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ON TYPICAL ENCODINGS OF MULTIVARIATE ERGODIC
SOURCES
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In memory of Fero Matúš

We show that the typical coordinate-wise encoding of multivariate ergodic source into pre-
scribed alphabets has the entropy profile close to the convolution of the entropy profile of
the source and the modular polymatroid that is determined by the cardinalities of the output
alphabets. We show that the proportion of the exceptional encodings that are not close to
the convolution goes to zero doubly exponentially. The result holds for a class of multivariate
sources that satisfy asymptotic equipartition property described via the mean fluctuation of the
information functions. This class covers asymptotically mean stationary processes with ergodic
mean, ergodic processes, irreducible Markov chains with an arbitrary initial distribution. We
also proved that typical encodings yield the asymptotic equipartition property for the output
variables. These asymptotic results are based on an explicit lower bound of the proportion
of encodings that transform a multivariate random variable into a variable with the entropy
profile close to the suitable convolution.
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1. INTRODUCTION

In Information theory and namely in Network coding theory, the encoding of multiple
possibly correlated sources have been extensively studied in the last two decades (for
the main framework, overview and references see [10] and [1]). The sources are usually
assumed to be discrete and memory-less, so they are represented by sequences of i.i.d.
discrete random variables. The important characteristics of multivariate sources, which
we focus on, is its entropy profile (an entropic point corresponding to a given multivariate
source, see [5]).

We deal with a problem of how the entropy profile changes when “typical” coordinate-
wise encodings into prescribed output alphabets are applied. As was shown in [7, Theo-
rem 3], in an asymptotic case, a typical encoding saves as much of the original informa-
tion as possible. Namely, the conditional entropy of the encoded variable is naturally
bounded from above by the conditional entropy of the source and also by the logarithm
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of the size of the output alphabet. Matúš showed that this bound is asymptotically
tight. More literally, a typical coordinate-wise encoding preserves almost all conditional
entropy whenever the output alphabet is large enough, i. e., when the logarithm of the
alphabet size exceeds the conditional entropy. If the logarithm is not larger, the condi-
tional entropy of the encoded variable is close to the logarithm of the alphabet size. This
observation is used to prove the closeness of the entropy region under the convolution
with modular polymatroids ([7, Theorem 2]). The role of convolution in the research on
the entropy region was then more explored in [8].

In [7], the coordinate-wise encodings of the original multivariate source into prescribed
alphabets are applied inductively, coordinate by coordinate, and in between these in-
ductive steps, one has to pass from a random vector to its i.i.d. expansion (see the
proof of Theorem 2 in the discussed paper). In particular, each encoding is applied to
a different random vector. This procedure can be reinterpreted as simultaneous coor-
dinate encodings used on one fixed i.i.d. expansion of the original entropy vector. But
this simple reasoning does not allow to deduce that the entropy profile obtained for a
specific encoding is also realized by the most of the coordinate-wise encodings from some
natural domain, as it can be concluded in the one-dimensional case.

The first step towards the results for “typical” encodings in the multivariate case
was done in [9], where the authors proved that the proportion of encodings of a two-
dimensional random vector that realizes a given convolution goes to one doubly expo-
nentially. It is also explained there that the encodings behave well, not only when they
are applied on i.i.d. copies of some random vector, but also when we apply them on any
vector that is drawn from bi-variate (strictly stationary) ergodic source.

Our work presented in this article extends the control on the entropy-profile of trans-
formed variables for the general multivariate case whenever the original source possesses
asymptotic equipartition property (AEP). Our main results are stated in Theorems 2,
3 and 6. In Theorem 2, we introduce an explicit lower bound of the proportion of en-
codings that transform a multivariate random variable into a variable with the entropy
profile close to the suitable convolution. The bound is given in terms of the entropy
of the original random variable and works when the mean fluctuation of information
functions is small. We use the bound to develop an asymptotic scheme in Theorem 3
that is applied to get the result on typical encodings for ergodic processes (Theorem 6).
Last but not least, we control not only the entropy profile of the transformed variables,
but we show that they also possess some kind of equipartition property. To describe the
equipartition property of a random variable, we introduce a new quantity that measures
the non-uniformness in a way that is well preserved via transformations (encodings),
conditioning, and i.i.d. expansions, namely the mean fluctuation of the information
functions, see Section 2 (and Section 6 for more details).

Let us stress out that the extraction of the critical property, namely the asymptotic
equipartition property, which is sufficient assumption in Theorem 3, allows us to extend
the previous works on this topics in two significant ways; the source needs to be neither
i.i.d., nor stationary. It is satisfactory if the original process is asymptotically mean
stationary with ergodic mean, as defined in [4, page 16] (the mentioned result can be
found therein as Theorem 4.1 and Section 4.5), e. g., finite-state Markov chains of any
order, its functions, block codings of stationary processes, etc. For the same reason, our
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results can be extended to the situation when one considers a family of ergodic random
fields (corresponding with an action of an amenable group, see [6]) instead of a family
of random processes. In Section 5, we introduce an example of a non-stationary Markov
chain and its encodings in a binary alphabet that shows the generality of our results.

We generalize the known results also in another important direction. Our results also
cover the situation when only some coordinates of the multivariate source are encoded.
In particular, the theorem can be used to describe the common entropy profile of the
family that consists of the original variables as well as the encoded ones.

2. EQUIPARTITION PROPERTY AND MEAN FLUCTUATION
OF THE INFORMATION FUNCTION

Let us recall some basic notions from Information Theory. Let P be a probability on
a finite set X (not necessarily a subset of real or complex domain). The information
function IP : X → R is given by the formula IP(x) = − lnP(x). The entropy H(P)
is its expectation, i. e. H(P) =

∑
P(x)(− lnP(x)), where we sum over all x ∈ X of

positive probability. The set of all x ∈ X of positive probability is the support of P,
denoted by s(P). A discrete finite-valued random variable X, e. g. a measurable map
from a probability space (Ω,P) into a finite set X , induces in a natural way a discrete
probability measure PX on X , so we can extend immediately the previous notions, the
information function, the entropy and the support, as follows:

s(X) := s(PX), IX := IPX
, H(X) := H(PX).

We will often use in the text this small abuse of notation when the random variable is
written down instead of the induced probability.

Let X = (X(n))n∈N be a random process with values in a finite alphabet A. For
given n, X(n) = (X(i))ni=1 is understood as a random variable with values in An. The
entropy rate of the process X is defined by the formula

h(X) = lim
n→∞

1

n
H(X(n)).

