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A HOMOGENEITY TEST OF LARGE DIMENSIONAL
COVARIANCE MATRICES UNDER NON-NORMALITY

M. Rauf Ahmad

A test statistic for homogeneity of two or more covariance matrices is presented when the
distributions may be non-normal and the dimension may exceed the sample size. Using the
Frobenius norm of the difference of null and alternative hypotheses, the statistic is constructed
as a linear combination of consistent, location-invariant, estimators of trace functions that
constitute the norm. These estimators are defined as U -statistics and the corresponding theory
is exploited to derive the normal limit of the statistic under a few mild assumptions as both
sample size and dimension grow large. Simulations are used to assess the accuracy of the
statistic.
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1. INTRODUCTION

Let Xik = (Xi1k, . . . , Xipk)′, k = 1, . . . , ni be independent random vectors drawn from
a non-degenerate multivariate distribution Fi, i = 1, . . . , g. Let E(Xik) = µi ∈ Rp,
Cov(Xik) = Σi ∈ Rp×p>0 , where Rp×p>0 denotes the space of real, symmetric, positive-
definite matrices. Let the vectors be generated by a probability space (X ,A,P) with its
usual meaning, i. e. X is the sample space, A an appropriate σ-algebra and P a proba-
bility measure.

Our objective is to construct a statistic to test H0g : Σi = Σ ∀ i vs. H1g : Σi 6= Σ
for at least one i, when p� ni and Fi need not necessarily be multivariate normal. As
the classical likelihood-ratio tests collapse for p > ni, they need to be modified. Some
recent modifications include [5, 6, 13, 14, 20, 24]; for more details and a review, see [7].

[2] also present a test statistic for H0g, using the component estimators of the test
statistic defined as U -statistics of second order symmetric kernels. The kernels are non-
invariant bilinear forms of the vectors coming from g independent samples, which makes
the test statistic also non-invariant which, in turn, implies that the validity of the test
statistic depends on assuming zero centroids for all populations, i. e. µi = 0 ∀ i. Under
H0g, an extension to testing multi-sample sphericity or identity structures of the common
covariance matrix is also provided. The present article extends the homogeneity test in
[2] to the location-invariant case which is valid whether the mean vectors are assumed
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zero or not; in other words, for the proposed test, the mean vectors can be assumed
zero without any loss of generality. A corresponding extension of tests for multi-sample
sphericity and identity to the location-invariant setting is given in [1].

The proposed test statistic is a linear combination of unbiased, consistent, location-
invariant estimators. Keeping the underlying assumptions minimum and mild, the joint
distribution of estimators is used to derive the normal limit of the statistic. The non-
parametric nature of estimators, being U -statistics, help us relax normality assumption,
and replace it with a more flexible model

aik = Λibik, (1)

where aik = Xik − µi, bik = (bik1, . . . , bikp)
′ are independent vectors with E(bik) = 0,

Cov(bik) = I, and Λi is a known p × p matrix of constants such that Λ′iΛi = Ai and
ΛiΛ

′
i = Σi, i = 1, . . . , g. The mean-deviated form of aik fits into the location-invariant

form of the test so that we can assume w.l.o.g. µi = 0 ∀ i. The test statistic and its
properties are studied in the next section and its accuracy is assessed in Sec. 3. Proofs
are collected in the Appendix.

2. TEST STATISTICS AND THEIR PROPERTIES

2.1. Two-sample case

We begin with the two sample case (g = 2) which will be extended to the general case
in the next section. Then, for Model (1), Xik ∼ Fi, k = 1, . . . , ni, are independent
random samples from Fi with parameters µi and Σi, i = 1, 2, as defined above. To
test H02 : Σ1 = Σ2, let the Frobenius norm τ12 = ‖Σ1 − Σ2‖2 measure the distance
between the covariance matrices Σ1 and Σ2. Note that, if the data set can be assumed
to follow a Hilbert space, H, then τ12 is also the Hilbert-Schmidt norm. Since τ12 =
tr(Σ2

1)+tr(Σ2
2)−2 tr(Σ1Σ2), a test for any pair of covariance matrices can be constructed

by either using efficient estimators of Σi, i = 1, 2, or directly of the traces that compose
the norm. We shall pursue the later approach by defining unbiased and consistent
estimators of the traces. Let δ̂i, δ̂12 denote these estimators, so that τ̂12 =

∑2
i=1 δ̂i−2δ̂12

is an empirical measure of τ12 with E(τ̂12) = τ12 = 0 under H02. Then

τ̂12 − τ12 =

2∑
i=1

{δ̂i − tr(Σ2
i )} − 2{δ̂12 − tr(Σ1Σ2)}

with E(τ̂12 − τ12) = 0 under H02 and H12. With a simple re-scaling which will help us
allow p→∞ along with n→∞, we define

