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ON UPPER BOUNDS FOR TOTAL K-DOMINATION
NUMBER VIA THE PROBABILISTIC METHOD

Sayĺı Sigarreta, Saylé Sigarreta and Hugo Cruz-Suárez

For a fixed positive integer k and G = (V,E) a connected graph of order n, whose minimum
vertex degree is at least k, a set S ⊆ V is a total k-dominating set, also known as a k-tuple
total dominating set, if every vertex v ∈ V has at least k neighbors in S. The minimum size
of a total k-dominating set for G is called the total k-domination number of G, denoted by
γkt(G). The total k-domination problem is to determine a minimum total k-dominating set of
G. Since the exact problem is in general quite difficult to solve, it is also of interest to have
good upper bounds on the total k-domination number. In this paper, we present a probabilistic
approach to computing an upper bound for the total k-domination number that improves on
some previous results.
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1. INTRODUCTION

We start by giving some notations and terminologies. All graphs in this paper are
simple graphs G with vertex set V and edge set E. For a graph G the neighborhood
{u ∈ V : uv ∈ E} of a vertex v ∈ V , the degree |{u ∈ V : uv ∈ E}| of a vertex v ∈ V ,
the minimum degree and the maximum degree are denoted by N(v), deg(v), δ and ∆,
respectively.

This article deals with domination, a well-studied topic in graph theory and com-
binatorial optimization. A detailed summary of the literature on this topic can be
found in [5] and [8]. A dominating set of a graph G is a set S of vertices of G with
|N(v) ∩ S| ≥ 1 for all v /∈ S, and the domination number γ(G) of a graph is the cardi-
nality of a smallest dominating set. The term domination was first defined as a graph
theoretical concept in 1958, in connection to various chessboard problems. Two decades
later Cockayne, Dawes, and Hedetniemi [4] worked on the idea of dominating all vertices
of the graph, rather than merely dominating vertices outside the set, and established
the following concept. A total dominating set of a graph G is a set S of vertices of G
with |N(v) ∩ S| ≥ 1 for all v ∈ V , and similarly the total domination number γt(G)
of a graph is the cardinality of a smaller total dominating set. Then in recent years,
Henning and Kazemi [6] motivated by other variations of domination, considered the
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next generalization of total domination. Given a positive integer k, a set S ⊆ V is a
total k-dominating set if every vertex v ∈ V has at least k neighbors in S. In such a
case, it is necessary to have k ≤ δ and |S| ≥ k + 1. The total k-domination number
γkt(G) is the minimum cardinality among all total k-dominating sets.

The concept of dominance and its variations form a rich area of graph theory, with
many useful concepts and much practical interest in various fields ([9, 11]). In partic-
ular, due to the complexity of the algorithmic aspects associated with the problem of
determining a minimal total k-dominant set of G [10], many studies focus on proposing
upper bounds for γkt(G) with respect to various graph parameters. For this reason, in
this manuscript we present a new probabilistic upper bound for the total k-domination
number of a graph, which improves some results presented in [1]. This confirms that the
probabilistic method is a powerful tool for solving many problems in graph theory.

2. A PROBABILISTIC UPPER BOUND ON TOTAL K-DOMINATION NUMBER

This section presents the main results of the paper.

Theorem 2.1. For a fixed positive integer k, if G = (V,E) is a connected graph of
order n, minimum degree δ ≥ k and p ∈ (0, 1), then

γkt(G) ≤ np+

k−1∑
i=0

∑
v∈V

(k − i)
(
deg(v)

i

)
pi(1− p)deg(v)−i. (1)

P r o o f . Let p ∈ (0, 1), we form a set A by picking every vertex v of G independently
at random with P(v ∈ A) = p. Let us denote C1,i = {v ∈ V : v ∈ A and |N(v)∩A| = i}
with i = 0, 1, . . . , k − 1 and for every v ∈ C1,i we chose u(v,1), . . . , u(v,k−i) ∈ N(v) ∩ Ac,
and with this rule we define a new set S1,i = {u(v,1), . . . , u(v,k−i) : v ∈ C1,i} ⊆ Ac. Next
for i = 0, 1, . . . , k− 1 we introduce C2,i = {v ∈ V : v /∈ A and |N(v)∩A| = i} and in the
same way we propose the set S2,i={u(v,1), . . . , u(v,k−i) : v ∈ C2,i} ⊆ Ac. It is obvious

that the set D = A∪ (∪k−1
i=0 S1,i)∪ (∪k−1

i=0 S2,i) is a total k-dominating set of the graph G.
Then, we have

|D| = |A ∪ (∪k−1
i=0 S1,i) ∪ (∪k−1

i=0 S2,i)|
= |A|+ |(∪k−1

i=0 S1,i) ∪ (∪k−1
i=0 S2,i)|,

since A ∩ ((∪k−1
i=0 S1,i) ∪ (∪k−1

i=0 S2,i)) = ∅. Linearity of expectation establishes

E(|D|) = E(|A|) + E(|(∪k−1
i=0 S1,i) ∪ (∪k−1

i=0 S2,i)|).