The asymptotic equipartition property (AEP) claims that the entropy rate is well
defined, the limit above exists, and it is equal to the limit of 1

n IX(n) with probability
one (it is well known that i.i.d. processes, ergodic processes posses AEP, see [2]). In
particular, the AEP claims that 1

n IX(n) is very “flat”. In order to describe such behavior
in an efficient manner, we introduce the following quantities for a discrete probability P
and a real value a ∈ R:

M(P, a) = EP | IP − a| , M(P) = M(P, H(P)).

We call M(P, a) the mean fluctuation of the information function from a and M(P)
simply the mean fluctuation. We again extend these definitions for random variables
with finite values in the natural way, M(X, a) := M(PX , a) and M(X) := M(PX).
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3. MULTIVARIATE RANDOM VARIABLES

In order to study the multivariate random variables, we admit that a random variable
X has its own structure, namely, that X = (Xi)

k
i=1, where Xi is a random variable

with values in a finite alphabet Ai, i ≤ k. For a natural number k we denote the
set {1, 2, . . . , k} by k̂ and the set of all subsets of k̂ by k̃. The entropy profile of X is

the point ~H(X) ∈ Rk̃ given by the formula, ~H(X) = (H(XI))I∈k̃, where XI denotes
the sub-vector (Xi)i∈I (H(X∅) is defined to be zero). In a consistent manner, we put
M(X∅) = 0 and define the maximal mean fluctuation

M ′(X) = max
I∈k̃

M((Xi)i∈I).

We will consider coordinate-wise encodings that encode all or only some of the co-
ordinates. For this generality, ` ≤ k is specified, as well as the family B = (Bi)`i=1 of
finite output alphabets.

A mapping f from
∏k
i=1 Ai to

∏`
i=1 Bi ×

∏k
k=`+1 Ai is a coordinate-wise encodings

of the first ` coordinates if it satisfies the formula

f(x1, . . . , xk) = (f1(x1), f2(x2), . . . , f`(x`), x`+1, x`+2, . . . , xk)

for some family of mappings (fi)i≤`, where fi : Ai → Bi, i ≤ `.
Since f is determined by (fi)i≤`, we identify the mapping with the family, i. e. we

write f = (fi)i≤` . The set of all these coordinate-wise encodings of the first ` coordinates
is denoted by E`.

We define also the entropy profile ~H(B) ∈ R˜̀
of the output alphabets as follows

( ~H(B))I = ln |
∏
i∈I
Bi|, I ∈ ˜̀.

We are interested in the question how the encodings change the entropy profile, i. e.
what we can say about ~H(f(X)) = H(fI(XI))I∈k̃. It is quite straightforward to show

that the profile is coordinate-wise bounded by the convolution ~H(X)∗ ~H(B). In general,

convolution w = u ∗ v of two points u ∈ Rk̃ and v ∈ R˜̀
, ` ≤ k, is the point from Rk̃

defined by the formula

(u ∗ v)I = min
J⊂I∩ˆ̀

(uI\J + vJ), I ∈ k̃.

Proposition 1. Let f be an encoding from E`. Then

H(f(X))I ≤ ( ~H(X) ∗ ~H(B))I , I ∈ k̃.

P r o o f . By the definition of the convolution, it is enough to prove that

H(fI(XI)) ≤ H(XI\J) + ( ~H(B))J ,

for all I ⊂ k̃ and J ⊂ I ∩ ˜̀. But H(fI(XI)) is bounded from above by the sum of
H(fI\J(XI\J)) and H(fJ(XJ)), where the former entropy is surely bounded by the
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entropy of the source H(XI\J) and the latter by the logarithm of the cardinality of the
output set

∏
i∈J BJ . �

In the next theorem, we show much more, namely that for a large part of encodings,
the entropy profile ~H(f(X)) is not just bounded by the convolution, but it is close to
this bound. We also show that the maximal mean fluctuation can be very small at the
same moment. The proof of Theorem 2 is postponed to the last section.

Theorem 2. Let 1 ≤ k, 1 ≥ ε > 0, ` ≤ k, δ =
(
ε

121

)2|`|
, H > 0 and X = (Xi)i≤k be a

family of discrete random variables such that Xi takes values in Ai, i ≤ k, and

H > H(Xˆ̀), H ≥ 2 ln 2

δ
, H ≥ M ′(X)

δ
. (1)

The proportion of those encodings f ∈ E` that satisfy the conditions

M ′(f(X)) ≤ εH &
∥∥∥H(f(X))− ~H(X) ∗ ~H(B)

∥∥∥
max
≤ εH, (2)

is at least

1− |`|2k−1 exp

(
− ln 2

2
eδH + ( ~H(B))ˆ̀+ 2H

)
.

Let us notice that for a fixed dimension k, the bound for the proportion of the
encodings in the theorem goes to one very fast (“doubly exponentially”) with respect to
H, provided H goes to infinity, and M ′/H goes to zero. In the next section, we apply
this idea and the theorem in the situation when an ergodic source and an a.m.s. source
is encoded.

Another important remark is that we control the behavior of the entropy of the output
variable f(X) as well as the quantity M ′(f(X)). To control both is necessary to use
Theorem 2 inductively in the proof of the Theorem 3.

4. ASYMPTOTIC SCHEME

In this section, instead of encodings of one family of random variables, we will consider
a sequence of families and their encodings to different alphabets. Our aim is to construct
an asymptotic scheme that is presented in Theorem 3.

We fix ` ≤ k. For given n ≥ 1, we consider a family of random variables X(n) =

(X
(n)
i )i≤k defined on the same probability space, where X

(n)
i takes values in a finite set

A(n)
i . Put A(n) =

∏
i≤k A

(n)
i . As well as in the previous section, we fix a family of

finite sets B(n) = (B(n)i )i≤` and denote by E(n)` the set of all mappings from A(n) to

B(n) of the form

f(x1, . . . , xk) = (f1(x1), f2(x2), . . . , f`(x`), x`+1, x`+2, . . . , xk),

for some fi : A(n)
i → B(n)

i , i ≤ `. Let us recall, that we call these mappings coordinate-
wise encodings of the first ` coordinates.
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Theorem 3. Let
~H(X(n))

n converges to a non-zero h ∈ Rk̃, M ′(X(n))
n tends to zero and

~H(B(n))
n converges to b ∈ R˜̀

.