T2 = (τ̂12 − τ12)/p2 =

2∑
i=1

aiδ̃i − 2a12δ̃12 (2)

with ai = tr(Σ2
i )/p

2, δ̃i = δ̂i/E(δ̂i) − 1, a12 = tr(Σ1Σ2)/p2, δ̃12 = δ̂12/E(δ̂12) − 1.
Under H02, ai = a12 = tr(Σ2)/p2 with an estimator, say â. Note that, T2 is a linear
combination of non-degenerate weighted U -statistics, with coefficients ai, a12 [11]; see
also [15, 16] for a detailed treatment of degenerate case. Now, T2 is a test statistic, also
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under the null using â for a. With a slight abuse of notation, we henceforth use T2 as
test statistic for both cases, where an efficient estimator of a will be plugged in later
after studying the moments of T2.

The properties of T2 obviously follow from those of δ̂i, i = 1, 2, δ̂12. Let Xi =∑ni

k=1 Xki/ni and Σ̂i =
∑ni

k=1 X̃kiX̃
′
ki/(ni − 1), be unbiased estimators of µi, Σi, re-

spectively, with X̃i = Xki−Xi. Let Qi =
∑ni

k=1(X̃′kiX̃ki)
2/(ni−1), ηi = (ni−1)/[ni(ni−

2)(ni−3)]. Then δ̂i and δ̂12, which follows by independence, as estimators of tr(Σ2
i ) and

tr(Σ1Σ2), are defined as

δ̂i = ηi{2 tr(Σ̂
2

i ) + (n2i − 3ni + 1)[tr(Σ̂i)]
2 − niQi}, δ̂12 = tr(Σ̂1Σ̂2). (3)

Theorem 2.1, proved in Sec. B.2, gives moments of δ̂i and δ̂12.

Theorem 2.1. Given Model (1), δ̂i, δ̂12, δ̃i, δ̃12 as above, M2, M3 as in Theorem A.1.

Let n =
∑2
i=1 ni, Q(ni) = ni(ni−1), P (ni) = Q(ni)(ni−2)(ni−3). Then E(δ̂i) = tr(Σ2

i ),

E(δ̂12) = tr(Σ1Σ2) and, using a(ni) = 2n3i − 9n2i + 9ni − 16, b(ni) = n2i − 3ni + 8,

Var(δ̂i) =
4

P (ni)

[
a(ni) tr(Σ4

i ) + b(ni)[tr(Σ
2
i )]

2 + (M2 +M3)O(n2i )
]

Var(δ̂12) =
2

(ni − 1)(nj − 1)

[
(n−1) tr(ΣiΣj)

2+[tr(ΣiΣj)]
2+(M2+M3)O(ni)

]
Cov(δ̂1, δ̂12) =

4

Q(n1)

[
n1 tr(Σ3

1Σ2) +M2O(n1)
]
.

Further, Var(δ̃i) = O(1/ni), Var(δ̃12) = O(n/n1n2), Cov(δ̃i, δ̃12) = O(1/ni), i = 1, 2.

The last part of Theorem 2.1 refers to moment-ratios, uniformly bounded in p, of
scaled estimators, δ̃’s. This explains why T2 is likewise scaled. It will help us determine
the non-degenerate limit of T2 under mild assumptions which will also be stated with
same scaling to keep the entire program consistent. We state these assumptions for the
general case, i, j = 1, . . . g ≥ 2, so that we can also use them in multi-sample extension
in the following section without repetition.

Let λis, s = 1, . . . , p, be the eigenvalues of Σi, so that νis = λis/p are those of Σi/p.
Let Σa

i � Σb
j , Σa

i ⊗ Σb
j , a, b ∈ R+, be Hadamard and Kronecker products of matrices

raised to powers indicated. Denote tr(Σa
i ⊗Σb

j) =
∑
s λ

a
is

∑
s λ

b
js = θa,bKij , similarly θa,bHij

for Hadamard product. We need the following assumptions, where i, j = 1, . . . g, i 6= j,
with g ≥ 2.

Assumption 2.2. E(b4iks) = 3 + γ, ∀ s = 1, . . . , p, γ ∈ R.

Assumption 2.3. limp→∞
∑p
s=1 νis → ν0 = O(1).

Assumption 2.4. limp→∞ θH12/θ
K
12 → 0, a, b = 1, 2, 3, a+ b ≤ 4.