It is possible to demonstrate that |A| is a Bin(n, p) random variable, hence E(|D|) =
np+ E(|(∪k−1

i=0 S1,i) ∪ (∪k−1
i=0 S2,i)|). Furthermore,

|(∪k−1
i=0 S1,i) ∪ (∪k−1

i=0 S2,i)| ≤ |∪k−1
i=0 S1,i|+ |∪k−1

i=0 S2,i|

≤
k−1∑
i=0

|S1,i|+
k−1∑
i=0

|S2,i|
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and by construction |S1,i| ≤ (k − i)|C1,i| and |S2,i| ≤ (k − i)|C2,i| for i = 0, 1, . . . , k − 1,
consequently

E(|D|) ≤ np+

k−1∑
i=0

(k − i)E(|C1,i|) +

k−1∑
i=0

(k − i)E(|C2,i|). (2)

To find E(|C1,i|) with i = 0, 1, . . . , k− 1 we write V = {v1, v2, . . . , vn} and we decom-

pose |C1,i| =
n∑
j=1

Cj1,i where Cj1,i is the indicator random variable of the event {vj ∈ C1,i},

thus E(|C1,i|) =

n∑
j=1

P(Cj1,i). On the other hand,

P(Cj1,i) = P({vj ∈ A} ∩ {|N(vj) ∩A| = i}) (3)

then, by independence, P(Cj1,i) = pP(|N(vj)∩A| = i). Now, observe that |N(vj)∩A| is
a Bin(deg(vj), p) random variable, then P(Cj1,i) = p

(
deg(vj)

i

)
pi(1− p)deg(vj)−i and

E(|C1,i|) =
∑
v∈V

p

(
deg(v)

i

)
pi(1− p)deg(v)−i. (4)

Similarly, it is possible to obtain that

E(|C2,i|) =
∑
v∈V

(1− p)
(
deg(v)

i

)
pi(1− p)deg(v)−i. (5)

Therefore, by replacing (4) and (5) in (2), it follows that

E(|D|) ≤ np+

k−1∑
i=0

∑
v∈V

(k − i)
(
deg(v)

i

)
pi(1− p)deg(v)−i.

Finally, by the first moment method [2], it yields that

γkt(G) ≤ np+

k−1∑
i=0

∑
v∈V

(k − i)
(
deg(v)

i

)
pi(1− p)deg(v)−i. (6)

This completes the proof of Theorem 2.1. �

Consider a connected graph G = (V,E) of order n, minimum degree δ ≥ k and
maximum degree ∆, for w ∈ [0, 1] let denote

PG(w) = n− nw +

∆∑
j=δ

aj(kw
j +

k−1∑
i=1

(k − i)
(
j

i

)
(1− w)iwj−i),
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where aj = |{v ∈ V : deg(v) = j}| with j ∈ {δ, δ + 1, · · · ,∆}. Next substituting
w = 1− p on the upper bound obtained at Theorem 2.1, it follows that γkt(G) ≤ PG(w)
for all w ∈ [0, 1].

Since, to PG(w) is a continuous function in [0, 1], making use of Maximun and Mini-
mum Value Theorem [1], we can affirm that PG(w) attains a minimum in [0, 1], indeed if
k ≥ 2, we claim that w = 1 is not a minimum because PG(1) = kn > n = PG(0). Conse-
quently, PG(w∗) is the best possible upper bound for γkt(G), where w∗ is a minimum of
PG(w) with w ∈ [0, 1). In addition, for k = 2, the upper bound PG(w∗) is sharp, see for
instance the graphs illustrated in Figure 1 and concerning the sharpness of this bound
for the other values of k, we highlight that research in this direction is still in progress.