If 1 ≥ ε > 0, δ <
(

min(ε,hk̂)

121hk̂

)2|`|
, n large enough, then the proportion of those

encodings f ∈ E(n)` that satisfy the conditions

M ′(f(X(n)))

n
≤ ε &

∥∥∥∥∥ ~H(f(X(n)))

n
− h ∗ b

∥∥∥∥∥
max

≤ ε,

is at least
1− exp

(
−eδn

)
.

The proof is postponed to the last section.

We developed the asymptotic scheme in the case when the limits of some numerical
characteristics are assumed to exist. Nevertheless, the scheme does not require any
structural relation between X(n) and X(n+1). In the next section, we will apply this
scheme in the case when X(n) arises as the first n-coordinates of some process (X(n))n∈N
and where X(n+1) contains X(n) as its beginning.

5. ENCODINGS OF ERGODIC PROCESSES AND A.M.S. PROCESSES
WITH ERGODIC MEAN

Let X = (X(n))n∈N be a multivariate random process with values in a Cantor product

of finite sets Ai, 1 ≤ i ≤ k. Put A =
∏k
i=1 Ai. Hence, each X(n) is a tuple of

random variables, X(n) = (Xi(n))ki=1. For a subset of coordinates J ⊂ k̂, we define a
sub-process XJ = (XJ(n))n∈N in the following way: XJ(n) = (Xj(n))j∈J . As in the

previous sections, X(n) stands for the vector (X(1), X(2), . . . , X(n)), X
(n)
J stands for

(XJ(1), XJ(2), . . . , XJ(n)).

We define an entropy profile of the multivariate process X as the vector ~h(X) =
(h(XJ))J∈k̃, where h(XJ) is the entropy rate of the process XJ , i. e.

h(XJ) = lim
n→∞

1

n
H(XJ(1), XJ(2), . . . , XJ(n)), J ⊂ k̂.

There is a quite large class of processes for which the entropy rates are well defined

and M(X
(n)
J )/n goes to zero for every J ⊂ k̂. In order to explain this class we need

to assign a process with the corresponding measure on the output-sequences. Namely,
X = (X(n))n∈N with values in a finite set A gives rise the measure X∗P on AN that is
determined by the equalities

X∗P([a1 . . . an]) = P(X(0) = a0, . . . , X(n) = an), n ∈ N, a1, . . . an ∈ A,

where

[a1 . . . an] = {(xi)i∈N ∈ AN | xi = ai, for i ≤ n}, n ∈ N, a1, . . . an ∈ A.
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The measure is defined on the σ-field F generated by the above-mentioned sets that are
usually called cylinders.

We define the shift-map T on AN by the formula T (x1x2...) = (x2x3...). A probability
measure µ on F is

• asymptotically mean stationary (a.m.s.) if 1
n

∑n
i=1 µ(T−iF ) converges, for every

F ∈ F ,

• stationary if µ(T−1F ) = µ(F ) for every F ∈ F ,

• ergodic if it is stationary and T−1F = F and F ∈ F implies µ(F ) = {0, 1}.

We say that a process is a.m.s., stationary or ergodic, if the measure X∗P has the
corresponding property. If a process is a.m.s., then the formula

Xm∗ P = lim
n→∞

1

n

n∑
i=1

X∗P(T−iF ), F ∈ F ,

defined a probability stationary measure on F (the upper index “m” stands for “mean”).
This measure is called the mean of the process. We will be interested in the a.m.s.
processes with ergodic mean. The following theorem is a slightly weaker version of
Corollary 4 in [3] translated into our notations and settings.

Proposition 4. (Gray and Kieffer [3]) Let X be an a.m.s. process with ergodic mean, Y
be a stationary process with the same mean. Then the entropy rate h(X) is well-defined
and equal to h(Y). In addition, 1

nM(X(n)) goes to zero.

Corollary 5. Let X be an a.m.s. process with ergodic mean, Y be a stationary process
with the same mean. Then the profile ~h(X) is well-defined and equal to ~h(Y). In

addition, 1
nM

′(X(n)
J ) goes to zero for every J ⊂ k̂.

P r o o f . For J ⊂ k̂, the natural projection from (
∏k
i=1Ai)

N onto (
∏
i∈J Ai)

N intertwines
with the shift-map on both spaces, so it is a factor mapping in the category of dynamical
systems. In addition, the projection maps (X)∗P onto (XJ)∗P and the a.m.s. property
is preserved via the factor mapping. So (XJ)∗P is a.m.s. In particular, the entropy rate

h(XJ) is well defined and 1
nM(X(n)

J ) goes to zero. �

The following theorem is a straightforward consequence of Corollary 5 and Theorem 2.

Theorem 6. Let X = (X(n))n∈N be a.m.s. with ergodic mean, h be its entropy-rate

profile. If hk̂ > 0, 1 ≥ ε > 0, δ <
(

min(ε,hk̂)

121hk̂

)2|`|
and n large enough, then the proportion

of those encodings f ∈ E(n)` that satisfy the conditions

M ′(f(X(n)))

n
≤ ε &

∥∥∥∥∥ ~H(f(X(n)))

n
− h ∗ b

∥∥∥∥∥
max

≤ ε,

is at least
1− exp

(
−eδn

)
.
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Let us point out that the class of a.m.s. processes with ergodic mean covers all ergodic
processes (e. g., i.i.d. processes). It also contains all irreducible (possibly periodic) finite-
states Markov chains. Other examples of a.m.s. processes can be found in [3], below
Corollary 4.

At the end of the section, we will exhibit the generality of the theory applying pre-
vious theorem and corollary to encodings of a non-stationary and non-independent, but
Markov process.

Put k = ` = 2, A1 = A2 = Z8. The chain X is defined as the random walk on Z8×Z8

(a screwed chessboard), where we can move only one step in the horizontal direction or
a one step in the vertical direction. Since 7 plus 1 is 0, we suppose that 7 and 0 are
adjacent values. Namely, the transition probabilities are given by the following formula:

p(i,j)(i′,j′) =


1
4 , if i = i′ and |j − j′| ∈ {1, n− 1},
1
4 , if j = j′ and |i− i′| ∈ {1, n− 1},
0, otherwise.