Assumption 2.5. (i) p/ni → ci ≤ c ∈ (0,∞), i = 1, 2 (ii) ni/nj → c0 ∈ (0,∞).
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Assumption 2.2 helps us relax normality and work under Model (1). Assumption 2.3
holds conveniently for most covariance structures. An immediate consequence of As-
sumption 2.3 is that

∑
s ν

2
s = O(1), so that in the sequel, the assumption may also

imply its consequence. Assumption 2.5 controls the joint growth of ni and p. It is more
a mathematical requirement as it is shown in Sec. 3 that Tg, g ≥ 2, performs accurately
for moderate ni and any p. Assumption 2.4 is mild with the numerator only a fraction
of the denominator, and it is not required when Fi is multivariate normal. For the limit
of T2 under the assumptions, we get E(T2) = 0 where σ2

T2
= Var(T2) follows as

σ2
T2

=

2∑
i=1

a2i Var(δ̃i) + 4a212 Var(δ̃12)− 4a12

2∑
i=1

ai Cov(δ̃i, δ̃12). (4)

Denoting κ = tr(Σ4)/[tr(Σ2)]2, T2 and σ2
T2

simplify under H02 as

T20 = a
[
(δ̂1 + δ̂2 − 2δ̂12)/ tr(Σ2)

]
(5)

σ2
T20

= a2
[
O (1/n1 + 1/n2)κ+ 4(1/n1 + 1/n2)2

]
. (6)

Ignoring the vanishing terms under the assumptions, σ2
T20

can be approximated as

σ2
T20

= 4 (1/n1 + 1/n2)
2
a2[1 + o(1)]. (7)

Since T2 is a linear combination of δ̃i and δ̃12, with ai, a12 uniformly bounded under
Assumption 2.3, and with the samples independent, it conveniently leads to a limit of
T2, where the same limit under H02 holds as a special case [8]. For a similar approach
in mean testing using U -statistics theory, see also [18].

To use T2 in practice, however, we need to estimate Var(T2), which follows by using δ̂i
and δ̂ij as plug-in consistent estimators of tr(Σ2

i ) and tr(Σ1Σ2) so that σ̂2
T2

is a consistent

estimator where σ̂T2/σT2 → 1. Under H02, we use δ̂12 as a (pooled) estimator of tr(Σ2)
in σ2

T2
. The following theorem, proved in Sec. B.3, summarizes the result.

Theorem 2.6. For T2 in Eqn. (2), (T2−E(T2))/σ̂T2

D−→ N(0, 1) under Assumptions
2.2 – 2.5, as ni, p→∞, where σ̂2

T2
is a consistent estimator of σ2

T2
as defined above.

2.2. Multi-sample extension

The general case is a straightforward extension of the two-sample case so that we can
skip many unnecessary details. Consider again the data set up from Sec. 1 under Model
(1), where now H0g : Σi = Σ ∀ i = 1, . . . , g vs H1g : Σi 6= Σj for at least one pair (i, j),
i 6= j, i, j = 1, . . . , g. To extend T2 in Eqn. (2) for g samples, we consider τg =

∑g
i<j τij ,

sum of Frobenius norms over all distinct pairs, with τg = 0 under H0g. Then
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Tg =

g∑
i=1

g∑
j=1

i<j

Tij = (g − 1)

g∑
i=1

aiδ̃i − 2

g∑
i=1

g∑
j=1

i<j

aij δ̃ij , (8)

where
Tij = (τ̂ij − τij)/p2 = aiδ̃i + aj δ̃j − 2δ̃ij

is like T2 for any pair (i, j) with τ̂ij = δ̂i + δ̂j − 2δ̂ij as an empirical measure for

τij = ‖Σi − Σj‖2. The estimator δ̂i remains as in Eqn. (3), where δ̂ij = tr(Σ̂iΣ̂j)

is defined like δ̂12 for any pair (i, j), with Σ̂i already defined around Eqn. (3). The
properties of estimators in Theorem 2.1 extend to the general case by the same token.
We, therefore, only focus on the limit of Tg under Assumptions 2.2 – 2.5, which are
already given in general form. For this, we note that

E(Tg) = (g − 1)

g∑
i=1

aiδ̃i − 2

g∑
i=1

g∑
j=1

i<j

aij δ̃ij (9)

Var(Tg) = (g−1)2
g∑
i=1

a2i Var(δ̃i)+4

g∑
i=1

g∑
j=1

i<j

a2ij Var(δ̃ij)+8

g∑
i=1

g∑
j=1

g∑
j′=1

i<j<j′

aijaij′ Cov(δ̃ij , δ̃ij′)