Fig. 1. Some examples of graphs where the bound is achieved:

a)PG(w) = 10 + 2w + 12w2 − 4w3, bPG(w∗)c = γ2t(G) = 10b)PG(w) =

12− 12w + 36w2 − 12w3, bPG(w∗)c = γ2t(G) = 10[7]c) The Heawood

graph PG(w) = 14− 14w+ 42w2 − 14w3, bPG(w∗)c = γ2t(G) = 12 [7].

As the next step, we prove the following important result which represents a decisive
property in future observations.

Theorem 2.2. Let k ≥ 1 be a positive integer. For any connected graph G on n vertices
with minimum degree δ ≥ k and maximum degree ∆, the following inequality holds

PG(w) ≤ hδ(w)n,

for all w ∈ [0, 1], where

hδ(w) = 1− w + kwδ +

k−1∑
i=1

(k − i)
(
δ

i

)
(1− w)iwδ−i.
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P r o o f . For r ≥ δ let us define the next function sequence on [0, 1]

fr(w) = kwr +

k−1∑
i=1

(k − i)
(
r

i

)
(1− w)iwr−i.

We claim that {fr}r≥δ is decreasing, i. e., Nr := fr(w)− fr+1(w) ≥ 0, to prove this fact

note that using

(
r + 1

i

)
=

(
r

i

)
+

(
r

i− 1

)
, it follows that

Nr = kwr(1− w) +

k−1∑
i=1

(k − i)
(
r

i

)
(1− w)i+1wr−i −

k−1∑
i=1

(k − i)
(

r

i− 1

)
(1− w)iwr+1−i.

Next, if we replace:

k−2∑
i=1

(k − i)

(
r

i

)
(1 − w)i+1wr−i +

(
r

k − 1

)
(1 − w)kwr−(k−1) and

k−2∑
i=1

(k− (i+1))

(
r

i

)
(1−w)i+1wr−i+(k−1)(1−w)wr with

k−1∑
i=1

(k− i)
(
r

i

)
(1−w)i+1wr−i

and

k−1∑
i=1

(k − i)
(

r

i− 1

)
(1− w)iwr+1−i respectively, we obtain that

Nr = wr(1− w) +

(
r

k − 1

)
(1− w)kwr−(k−1) +

k−2∑
i=1

(
r

i

)
(1− w)i+1wr−i ≥ 0.

Finally, to conclude the proof, it is only necessary to consider that
∑∆
j=δ aj = n, PG(w) =

n− nw +
∑∆
j=δ ajfj(w) and hδ(w) = 1− w + fδ(w). �

To present the rest of the manuscript, we must cite some related work. In 2019,
Alipour and Jafari [1] proved Theorem 2.3 and Theorem 2.4, by using Turán’s theorem.

Theorem 2.3. If G is a graph with minimum degree δ ≥ k + 1 + d for 0 ≤ d ≤ k − 1
then

γkt(G) ≤ 2d+ (k − d)(k − d+ 1)

2d+ (k − d)(k − d+ 1) + 1
n. (7)

Theorem 2.4. If G is a graph with n vertices and minimum degree δ ≥ 3 such that at

least half of the vertices have degree at least 4, then γ2t(G) ≤ 5

6
n.

In addition, by applying Lovász’s local lemma, Alipour and Jafari [1] were able to
improve the bound expressed in (7) for k = 2 in some special cases. In table 1, for given
values of δ and ∆, the corresponding upper bound for the total number of 2 dominations
is given. This number has been studied by different authors under different names, e. g.,
the double total dominance number. Focusing only on k ≥ 2, we are now in a position
to start a comparison process between the upper bound PG(w∗) and the aforementioned
results, considering networks with PG(w∗) 6= n.
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Theorem 2.5. Let k ≥ 1 be a positive integer. For any connected graphG on n vertices,
minimum degree δ = k+1 and maximum degree ∆ ≥ k+2. Then γkt(G) ≤ PG(w∗) ≤ εk0
if and only if PG(w) − εk0 has a root in (0, 1), where εk0 = 5

6n if k = 2 and otherwise

εk0 = k(k+1)
k(k+1)+1n.

P r o o f . Suppose that there exists wr ∈ (0, 1) such that PG(wr) = εk0 , consequently
PG(w∗) ≤ PG(wr) = εk0 . Conversely, assume that PG(w∗) − εk0 ≤ 0, the case when
PG(w∗) − εk0 = 0 is clear, in other matters, taking into account that PG(0) − εk0 > 0,
applying Bolzano’s Theorem [3] we can conclude that PG(w)− εk0 has a root in (0, 1).