Let us fix a deterministic start at the origin, X(0) = (0, 0). By the standard analysis
of homogeneous Markov chains with finite states we get that the chain is irreducible,
periodic with period two, and non-stationary because the initial distribution is not equal
to the stationary one. It is straightforward that the stationary distribution is the uniform
distribution. From every states, there are four equiprobable ways out. This leads to the
fact that H(X(n+ 1)|X(n)) equals to 2 ln 2 (for any initial distribution). If we focus on
the first coordinate of the process, one can see that in the next step, we can increase
the value by one (modulo n) with probability 1/4, decrease the value by one (modulo
n) with probability 1/4 or stay at the same value with probability 1/2. In particular,
H(X1(n+ 1)|X1(n)) is equal to 3

2 ln 2. The same is true for the second coordinate. By

homogeneity, the entropy rates 1
nH(X(n)), 1

nH(X
(n)
1 ) and 1

nH(X
(n)
2 ) converge to the

mentioned conditional entropies 2 ln 2, 3
2 ln 2 and 3

2 ln 2, respectively. Hence, 1
n
~H(X(n))

converges to a non-zero h ∈ Rk̃, where

h := (h∅, h1, h2, h1,2) = (0,
3

2
ln 2,

3

2
ln 2, 2 ln 2).

In addition, let us assume that for encoding of the first n moves in the screwed
chessboard, we use 2n colors for vertical position, as well as, for horizontal position.

The alphabet B(n)i , i = 1, 2, can be understood as the set of all binary strings of the
length n. In the terms of the entropy,

1

n

(
~H(B(n))∅, ~H(B(n))1, ~H(B(n))2, , ~H(B(n))1,2

)
= (0, ln 2, ln 2, 2 ln 2).

Applying Theorem 6, we can say that a typical pair of encodings f = (f1, f2), f1 :
(Z8)n → 2n and f1 : (Z8)n → 2n, yields the transformations of X(n) with the entropies
satisfying:

1

n
~H(f(X(n))) ∼ (0,

3

2
ln 2,

3

2
ln 2, 2 ln 2) ∗ (0, ln 2, ln 2, 2 ln 2) = (0, ln 2, ln 2, 2 ln 2).
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Let us say, that for the evaluation of ~H(X
(n)
i ), i = 1, 2, it was useful, that both

processes, X
(n)
i and X

(n)
2 were Markov. In the next example we relax this property.

Let us now consider a slight variation of the previous example, namely the random
walk Y on the standard chess board. So the values 0 and 7 are not adjacent any more.
We say that two elements (i, j) and (i′, j′) from Z8×Z8 are adjacent if they are adjacent
in one coordinate and equal in the other, i. e. if the sum of differences |i− i′| and |j− j′|
equals one. We denote by Vi,j the number of pairs from Z8 × Z8 adjacent to (i, j) and
define the transition probabilities as follows,

p(i,j)(i′,j′) =

{
1
Vi,j

, if (i, j) and (i′, j′) are adjacent,

0, otherwise.

Let us fix a deterministic start at the origin, Y (0) = (0, 0). Again, this Markov chain with
finite states is homogeneous, irreducible, periodic with period two and non-stationary
because the initial distribution is not equal to the stationary one. In order to find the
entropy profile of the Markov chain, it is very handful to replace the process by its
stationary version that has the same profile due to Corollary 5. It helps to establish the
entropy rate of the whole process. Nevertheless, the process (Y1(n))n∈N and (Y2(n))n∈N
are not Markov, so their entropy rate can be only estimated. Using appropriate formula
for the entropy rate of a Markov chain and a lower bound for the entropy rate of a
function of a Markov chain, we get that h(Y) is around 1.83 ln 2 and h(Y1) = h(Y2) >
1.29 ln 2. But even very simple observations lead to the facts that all the rates h(Y),
h(Y1) and h(Y2) belong into the interval (ln 2, 2 ln 2), what is important to evaluate the
convolution below.

If we use an encoding scheme into the same alphabets as in the previous example, we
obtain that a typical pair of encodings f = (f1, f2), f1 : (Z8)n → 2n and f1 : (Z8)n → 2n,
yields the transformations of Y (n) with the entropies satisfying:

1

n
~H(f(Y (n))) ∼ ~h(Y) ∗ (0, ln 2, ln 2, 2 ln 2) = (0, ln 2, ln 2, h(Y)) = (0, 1, 1, 1.83) ln 2.

6. MEAN FLUCTUATION OF THE INFORMATION FUNCTION

As far as we know, the mean fluctuation M(X) of the information function IX from
its mean H(X) is not established explicitly in the literature. Nevertheless, we found
it very efficient and elegant to use it as a quantity that helps to describe asymptotic
equipartition property. In this section, we would like to introduce some properties of
the mean fluctuation that are interesting in its own.

Let us introduce some similar quantities for a probability measure on a finite set,

M+(P, a) = EP ( IP − a)
+
, D(P) = M(P, ln(#s(P))),

M−(P, a) = EP ( IP − a)
−
, D+(P) = M+(P, ln(#s(P))),

where the notation a+ and a− stands for positive and negative parts of a number a,
respectively. In the similar manner, we define D−. We can express the entropy and the
divergence from the uniform distribution on the support of the measure as follows:

H(P) = M(P, 0), DKL(P|| U(s(P))) = D(P)− 2D+(P).
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Let us point out that the above-mentioned Kullback-Leibler divergence from the uniform
distribution, as well as the mean fluctuation from a = ln(#s(P)), is well defined only if
the support s(P) is finite, whereas the mean fluctuation does not need the finiteness (
we assumed the finiteness of probability spaces only for simplicity).

For a discrete random variable X, we extend the previous notions in a natural way,
M(X, a) := M(PX , a), etc.

Let us notice that the term D+(X) is bounded above by ln e
e and can be often ne-

glected as a term of small magnitude with respect to D(X). Using the notation ŝ(X) for
the subset of the support of PX that contains very small atoms, i. e. the values whose
probability is less than 1/(#s(X)), we get the mentioned bound:

D+(X) =
∑

x∈ŝ(X)

P(x) ln
1

#s(X)P(x)

= P(ŝ(X))
∑

x∈ŝ(X)

P(x)

P(ŝ(X))
ln

1

#s(X)P(x)

≤ P(ŝ(X)) ln
∑

x∈ŝ(X)

1

P(ŝ(X))#s(X)

≤ P(ŝ(X)) ln
1

P(ŝ(X))
≤ ln e

e
.

For a random variable, we define the following relative versions of the mean fluctua-
tions:

Mrel(X) =
M(X)

H(X)
, Drel(X) =

D(X)

H(X)
.