+ 8

g∑
i=1

g∑
i′=1

g∑
j=1

i<i′<j

aijai′j Cov(δ̃ij , δ̃i′j)−8(g−1)

g∑
i=1

g∑
j=1

i<j

aiaij Cov(δ̃i, δ̃ij).(10)

Consider Var(δ̃i) = 4[{tr(Σ4
i )O(1/ni) + (M2 +M3)O(1/n2i )}/δ2i +O(1/n2i )]. As p→∞,

first two terms vanish by Assumptions 2.4 – 2.5, where tr(Σ4
i )/δ

2
i ≤ 1, so that Var(niδ̃i) =

O(1). Similarly Var(δ̃ij)) = 2[{tr(ΣiΣj)
2O(1/ni+1/nj)+(M2+M3)O(1/ni+1/nj)}/δ2ij+

1/ninj ] so that Var(
√
ninj δ̃ij) = O(1). Further, all covariances in Var(Tg) vanish. Then,

as ni, p→∞,(
(δ̂i − E(δ̂i))/

√
Var(δ̂i) (δ̂ij − E(δ̂ij))/

√
Var(δ̂ij)

)
D−→

(
0, I

)
, (11)

with I2 identity matrix. Under H0g, Tg = [a/δ2]{(g − 1)
∑g
i=1 δ̂i − 2

∑g
i<j δ̂ij} with

E(Tg) = 0 and

Var(Tg) = 4a2

(g − 1)2
g∑
i=1

1

n2i
+

g∑
i=1

g∑
j=1

i<j

2

ninj

 . (12)

With Tg an extension of T2 using Frobenius norms of pairwise differences, and due to
the independence of samples, the asymptotic distribution for Tg follows on the same
lines as for T2. Further, a consistent estimator of Var(Tg) = σ2

Tg
, follows similarly

by plugging the consistent estimators δ̂i and δ̂ij , where under H0g, the common trace
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a = tr(Σ2) is estimated by a pooled estimator as â =
∑
i<j P (ni, nj)δ̂ij/

∑
i<j P (ni, nj),

where P (ni, nj) = Q(ni)Q(nj), Q(ni) = ni(ni − 1). The estimator â reduces to that
used for two-sample case for g = 2. We state the following theorem on the limiting
distribution of Tg, as an extension of Theorem 2.7, without proof.

Theorem 2.7. For Tg in Eqn. (8), (Tg −E(Tg))/σ̂Tg

D−→ N(0, 1) under Assumptions
2.2 – 2.5, as ni, p→∞ with σ̂2

Tg
a consistent estimator of σ2

Tg
= Var(Tg) given above.

For power of Tg, let zα denote 100α%th quantile of N(0, 1), β(θ) be the power
function of Tg with θ = {Σi, 1 ≤ i ≤ g} and Θ0, Θ1 be the parameter spaces under
H0g and H1g, where Θ0 = {Σ}. By Theorem 2.7, β(θ) = P((Tg −τg)/σTg0

≥ zα) with
β(θ|Θ0) = α, β(θ|Θ1) = 1− β, where τg =

∑g
i<j ‖Σi−Σj‖2 so that τg = 0 under H0g,

and σ2
Tg0

denotes Var(Tg) under H0g. Denote γ = σTg0
/σTg

and δ = τg/σTg
. The power

of Tg follows as β(θ|Θ1) = P (Tg /σTg
≥ γzα+δ) = 1−β. From Theorem 2.1 and under

the assumptions, γ = O(1) and δ = O(p) after some simplification, so that the power
increases with increasing p. See also Sec. 3 for a proof of this through simulations.

3. SIMULATIONS

To evaluate Tg for its accuracy in size and power, we consider g = 3 and generate
data from Exp(1) and U[0, 1] distributions. We use n1 ∈ {20, 30, 50}, n2 = n1 + 10,
n3 = n1+20 for size and n1 ∈ {10, 20, 30}, n2 = n1+5, n3 = n1+10 for power, where each
sample size triplet is combined with dimension p = {50, 100, 300, 500, 1000}. For Σi, we
use three structures, Compound Symmetry (CS), Autoregressive of order 1, AR(1), and
unstructured (UN). The CS and AR(1) are defined as κI+ρJ and Cov(Xk, Xl) = κρ|k−l|,
∀ k, l, respectively, where UN is defined as Σ = (σij)

d
i,j=1 with σij = 1(1)d (i = j),

ρij = (i − 1)/d (i > j), with I as identity matrix, J as matrix of 1s. We take ρ = 0.5,
κ = 1. Under H0g, each covariance structure is used as common Σ. Under H1g, two
cases, once with one population having a different structure than the other two and once
with all three populations having different structures, are considered.

