CrossRef
  2. F. Belkhouche and B. Belkhouche: Modified parallel navigation for ball interception by a wheeled mobile robot goalkeeper. Advanced Robotics 20 (2006), 429-452.   DOI:10.1163/156855306776562260
  3. F. Belkhouche, B. Belkhouche and P. Rastgoufard: Parallel navigation for reaching a moving goal by a mobile robot. Robotica 25 (2007), 63-74.   DOI:10.1017/S0263574706002992
  4. S. K. Debnath, R. Omar and S. Bagchi: Different Cell Decomposition Path Planning Methods for Unmanned Air Vehicles - A Review. John Wiley, New York 2021.   CrossRef
  5. J. W. Jung, B. C. So and J. G. Kang: Expanded Douglas-Peucker polygonal approximation and opposite angle-based exact cell decomposition for path planning with curvilinear obstacles. Appl. Sci. 9 (2019), 638-654.   DOI:10.3390/app9040638
  6. S. Knotek, K. Hengster-Movric and M. Sebek: Distributed estimation on sensor networks with measurement uncertainties. IEEE Trans. Control Systems Technol. 29 (2020), 1997-2011.   DOI:10.1109/TCST.2020.3026815
  7. B. Q. Ma: Research on synchronous control algorithm for multi ship parallel navigation. Ship Science Technol. 39 (2017), 28-30.   CrossRef
  8. M. Reza J. Harandi, S. A. Khalilpour, H. D. Taghirad and J. G. Romero: Adaptive control of parallel robots with uncertain kinematics and dynamics. Mechanical Systems Signal Process. 157 (2021), 1-12.   DOI:10.1016/j.ymssp.2021.107693
  9. H. Myint and H. M. Tun: Analysis on guidance laws implementation based on parallel navigation time domain scheme. Int. J. Scientific Res. Publ. 8 (2018), 65-77.   DOI:10.29322/ijsrp.8.8.2018.p80105
  10. E. Picard, E. Tahoumi and F. Plestan: A new control scheme of cable-driven parallel robot balancing between sliding mode and linear feedback. IFAC-PapersOnLine 53 (2019), 9936-9943.   DOI:10.1016/j.ifacol.2020.12.2708
  11. M. Rafie-Rad: Time-optimal solutions of parallel navigation and finsler geodesics. Nonlinear Analysis: Real World Appl. 11 (2010), 3809-3814.   DOI:10.1016/j.nonrwa.2010.02.010
  12. V. Ferravant, E. Riva, M. Taghavi and T. Bock: Dynamic analysis of high precision construction cable-driven parallel robots. Mechanism Machine Theory 2019 (2019), 54-64.   DOI:10.1016/j.mechmachtheory.2019.01.023
  13. N. Schultz: Bats track diving mantises with parallel navigation. J. Experiment. Biology 212 (2009), 893-903.   DOI:10.1242/jeb.030544
  14. N. A. Shneydor: Parallel navigation. Missile Guidance and Pursuit 9 (1998), 77-100.   CrossRef
  15. C. d. Souza, P. Castillo and B. Vidolov: Reactive drone pursuit and obstacle avoidance based in parallel navigation. In: IEEE 23rd International Conference on Intelligent Transportation Systems (2020), pp. 1-6.   CrossRef
  16. J. Su: Research on the precision control algorithm for multi-ship parallel navigation track. Ship Science Technol. 41 (2019), 43-45.   CrossRef
  17. J. Sun, H. Zhang and Y. Wang: Dissipativity-based fault-tolerant control for stochastic switched systems with time-varying delay and uncertainties. IEEE Trans. Cybernet. 52, (2021), 10683-10694.   DOI:10.1109/tcyb.2021.3068631
  18. H. Sun, R. Madonski and S. Li: Composite control design for systems with uncertainties and noise using combined extended state observer and Kalman filter. IEEE Trans. Industrial Electronics 69 (2021), 4119-4128.   DOI:10.1109/TIE.2021.3075838
  19. B. F. Wang, M. Iwasaki and J. P. Yu: Command filtered adaptive backstepping control for dual-motor servo systems with torque disturbance and uncertainties. IEEE Trans. Industrial Electronics 29 (2021), 80-87.   DOI:10.1109/tie.2021.3059540
  20. Z. Xu, X. Zhou and H. Wu: Motion planning of manipulators for simultaneous obstacle avoidance and target tracking: an RNN approach with guaranteed performance. IEEE Trans. Industr. Electronics 9 (2021), 71-79.   DOI:10.1109/tie.2021.3073305
  21. R. Yanushevsky: New guidance laws to implement parallel navigation. Aiaa Guidance, Navigation, Control Conference and Exhibit, 2013.   CrossRef
  22. D. Y. Zhao, B. L. Si and X. L. Li: Learning allocentric representations of space for navigation. Neurocomputing 453 (2021), 579-589.   DOI:10.1016/j.neucom.2020.10.013