The definition is correct as H(X) > 0. Otherwise, Mrel and Drel are set to be zero.
We call Mrel the relative mean fluctuation and Drel the relative index of uniformity.
Let us recall that for a positive random variable η the mean fluctuation is bounded as
follows:

E |E(η)− η| = 2E (E(η)− η)
+ ≤ 2E(η).

Hence, Mrel is bounded by 2, whereas Drel has no reasonable bound. The following
lemma shows that Drel dominates Mrel.

Lemma 1. If H(X) > 0, then

Mrel(X) ≤ 2Drel(X).

P r o o f . Obviously,

M(X,H(X)) < M(X, ln(#s(X))) + |H(X)− ln(#s(X))| ≤ 2D(X).

�

Since H(P) is the expectation of IP, we get

M−(P) = M+(P), M(P) = 2M−(P) = 2M+(P).
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Lemma 2. Let P = (1 − ε)P′ + εP′′ for three discrete probability measures P, P′ and
P′′ defined on the same space and ε ∈ (0, 1). Then

M(P) ≤ 2ε(H(P′′) + 2H(P′)) + 2M(P′) + 10 ln 2.

P r o o f . Let us recall that

(1− ε)H(P′) + εH(P′′) ≤ H(P) ≤ (1− ε)H(P′) + εH(P′′) + 1.

Let A denotes the set of all x’s such that (1− ε)P′(x) > εP′′(x). We conclude the proof
by the following calculation:

1

2
M(P) = M−(P) =

∑
x

P(x) (H(P) + lnP(x))
+

≤
∑
x

P(x) ((1− ε)H(P′) + εH(P′′) + ln 2 + lnP(x))
+

≤ εH(P′′) + ln 2 +
∑
x 6∈A

2εP′′(x) (H(P′) + ln 2εP′′(x))
+

+
∑
x∈A

2(1− ε)P′(x) (H(P′) + ln 2(1− ε)P′(x))
+

≤ εH(P′′) + ln 2 + 2ε(H(P′) + ln 2) + 2 ln 2 + 2M−(P′).

�

Lemma 3. Let P = (1 − ε)P′ + εP′′ for three discrete probability measures P, P′ and
P′′ defined on the same space and ε ∈ (0, 1). Then

M(P) ≤ 2

(
εH(P) + ln 2 +

∑
x

P(x) (H(P)− IP′(x))
+

)
.

P r o o f . Let us recall that

(1− ε)H(P′) + εH(P′′) ≤ H(P) ≤ (1− ε)H(P′) + εH(P′′) + 1.

Let A denotes the set of all x’s such that (1− ε)P′(x) > εP′′(x). We conclude the proof
by the following calculation:

1

2
M(P) = M−(P) =

∑
x

P(x) (H(P) + lnP(x))
+

= ln 2 +
∑
x 6∈A

P(x) (H(P) + ln εP′′(x))
+

+
∑
x∈A

P(x) (H(P) + ln(1− ε)P′(x))
+

≤ ln 2 + εH(P) +
∑
x∈A

P(x) (H(P) + lnP′(x))
+
.

�
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We already mentioned that for a variable X with infinite support s(X), the value
D(X) and Drel(X) is not well-defined whereas the values M(X) and Mrel(X) can take
arbitrarily small positive values. In this section, we show that the difference between
these two notions remains significant even in the case of finite-valued i.i.d. process.

In the next lemma, we show, that for the ergodic case, Mrel goes to zero, whenever
the entropy rate is non-null. We generalize the result for the conditional version of
quantity Mrel in Lemma 5 (for the definition of the conditional Mrel see the beginning
of Section 7). Lemma 5 reduces to Lemma 4 by choosing (Yi)i∈N to be a trivial process
with only one possible value.

Lemma 4. Let X = (Xi)i∈N be an ergodic stationary process with strictly positive and
finite entropy rate h. Then

lim
n→∞

Mrel(X1, X2, . . . , Xn) = 0.

Lemma 5. Let X = (Xi, Yi)i∈N be an ergodic stationary process with strictly positive
(and finite) entropy rate h(X|Y ). Then

lim
n→∞

Mrel(X
(n)|Y (n)) = 0.

P r o o f . We use the weaker form of conditional AEP for the ergodic processes. Namely,
1
n IX(n)|Y (n) converges to h in probability. Since 1

nH(X(n)|Y (n)) goes to h(X|Y ) too,
the difference

ξn =
1

n

(
IX(n)|Y (n) −H(X(n)|Y (n))

)
converges to zero in probability. Since Eξn is zero,

E|ξn| = 2Eξ−n .

But ξ−n goes to zero in L1-norm, because it converges in probability and is bounded by
H(X1|Y1). It follows that ξn goes to zero in L1-norm, i. e. E|ξn| goes to zero. Thus,

lim
n→∞

Mrel(X
(n)|Y (n)) = lim

n→∞

E
∣∣ IX(n)|Y (n) −H(X(n)|Y (n))

∣∣
H(X(n)|Y (n))

= lim
n→∞

E|ξn|
H(X(n)|Y (n))/n

=
0

h(X|Y )
= 0.

�

The following lemma is a direct consequence of the property of the divergence for the
product measures.

Lemma 6. If = (Xi)i∈N is i.i.d., s(X1) is finite and H(X1) > 0, then Drel(X
(n))

converges to ln(#s(X1))−H(X1)
H(X1)

. In particular, the sequence Drel(X
(n)) converge to zero

if and only if every Xi is uniform.

The lemmas show that the control of the uniformity of the distribution of the random
variable via the relative mean fluctuation is weaker than that via the relative divergence
from the uniform distribution on the set of values.
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7. PROOFS OF MAIN THEOREMS

In this section, we prove Theorems 2 and 3. The section is self-contained, and the
lemmas from the previous section are not involved. Proposition 7 is proved with several
free parameters where the full generality is aimed to serve as a flexible reference in
future research. Afterward, many of the parameters are fixed in Corollary 9 to get a
more specific result, which is used in the proofs of Theorems 2 and 3.

First, let us introduce conditional counterparts of quantities defined so far. Given two
discrete random variables X and Y defined on the same probability space with values in
the countable sets X and Y, respectively, we define the conditional information function
by the formula IX|Y = IX,Y − IY , where all the three functions are considered on the
domain X × Y.