For size, we use α ∈ {0.01, 0.05, 0.10} and estimate it by averaging P (zg ≥ zc|H0g)
over m = 1000 simulation runs, where zg = (Tg −E(Tg)(/σTg and zc is the critical
value. For power, 1 − β, we use α = 0.05 and estimate it by averaging P (zg ≥ zc|H1g)
over m runs. Tables 1 – 2 report estimated sizes for two distributions and Table 3 reports
estimated power for both distributions.

Generally, the test performs accurately, both for size and power, for all parameter
settings. The accuracy increases with sample size and is not disturbed with increasing
dimension. Whereas the Exponential distribution requires slightly larger sample size for
better accuracy, the results improve with increasing ni. In particular, we observe a high
accuracy of the test for the case when all three populations have different covariance
structures. This is the case of complete heteroscedasticity and the test seems to perform
accurately even for small sample sizes.

Note that, compared to AR and UN, CS belongs to the class of spiked covariance
matrices, where a few, say k, eigenvalues dominate the rest p−k; for CS, k = 1. The test
seems to perform accurately even for this extreme case which enhances its applicability
to a wide variety of situations.
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CS AR UN
n1, n2, n3 p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

20,30, 40 50 0.010 0.053 0.133 0.018 0.064 0.127 0.014 0.069 0.122
100 0.007 0.046 0.125 0.012 0.061 0.112 0.015 0.064 0.121
300 0.008 0.052 0.121 0.016 0.057 0.109 0.012 0.059 0.112
500 0.006 0.050 0.118 0.018 0.055 0.113 0.013 0.057 0.114

1000 0.009 0.049 0.110 0.013 0.053 0.112 0.010 0.054 0.114

30,40,50 50 0.004 0.039 0.124 0.014 0.062 0.120 0.016 0.058 0.119
100 0.009 0.043 0.115 0.024 0.075 0.121 0.019 0.060 0.111
300 0.004 0.045 0.127 0.008 0.055 0.114 0.010 0.045 0.096
500 0.006 0.043 0.125 0.014 0.061 0.112 0.022 0.056 0.118

1000 0.011 0.049 0.114 0.008 0.051 0.102 0.016 0.055 0.112

50,60,80 50 0.012 0.041 0.112 0.012 0.054 0.107 0.012 0.045 0.093
100 0.010 0.049 0.100 0.013 0.050 0.111 0.017 0.046 0.112
300 0.010 0.054 0.115 0.008 0.050 0.116 0.015 0.049 0.103
500 0.008 0.056 0.109 0.012 0.052 0.093 0.017 0.055 0.108

1000 0.007 0.051 0.104 0.011 0.055 0.105 0.014 0.048 0.110

Tab. 1. Estimated test size of T3: Uniform distribution.

CS AR UN
n1, n2 p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

20, 30, 40 50 0.012 0.040 0.123 0.016 0.069 0.118 0.013 0.057 0.107
100 0.012 0.044 0.134 0.017 0.066 0.123 0.014 0.066 0.120
300 0.016 0.054 0.133 0.014 0.062 0.122 0.012 0.061 0.114
500 0.009 0.057 0.132 0.013 0.056 0.113 0.015 0.059 0.116

1000 0.007 0.055 0.127 0.012 0.047 0.114 0.014 0.057 0.115

30, 40, 50 50 0.004 0.038 0.118 0.016 0.056 0.111 0.012 0.060 0.100
100 0.005 0.039 0.116 0.015 0.059 0.108 0.020 0.063 0.117
300 0.004 0.037 0.113 0.016 0.058 0.108 0.008 0.052 0.098
500 0.007 0.047 0.113 0.012 0.059 0.108 0.019 0.063 0.119

1000 0.013 0.052 0.115 0.014 0.055 0.109 0.012 0.053 0.114

50, 60, 80 50 0.004 0.034 0.107 0.015 0.072 0.129 0.008 0.055 0.098
100 0.006 0.035 0.108 0.013 0.057 0.102 0.008 0.057 0.114
300 0.004 0.039 0.110 0.018 0.061 0.111 0.012 0.056 0.124
500 0.008 0.033 0.114 0.015 0.052 0.122 0.023 0.061 0.114

1000 0.007 0.045 0.110 0.011 0.056 0.119 0.009 0.052 0.111

Tab. 2. Estimated test size of T3: Exponential distribution.