�

δ ∆ Upper bound

7 7
3

4
n

7 8
3

4
n

9 9
2

3
n

9 10
2

3
n

9 11
2

3
n

14 14
1

2
n

Tab. 1. Upper bounds on the double total domination number for

some values of δ and ∆ [1].

For numerical purposes, it is important to specify that the problem of guaranteeing
the existence of a root in (0, 1) of the polynomial PG(w) − εk0 , mentioned in Theorem

2.5 can be restricted to values of w in the interval (1− εk0
n , 1).

In the following remark, we present some key points of the analytical comparative
study.

Remark 2.6. a) Observe that there exist some graphs that satisfy Theorem 2.5, em-
phasizing that in the case k = 2 these graphs verify a3 ≤ n

2 . Thus the upper bounds
stated in Theorem 2.3 and Theorem 2.4 are improved, see for instance the graphs
reported in Figure 2.
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b) We are also interested in the relation between bPG(w∗)c and bεk0c, note that in most
examples shown in Figure 2 the strict inequality bPG(w∗)c < bεk0c is confirmed.
Furthermore, as n becomes larger this difference increases.

Fig. 2. The information of interest associated with each network is

exposed in a triad with the structure (k, |V |, bPG(w∗)c − bεk0c).
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k d hk+1+d(ẇ)
εkd
n

k d hk+1+d(ẇ)
εkd
n

k d hk+1+d(ẇ)
εkd
n

2 1 0.78 0.80 20 11 0.80 0.98 60 40 0.71 0.99
3 1 0.86 0.88 20 12 0.78 0.98 60 48 0.68 0.99
3 2 0.78 0.85 20 16 0.72 0.97 60 59 0.65 0.99
4 1 0.90 0.93 20 18 0.69 0.97 70 1 0.99 0.99
4 2 0.83 0.90 20 19 0.67 0.97 70 3 0.99 0.99
4 3 0.77 0.88 30 2 0.98 0.99 70 9 0.95 0.99
5 1 0.92 0.95 30 4 0.95 0.99 70 10 0.94 0.99
5 2 0.86 0.94 30 8 0.90 0.99 70 13 0.92 0.99
5 3 0.81 0.92 30 9 0.88 0.99 70 16 0.90 0.99
5 4 0.75 0.90 30 11 0.85 0.99 70 18 0.88 0.99
6 1 0.94 0.96 30 15 0.80 0.99 70 21 0.86 0.99
6 2 0.89 0.96 30 18 0.76 0.99 70 23 0.85 0.99
6 3 0.83 0.94 30 20 0.74 0.99 70 24 0.84 0.99
6 4 0.79 0.93 30 24 0.70 0.98 70 28 0.81 0.99
6 5 0.74 0.92 30 26 0.68 0.98 70 37 0.76 0.99
7 1 0.95 0.97 30 28 0.66 0.98 70 43 0.68 0.99
7 2 0.90 0.97 30 29 0.65 0.98 70 58 0.57 0.99
7 3 0.86 0.96 40 2 0.98 0.99 80 2 0.99 0.99
7 4 0.81 0.95 40 4 0.97 0.99 80 4 0.98 0.99
7 5 0.77 0.94 40 5 0.95 0.99 80 8 0.96 0.99
7 6 0.74 0.93 40 10 0.90 0.99 80 13 0.93 0.99
8 1 0.96 0.98 40 14 0.85 0.99 80 18 0.89 0.99
8 2 0.92 0.97 40 20 0.79 0.99 80 20 0.88 0.99
8 3 0.87 0.97 40 23 0.76 0.99 80 32 0.81 0.99
8 4 0.83 0.96 40 26 0.74 0.99 80 44 0.75 0.99
8 5 0.80 0.95 40 28 0.72 0.99 80 49 0.74 0.99
8 6 0.76 0.94 40 32 0.69 0.99 80 57 0.73 0.99
8 7 0.73 0.94 40 35 0.66 0.99 80 62 0.72 0.99
9 1 0.96 0.98 40 38 0.64 0.99 80 69 0.71 0.99
9 2 0.93 0.98 50 4 0.97 0.99 80 74 0.69 0.99
9 3 0.89 0.97 50 6 0.96 0.99 90 3 0.99 0.99
9 4 0.85 0.97 50 9 0.93 0.99 90 20 0.89 0.99
9 5 0.81 0.96 50 12 0.90 0.99 90 25 0.86 0.99
9 6 0.78 0.96 50 16 0.86 0.99 90 37 0.80 0.99
9 7 0.75 0.95 50 18 0.84 0.99 90 47 0.77 0.99
9 8 0.72 0.94 50 23 0.80 0.99 90 52 0.76 0.99
10 1 0.97 0.98 50 28 0.76 0.99 90 61 0.75 0.99
10 2 0.93 0.98 50 35 0.71 0.99 90 64 0.74 0.99
10 3 0.90 0.98 50 40 0.68 0.99 90 74 0.72 0.99
10 4 0.86 0.98 50 43 0.66 0.99 90 76 0.71 0.99
10 5 0.83 0.97 50 49 0.60 0.99 100 2 0.99 0.99
10 6 0.80 0.96 60 3 0.98 0.99 100 14 0.94 0.99
10 7 0.77 0.96 60 7 0.95 0.99 100 27 0.87 0.99
10 8 0.74 0.95 60 9 0.94 0.99 100 31 0.85 0.99
10 9 0.72 0.95 60 11 0.92 0.99 100 33 0.84 0.99
20 1 0.98 0.99 60 12 0.91 0.99 100 35 0.83 0.99
20 3 0.95 0.99 60 14 0.90 0.99 100 59 0.77 0.99
20 5 0.91 0.99 60 19 0.86 0.99 100 62 0.76 0.99
20 6 0.89 0.99 60 27 0.80 0.99 100 77 0.74 0.99
20 7 0.87 0.99 60 33 0.76 0.99 100 91 0.71 0.99
20 8 0.85 0.99 60 34 0.75 0.99 100 95 0.70 0.99