We can extend the definition of M and Mrel to the conditional case as follows:

M(X|Y, a) = EPX,Y

∣∣ IX|Y − a∣∣ M+(X|Y, a) = EPX,Y

(
IX|Y − a

)+
M−(X|Y, a) = EPX,Y

(
IX|Y − a

)−
.

Shorter notation M(X|Y ), M+(X|Y ) and M−(X|Y ) is used when a = H(X|Y ). In
addition, when H(X|Y ) > 0, then put

Mrel(X|Y ) =
M(X|Y )

H(X|Y )
.

Since the information function satisfies the following chain rule,

IX|Y + IY = IX,Y ,

we get

M(X|Y ) ≤ E| IY −H(Y )|+ E| IX,Y −H(X,Y )| ≤M(Y ) +M((X,Y )), (3)

M(X,Y ) ≤M(Y ) +M((X|Y )). (4)

Since H(X|Y ) is the expectation of IX|Y , we get

M−(X|Y ) = M+(X|Y ), M(X|Y ) = 2M−(X|Y ) = 2M+(X|Y ). (5)

The following lemma is a simplified version of Lemma 6 in [7]. It provides the crucial
bound on the probability of the colored atoms that is applied in the next proposition.

Lemma 7. (Matúš [7]) Let P be a sub-probability measure on a finite set X . For k ≥ 1,

ε > 0, the proportion of those maps (encodings) f from X into k̂ that satisfy

P(f−1(j)) ≤ 1 + ε

k
j ∈ k̂,

is at least
1− ke−

ε
2kq ln(1+ε),

where q = maxx∈X P(x).
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The next proposition is our core technical result. We introduce it in all its generality
and possible flexibility given by free parameters t1, t2, δ, r and s. For the purpose of this
article, it is enough to reduce the parameters in the way we follow in Corollary 9, where
t1 and t2 coincide and have the value enough large with respect to the join entropy
and mean fluctuation of given variables X and Y , r and s are set to be 1/2 and δ is a
constant possibly large, but definitely significantly smaller than H.

Proposition 7. Let X,Y be random variables with values in finite sets AX and AY ,
respectively. Let B be a finite set, t1, t2, δ ∈ R+, r, s ∈ (0, 1). Let α = 1

t1
M(X|Y ),

β = 1
t2
M(Y ), R = min(H(X|Y ), ln | B|) and γ = α1−r + β1−s. Then the proportion of

those maps (encodings) f from AX into B that satisfy the conditions

M(f(X)|Y ) ≤ 2γR+ 2δ + 4 ln 2,

|H(f(X)|Y )−R| ≤ γR+ δ + 2 ln 2,

is at least

1− exp

(
− ln 2

2
eδ+H(X|Y )−R−αrt1 + ln | B|+H(Y ) + βst2

)
.

Before the rigorous proof, let us explain the route of the proof informally, with some
level of simplification. By the assumptions and notations in the proposition, we get
that for P-most of y ∈ AY , the conditional probability P(x|y) is bounded from above by
e−H(X|Y )+c for P(.|y)-most of x ∈ X, where c is a constant related to the free parameters
r, t1 and the mean fluctuation M(X|Y ). Fix y0 ∈ AY with such a property. A random
encoding f : AX → B can be understood as a random grouping of elements from
AX into | B| groups. The large deviation principle, introduced as Lemma 7, ensures
that for a large majority of encodings (the complement is exponentially small), the
sum of conditional probabilities P (x|y0) over all x from one group does not exceed
e− ln | B| + e−R+δ. These encodings behave nicely for one given y0 ∈ AY . We prove that
the number of “bad” encodings for a given y0 is so small, that the most of encodings
behave nicely for the most of y ∈ AY (the complement of all “bad” encodings is still
exponentially small). For such an encoding, e− ln | B|+ e−R+δ dominates P(f−1(z)|y) for
most of z ∈ B and y ∈ AY , so the information function If(X)|Y (z, y) is bounded from
below by a value close to R − δ on the most of atoms (z, y) ∈ B × AY . Nevertheless,
R is also a natural upper bound for the entropy H(f(X)|Y ), since the entropy of the
output exceeds neither the entropy of the input nor the logarithm of the size of the output
alphabet. These two facts then provide the respective bounds on the entropy H(f(X)|Y )
and on the mean fluctuation M(f(X)|Y ) from the hypothesis of the proposition.

P r o o f . Denote R = min(H(X|Y ), ln | B|). Surely, H(f(X)|Y ) ≤ R.

Fix r, s > 0 and put

B ={y | | IY −H(Y )| < βst2},
A ={(x, y)|

∣∣ IX|Y −H(X|Y )
∣∣ < αrt1}.
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By Markov inequality, we get PX,Y (A) > 1 − α1−r and PY (B) > 1 − β1−s. Let P′ be
the restriction of PX,Y on A, i. e. P′ is sub-probability measure defined as follows:

P′(x, y) =

{
PX,Y (x, y), if (x, y) ∈ A, y ∈ B,
0, otherwise.

Given y ∈ B, measure Qy(x) = P′(x, y)/PY (y) is a sub-probability measure that is
bounded by e−H(X|Y )+αrt1 . We apply Lemma 7. Let cy be the proportion of encodings
that satisfy the condition:

Qy(f−1(x′)) ≤ 1

| B|
+ eδ−R, x′ ∈ B. (6)

By Lemma 7,

1− cy ≤ exp

(
− eδ−R| B|

2| B|e−H(X|Y )+αrt1
ln(1 + eδ−R| B|) + ln | B|

)
≤ exp

(
− ln 2

2
eδ+H(X|Y )−R−αrt1 + ln | B|

)
.

Let c be the proportion of the encodings that satisfy the above-mentioned conditions for
all y ∈ B simultaneously. Then

1− c ≤ (#B) exp

(
− ln 2

2
eδ+H(X|Y )−R−αrt1 + ln | B|

)
≤ exp

(
− ln 2

2
eδ+H(X|Y )−R−αrt1 + ln | B|+H(Y ) + βst2

)
.

For the rest of the proof, let f : AX → B be an encoding that satisfies condition
(6). We denote by Pf(X),Y and P′f,Id the probability and sub-probability measures on
B × AY that are the images of the probability PX,Y and sub-probability P′ under the
mapping (f, Id) : AX × AY → B × AY , i. e.

Pf(X),Y (x′, y) = PX,Y
(
f−1(x′)× {y}

)
, P′f,Id(x′, y) = P′

(
f−1(x′)× {y}

)
.