4. DISCUSSION

A test statistic for homogeneity of several large-dimensional covariance matrices is pro-
posed which can be used for any distribution having first four finite moments across
the p dimensions of the independent vectors. The applicability of the test thus holds
for a wide variety of models, including multivariate normal. The test is composed of
location-invariant, consistent, computationally efficient, estimators, which can be equiv-
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U[0, 1] Exp(1)
n1, n2, n3 p CS-CS-AR CS-AR-UN CS-CS-AR CS-AR-UN

10, 15, 20 50 0.582 0.443 0.498 0.401
100 0.698 0.592 0.556 0.473
300 0.772 0.686 0.615 0.544
500 0.825 0.751 0.709 0.628

1000 0.901 0.859 0.795 0.702

20, 25, 30 50 0.771 0.643 0.725 0.705
100 0.825 0.766 0.812 0.759
300 0.908 0.885 0.898 0.815
500 0.993 0.925 0.966 0.905

1000 1.000 0.985 1.000 0.963

30, 35, 40 50 0.899 0.875 0.854 0.832
100 0.965 0.928 0.916 0.903
300 1.000 0.997 0.983 0.971
500 1.000 1.000 1.000 1.0000

1000 1.000 1.000 1.000 1.000

Tab. 3. Estimated power of T3: Both distributions.

alently defined as U -statistics of fourth order symmetric kernels. Theoretical properties
of the test are studied under a few mild conditions, and simulations are used to show
its accuracy across different parameter settings.

A. SOME BASIC RESULTS

A.1. Moments of quadratic & bilinear forms

Given aik in Eqn. (1), letAik = X′ikΣiXik = Y′ikA
2Yik, Aijkl = X′ikXjl = Y′ikΛiΛjYjl,

k 6= l, be quadratic and bilinear forms, with Aik = YikAiYik = Qik for Σi = I. Theo-
rem A.1 gives basic moments of Aik, Aijkl which are used to derive extended moments
in Lemma A.2. Proofs of these results are tedious but not directly related here, hence
skipped; see e. g. [1, 3].

Theorem A.1. For Aik and Aijkl, as defined above, we have

E
(
Q2

ik

)2
= 2 tr(Σ2

i ) + [tr(Σi)]
2 +M1 (13)

E
(
A2

ik

)2
= 2 tr(Σ4

i ) + [tr(Σ2
i )]2 +M2 (14)

E (AikAjk) = 2 tr(Σ3
i Σj) + tr(Σ2

i ) tr(ΣiΣj) +M2 (15)

E
(
A4

ijkl

)
= 6 tr(ΣiΣj)

2 + 3 [tr(ΣiΣj)]
2 +M3 (16)

E
(
QikQjkA

2
ijkl

)
= 4 tr(ΣiΣj)

2 + 4 tr(Σ3
i ) tr(Σj) + [tr(Σi)]

2 tr(Σ2
j ) +M4 (17)

where D = diag(A), M1 = γ tr(A � A), M2 = γ tr(A2 � A2), M3 = 6γ tr(A2 � A2) +

γ2∑p
s=1

∑p
t=1A

4
st and M4 = 2γ tr(Σi) tr(A2 � A) + 4γ tr(A3 � A) + γ tr(A � ADA).



916 R. AHMAD

Lemma A.2. For aik in Eqn. (1), we have the following.

E[a′itaiua
′
itaiva

′
iuΣiaiv] = tr(Σ4

i ) (18)

E[a′itaiua
′
iwaiua

′
itaiva

′
iwaiv] = tr(Σ4

i ) (19)

E(a′jtaiua
′
jtaiva

′
iuΣjaiv) = tr{(ΣiΣj)

2} (20)

Cov(a′itΣiaiu,a
′
itΣjaiu) = tr{(ΣiΣj)

2} (21)

E[(a′iuaiv)
2a′itΣjait] = tr(ΣiΣj) tr(Σi)

2 (22)

E[(a′itaiu)2a′itΣiait] = 2 tr(Σ4
i ) + [tr(Σ2

i )]
2 +M2 (23)

Var(a′itaiua
′
ivaiu) = 2 tr(Σ4

i ) + [tr(Σ2
i )]

2 +M2 (24)

Cov[(a′itaiu)2, (a′itaiv)
2] = 2 tr(Σ4

i ) +M2 (25)

E[(a′itaju)2a′itΣjait] = 2 tr{(ΣiΣj)
2}+

[
tr(ΣiΣj)

]2
+M2 (26)

Var(a′itajua
′
ivaju) = 2 tr{(ΣiΣj)

2}+
[

tr(ΣiΣj)
]2

+M2 (27)

Cov[(a′jtaiu)2, (a′jtaiv)
2] = 2 tr{(ΣiΣj)

2}+M2 (28)

Cov[(a′itaiu)2,a′itΣjait] = 2 tr(Σ3
iΣj) +M2 (29)

where terms like E[(a′itaiu)2a′itaiua
′
itaiv], E[a′itaiua

′
itaiva

′
itΣiait], E[a′itaiua

′
itaiva

′
itΣiaiu],

E[(a′itaiu)2a′itΣiaiu], E[(a′itaiu)2a′itΣjaiu], E[(a′itaiu)2a′itaiva
′
iuaiv] all vanish.