Tab. 2. Comparison between hk+1+d(ẇ) and
εkd
n

for some values of k.
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Hereinafter, for convenience the upper bound given in (7) is denoted as εkd for 1 ≤
d ≤ k − 1, i. e.

εkd :=
2d+ (k − d)(k − d+ 1)

2d+ (k − d)(k − d+ 1) + 1
n.

Continuing the process of comparison, note that in Theorem 2.5 the results exposed
in Theorem 2.3 were studied only for the case d = 0, so that only 1 ≤ d ≤ k− 1 remains
to be treated. In this sense, for a fixed positive integer k considering Theorem 2.2, a
sufficient condition to guarantee an improvement of the bound εkd is the confirmation
that

hk+1+d(ẇ) ≤ εkd
n
,

for all 1 ≤ d ≤ k − 1, where ẇ is a minimum of hk+1+d(w) with w ∈ [0, 1). This proof
has been shown numerically for all 2 ≤ k ≤ 100 and 1 ≤ d ≤ k − 1. As an example,
let us consider some special cases shown in Table 2. In short, everything mentioned so
far proves an improvement of Theorem 2.3 for all 2 ≤ k ≤ 100 and 1 ≤ d ≤ k − 1.
Aditionally, the behavior observed for 2 ≤ k ≤ 100 conjectures an improvement of
Theorem 2.3 for all k ≥ 101 and 1 ≤ d ≤ k − 1.

Now, considering that for all n ∈ N, bPG(w∗)c ≤ bhk+1+d(ẇ)nc, the former data lead
to the conclusion that the strict inequality bPG(w∗)c < bεkdc is valid in most cases, as
previously commented in Remark 2.6 b).

To complete the analysis of the proposed bound, it is important to compare it with
the upper bounds given in Table 1, since in some special cases they are an improvement
of Theorem 2.3 for k = 2. By applying Theorem 2.2 again, one can ensure that PG(w∗)
provides a better upper bound than the corresponding upper bounds for the double total
domination number given in Table 1. This fact is shown in detail in Table 3.

δ ∆ hδ(ẇ)

7 7 0.56 n

9 9 0.48 n

14 14 0.35 n

Tab. 3. Upper bound on the double total domination number

obtained as a corollary of Theorem 2.1 for given values of δ and ∆.

Moreover, the graphical profile of the interactions between floor parts associated with
the third columns of each table (considering the indicated colors) is shown in Figure 3,
suggesting that bεkdc is always greater than bPG(w∗)c for each n, confirming earlier
remarks about the existing order relation between these integers.
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Fig. 3. Comparison between Table 1 and Table 3.
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Hugo Cruz-Suárez, Facultad de Ciencias F́ısico Matemáticas, Benemérita Universidad
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