Put P′′ = Pf(X),Y −P′f,Id, A′ = {(x′, y) | P′f,Id(x′, y) > P′′(x′, y)}. Let us notice, that
(x′, y) ∈ A′ implies P′f,Id(x′, y) is strictly positive, so y ∈ B.
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In the following calculation, we use the fact that Pf(X),Y ≤ 2 max(P′′,P′f,Id):

M−(f(X)|Y,R) ≤
∑
(x′,y)

Pf(X),Y (x′, y)

R+ ln
2 max

(
P′f,Id(x′, y),P′′(x′, y)

)
PY (y)

+

≤ ln 2 + P′′(B × AY )R

+
∑

(x′,y)∈A′,y∈B

P′f,Id(x′, y)

(
R+ ln

P′f,Id(x′, y)

PY (y)

)+

≤ ln 2 + (α1−r + β1−s)R

+

(
R+ ln

(
1

| B|
+ eδ−R

))
≤ ln 2 + (α1−r + β1−s)R+ (δ + ln 2) ≤ γR+ δ + 2 ln 2.

In addition,

R−H(f(X)|Y ) = EPf(X),Y

(
R− If(X)|Y

)
≤M−(f(X)|Y,R).

Since H(f(X)|Y ) ≤ R, |R−H(f(X)|Y )| is bounded by γR+ δ + 2 ln 2. Moreover,

M(f(X)|Y ) = 2M−(f(X)|Y ) = 2EPf(X),Y

(
H(f(X)|Y )− If(X)|Y

)+
≤ 2EPf(X),Y

(
R− If(X)|Y

)+ ≤ 2M−(f(X)|Y,R).

�

If we choose Y to be a trivial random variable (deterministic one), then we get the
following corollary for one random variable.

Corollary 8. Let X be random variables with values in finite set A, B be a finite set,
t ∈ R+, r ∈ R. Let α = 1

tM(X), R = min(H(X), ln | B|). Then the proportion of those
maps (encodings) f from A into B that satisfy the conditions

M(f(X)) ≤ 2α1−rR+ 2δ + 4 ln 2,

|H(f(X))−R| ≤ α1−rR+ δ + 2 ln 2,

is at least

1− exp

(
− ln 2

2
eδ+H(X)−R−αrt + ln | B|

)
.

The following corollary introduces the explicit bounds for the change of the joint en-
tropy and the mean error of the joint information function when one variable is encoded
into a prescribed alphabet.
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Corollary 9. Let X,Y be random variables with values in finite sets AX and AY ,
respectively. Let B be a finite set, 1 ≤ ε > 0 and H > 0 such that

H ≥ H(X,Y ), H ≥ M(X,Y )

ε
, H ≥ M(Y )

ε
, H ≥ 4 ln 2

ε
. (7)

The proportion of those maps (encodings) f from AX into B that satisfy the conditions

M(f(X)|Y ) ≤ 10
√
εH,

|H(f(X)|Y )−R| ≤ 5
√
εH,

is at least

1− exp

(
− ln 2

2
eεH + ln | B|+ 2H

)
,

where R = min(H(X|Y ), ln | B|).

P r o o f . Put

t1 = t2 = H, r = s =
1

2
, δ =

(
ε+
√
ε
)
H.

If we define α, β and γ as in Proposition 7, then the inequalities (7) and subadditivity
for M (see (3)) ensures that α ≤ 2ε, β ≤ ε and γ ≤ (

√
2 + 1)

√
ε.

By Proposition 7 , the proportion of those maps (encodings) f from AX into B that
satisfy the conditions

M(f(X)|Y ) ≤ 2(
√

2 + 1)
√
εH + 2(ε+

√
ε)H + εH,

|H(f(X)|Y )−min(H(X|Y ), ln | B|)| ≤ (
√

2 + 1)
√
εH + (ε+

√
ε)H + εH/2,

is at least

1− exp

(
− ln 2

2
eεH + ln | B|+H(Y ) +

√
εH

)
.

Since M(Y ) ≤ εH and ε ≤
√
ε, we get

2(
√

2 + 1)
√
εH + 2(ε+

√
ε)H + εH ≤ 10

√
εH

(
√

2 + 1)
√
εH + (ε+

√
ε)H + εH/2 ≤ 5

√
εH.

In the exponent for the bound of the proportion of the encodings, H(Y ) +
√
εH is

bounded by 2H, since ε ≤ 1. �

P r o o f . [Proof of Theorem 2]
We will prove the theorem by the induction over `. For all the proof, fix k, `, ε, δ,X =

(Xi)i≤k, H which satisfy the assumptions of the proposition.
Assume that ` = 0. Then the only element f from E` is identity, f(X) = X,

w = H(X). The theorem follows immediately.
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Let ` ≥ 1, ε′ =
(
ε

121

)2
and

w = ~H(X) ∗ ~H((Bi)i≤`), w′ = ~H(X) ∗ ~H((Bi)i≤`−1).

The set of all f ′ ∈ E`−1 that satisfy the conditions

M ′(f ′(X)) ≤ ε′H,
∥∥∥ ~H(f ′(X))− ~H(X) ∗ ~H((Bi)i≤`−1)

∥∥∥
max
≤ ε′H, (8)

is denoted by G′. Let π : E` → E`−1 is the projection defined by the formula π(f) =
(fi)i≤`−1 ∈ E`.

Given f ∈ E`−1, J ⊂ k̂\{`}, Gf,J is the set of all mappings that satisfy the conditions:

M(g(X`)|fJ(XJ)) ≤ 10
√
ε′H (9)

|H(g(X`)|fJ(XJ))−min(H(X`|fJ(XJ)), ln | B`|)| ≤ 5
√
ε′H. (10)

The special form of the conditions suits the later application of Corollary 9. Put Gf =⋂
J Gf,J , where the intersection goes over all J ⊂ k̂ \ {`},

G = {f ∈ E` | π(f) ∈ G′, f` ∈ Gπ(f)}.