The results in Lemma A.2 without M2, M3 hold even if aik are not normally distributed.
If they do, then M2 = 0 = M3 and all results coincide with those under normality.

B. MAIN PROOFS

B.1. Some basic results

First, we need to set some notations. For details, see e. g. [10, 12, 23, 25]. For iid Xi,
let h(X1, . . . , Xm) : Rm → R denote the kernel of an mth order U -statistic, Un, with
E(Un) = θ = E[h(·)] with its projection hc(x1, . . . , xc) = E[h(·)|x1, . . . , xc], hm(·) = h(·)
and ξc = Var[hc(·), c = 1, . . . ,m, so that Var(Un) =

∑m
c=1

(
m
c

)(
n−m
m−c

)
ξc/
(
n
m

)
. If

0 < ξc < ∞ ∀ c, then (Un − E(Un))/
√

Var(Un)
D−→ N(0, 1). For two U -statistics, Uni,

of order mi, kernels hi(·), projections hic(·), i = 1, 2, let ξcc = Cov[h1c(·), h2c(·)], c =
1, . . . ,m1 ≤ m2. Then Cov(Un1, Un2) =

∑m1

c=1

(
m2

c

)(
n−m2

m1−c
)
ξcc/

(
n
m1

)
. Let Un1n2

be a U -
statistic of two independent samples, with kernel h(X11, . . . , X1m1

, X21, . . . , X2m2
), sym-

metric in each sample, projection hc1c2 = E[h(·)|X11, . . . , X1c1 ;X21, . . . , X2c2 ], ξc1c2 =
Cov[h(·), hc1c2(·)], ξ00 = 0, ci = 0, 1, . . . ,mi. If 0 ≤ ni/n ≤ 1, n = n1 + n2, 0 <

ξc1c2 <∞ ∀ ci, then (Un1n2 −E(Un1n2))/
√

Var(Un1n2)
D−→ N(0, 1) where Var(Un1n2) =∑m1

c1=0

∑m2

c2=0

(
m1

c1

)(
n1−m1

m1−c1

)(
m2

c2

)(
n2−m2

m2−c2

)
ξc1c2/

(
n1

m1

)(
n2

m2

)
.
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B.2. Proof of Theorem 2.1

Consider δ̂1, a one-sample U -statistic. Using notations in Sec. B.1 and moments in
Theorem A.1 and Lemma A.2, the projections hc(·), c = 1, . . . , 4, are computed as

h1 = 6a′1kΣ1a1k + 6 tr(Σ2
1)

h2 = 4a′1kΣ1a1k + 4a′1rΣ1a1r + 2(a′1ka1r)
2 − 4a′1kΣ1a1r + 2 tr(Σ2

1)

h3 = 2[(a′1ka1k′)
2+a′1kΣ1a1k+(a′1ra1k′)

2+a′1rΣ1a1r−a′1ka1k′a
′
1ra1k′−a′1ka1ra

′
1k′a1r,

where h4(·) = h(·). The variances of these projections follow as

ξ1 = 72 tr(Σ4
1) +M2O(1)

ξ2 = 168 tr(Σ4
1) + 8[tr(Σ2

1)]2 + (M2 +M3)O(1)

ξ3 = 300 tr(Σ4
1) + 36[tr(Σ2

1)]2 + (M2 +M3)O(1)

ξ4 = 96{9 tr(Σ4
1) + 3[tr(Σ2

1)]2}+M2O(1),

where the terms involving M2, M3 are merged into O(1) for simplicity since all such
terms eventually vanish under Assumption 2.4. Substituting ξc in Var(Un) in Sec. B.1

gives the required variance. Now, consider δ̂12 which is a two-sample U -statistic. From
Sec. B.1 again, we get

h10 = 2a′1kΣ2a1k + 2 tr(Σ1Σ2)

h20 = 2(a1k − a1r)
′Σ2(a′1k − a1r)

h11 = (a′1ka2l)
2 + a′1kΣ2a1k + a′2lΣ1a2l + tr(Σ1Σ2)

h21 = (a1k − a1r)
′Σ2(a1k − a1r) + [(a1k − a1r)