Let f ∈ G, I ⊂ k̂. If ` 6∈ I, then wI = w′I , fI equals f ′I and (8) ensures that
M(fI(XI)) and the difference |H(fI(XI))−wI | are both bounded by εH. If ` ∈ I, then

M(fI(XI)) ≤M(f`(X`)|f ′J(XJ)) +M(f ′J(XJ)) ≤ 10
√
ε′H + ε′H ≤ εH,

where J = I \ {`}. By Proposition , wI ≥ H(fI(XI)) and

wI −H(fI(XI)) = wI −H(fJ(XJ))−H(f`(X`)|fJ(XJ))

= wI −H(fJ(XJ))−min(H(X`|fJ(XJ)), ln | B`|) + 5
√
ε′H

= wI −min(H(f ′I(XI)), H(fJ(XJ)) + ln | B`|) + 5
√
ε′H

= wI −min(w′I , w
′
J + ln | B`|) + ε′H + 5

√
ε′H

≤ wI − wI + ε′H + 5
√
ε′H ≤ εH.

Hence, condition (2) holds for all f ∈ G.
In order to make statements shorter and notations more readable, we put

`′ = `− 1, D = exp

(
− ln 2

2
eδH + ( ~H(B))ˆ̀+ 2H

)
.

Since δ =
(
ε′

121

)2`
and H(X ˆ̀′) ≤ H(Xˆ̀), the assumption of the theorem remains true

when replacing ` by `′ and ε by ε′. By the inductive assumption and the fact that π is
a mapping | A`|| B`| to 1, we get

c1 := 1− |π
−1(G′)|
| E`|

= 1− |G′|
| E`−1|

≤ (`− 1) 2k−1D.
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Let f ′ ∈ G′, J ⊂ k̂ \ {`}. We will apply Corollary 9, where the variables X and Y
are understood as X` and fJ(XJ), respectively, and ε is replaced by ε′.

First we have to verify the assumptions of the proposition, namely

H ≥ H(X`, fJ(XJ)), H ≥ M(X`, fJ(XJ))

ε′
, H ≥ M(fJ(XJ))

ε′

and H ≥ 4 ln 2
ε′ . The first inequality follows from the fact that H(fJ(XJ)) ≤ H(XJ) for

every J ∈ k̃. The second and the third one are the immediate consequence of the fact
that the numerators are bounded M ′(f(X)). The last one follows from the inequality
ε′ > ε.

Applying Corollary 9,

cf ′,J := 1− |Gf
′,J |

| B`|| A`|
≤ exp

(
− ln 2

2
eδH + ( ~H(B)) ˆ̀′ + 2H

)
≤ D.

Hence,

cf ′ := 1− |Gf ′ |
| B`|| A`|

≤
∑

J⊂k̂\{`}

1− |Gf
′,J |

| B`|| A`|
≤ 2k−1D.

By the definition of G, there is one-to-one correspondence between its elements and
pairs (f ′, g) where f ′ ∈ G and g ∈ Gf ′ , given by the equality fi = f ′i , i ≤ `− 1, f` = g.

Hence

1− |G|
| E`|

= 1−
∑
f ′∈G′ | Gf ′ |
| E`|

≤
| G′| · | B`|| A`| −

∑
f ′∈G′ | Gf ′ |

| E`|

≤
| E`| − | G′| · | B`|| A`| +

∑
f ′∈G′ | B`|| A`| − |Gf ′ |

| E`|

≤ 1− |G′|
| E`−1|

+
1

| E`−1|
∑
f ′∈G′

| B`|| A`| − |Gf ′ |
| B`|| A`|

≤ c1 +
1

| E`−1|
∑
f ′∈G′

cf ′ ≤ (`− 1) 2k−1D +
| G′|
| E`−1|

2k−1D ≤ ` 2k−1D.

�

Before we start to prove Theorem 3, let us recall the following inequalities, that will

be used in the proof. For u, u′ ∈ Rk̃ and v, v′ ∈ R˜̀
,

||u ∗ v − u′ ∗ v||max ≤ ||u− u′||max, ||u ∗ v − u ∗ v′||max ≤ ||v − v′||max.

It follows from the very general fact; given two vectors of real numbers (ai)i≤m and
(bi)i≤m,

|min
i≤m

ai −min
i≤m

bi| ≤ max
i≤m
|ai − bi|.
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P r o o f . [Proof of Theorem 3]
Use the shorter notation:

h(n) =
~H(X(n))

n
, g(n) =

~H(f(X(n)))

n
, b(n) =

~H(B(n))
n

.

Let δ <
(

min(ε,hk̂)

121hk̂

)2|`|
. There exist ε′′ < ε′ < min(ε, hk̂) and δ′ > δ such that δ′ =(

ε′′

121hk̂

)2|`|
. By the assumptions of the theorem, for n big enough, H(X(n)) exceeds

both , (δ′)−1M ′(X(n)) and (δ′)−14 ln 2. By Theorem 2, the proportion of the encodings

from E(n)` that satisfy

M ′(f(X(n))) ≤ ε′′

hk̂
nh

(n)

k̂
&

∥∥∥ng(n) − nh(n) ∗ nb(n)∥∥∥
max
≤ ε′′

hk̂
nh

(n)

k̂
, (11)

is at least

1− exp

(
− ln 2

2
eδ

′n + nb
(n)
ˆ̀ + 2nh

(n)

k̂
+ (k − 1) ln 2 + ln `

)
.

Since h(n) goes to h and hk̂ > 0,
h
(n)

k̂

hk̂
is smaller than ε′

ε′′ for n large enough. In such

a case, condition (11) implies

M ′(f(X(n)))

n
< ε′ &

∥∥∥g(n) − h(n) ∗ b(n)∥∥∥
max

< ε′. (12)

In addition,∥∥∥h ∗ b− h(n) ∗ b(n)∥∥∥
max
≤
∥∥∥h ∗ b− h(n) ∗ b∥∥∥

max
+
∥∥∥h(n) ∗ b− h(n) ∗ b(n)∥∥∥

max

≤
∥∥∥h− h(n)∥∥∥

max
+
∥∥∥b− b(n)∥∥∥

max
.

The last two terms goes to zero. Thus, for n large enough, their sum is bounded by
ε− ε′ and condition (11) implies∥∥∥g(n) − h ∗ b∥∥∥

max
< ε.

It remains to prove, that the lower bound for the proportion of the encodings satis-
fying (11) is larger than 1− exp

(
−eδn

)
. But in the exponent of the exponential term in

the bound, there is only one exponential term − ln 2
2 eδ

′n, the others are at most linear.
Since δ < δ′, the term −eδn is eventually bigger than all the exponent term from the
bound and

1− exp

(
− ln 2

2
eδ

′n + nb
(n)
ˆ̀ + 2nh

(n)

k̂
+ (k − 1) ln 2 + ln `

)
> 1− exp

(
−eδn

)
.
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