′a2l]
2,

where h22(·) = h(·), with their corresponding variances

ξ10 = 8 tr{(Σ1Σ2)2}+M2O(1)

ξ20 = 32{tr(Σ1Σ2)2}+M2O(1)

ξ11 = 18 tr{(Σ1Σ2)2}+ 2[tr(Σ1Σ2)]2 + (M2 +M3)O(1)

ξ21 = 48 tr{(Σ1Σ2)2}+ 8[tr(Σ1Σ2)]2 + (M2 +M3)O(1)

ξ22 = 96 tr{(Σ1Σ2)2}+ 32[tr(Σ1Σ2)]2 +M3O(1).

Substituting in Var(Un1n2
) gives Var(δ̂12). Similarly, Cov(δ̂1, δ̂12) follows from Cov(Un1

, Un2
)

in Sec. B.1 by noting that

h11 = a′1kΣ2a1k + tr(Σ1Σ2), h12 = D′1krΣ2D1kr, h21 = 6a′1kΣ1a1k + 6 tr(Σ2
1)

h22 = 4a′1kΣ1a1k + 4a′1rΣ1a1r + 2(a′1ka1r)
2 − 4a′14Σ1a1r + 2 tr(Σ2

1)

with ξ11 = 12 tr(Σ3
1Σ2) + M2O(1), ξ22 = Cov(h12, h22) = 32 tr(Σ3

1Σ2) + M2O(1). The
bounds follow by a simple application of the Cauchy–Schwarz inequality. �
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B.3. Proof of Theorem 2.7

The proof essentially follows by the argument after Eqn. (7), given that distributions
of individual components and their covariance terms are taken care of. Note that, the
kernels of these component U -statistics vary with ni (and p through ni). Whereas the
theory of U -statistics with kernel varying with n has been extensively explored [9, 10, 16],
it has also recently been applied to high-dimensional inference. Of particular mention
are [18], who use it for U -statistics similar to those in the present case, and [26] who also
provide a general discussion on determining the limit of U -statistics for high-dimensional
data.

It follows from [26] that the limit of such a U -statistic rests on the behavior of
projection variances ξc (see Sec. B.1). In the present case, it follows from the proof in

Sec. B.2 that the projection variances for both δ̂i and δ̂ij are uniformly bounded under
the assumptions, as shown below. This, by Eqn. (7) or, generally Eqn. (10), implies
that both components may have a non-degenerate limit. We proceed as following.

Consider δ̃i = δ̂i/ tr(Σ2
i ) − 1 = Ũni

with h̃ = h(·)/ tr(Σ2
i ) − 1 (see Sec. B.1) and its

first-order (Hájek) projection Ũn [23, 25] Ûni = m
∑ni

k=1 h̃i1(x1k)/ni, where

h̃i1(x1k) =
[
a′ikΣiaik+tr(Σ2

i )
]
/2 tr(Σ2

i )−1⇒ Var[h̃i1(x1k)] = [2 tr(Σ4
i )+M2]/4[tr(Σ2

i )]
2.

The term with M2 vanishes by Assumption 2.4, and E(Ûni
) = 0, Var(Ûni

) = 4[2 tr(Σ4
i )+

M2]/ni[tr(Σ
2
i )]

2 ≤ 8/ni = O(1/ni) which is independent of p. From Theorem A.1,

Cov(Ũni
, Ûni

) = Var(Ûni
) as required, so that Ũni

= Ûni
+oP (1) with Var(Ũni

)/Var(Ûni
)

→ 1. By Slutsky’s lemma, Ûni can replace Ũni . The second-order projection is

h̃i2(xik,xir) = [−2a′1kΣia1k−2a′1rΣia1r+2(a′1ka1r)
2−4a′1kΣia1r+2 tr(Σ2

i )]/12[tr(Σ2
i )]

2

with E[h̃i2(·)] = 0 and

Var[hi2(·)] =
[
3 tr(Σ4

i ) + [tr(Σ2
i )]

2 +M3

]
/18[tr(Σ2

i )]
2

so that Ûni
= 12

∑ni

k 6=r h̃i2(·)/Q(ni) with E(Ûni
) = 0 and

Var(Ûni
) = 8[3 tr(Σ4

i ) + [tr(Σ2
i )]

2 + 20M3]/Q(ni)[tr(Σ
2
i )]

2 = O(1/n2i ),

independent of p. Further, Cov(Ũni , Ûni) = Var(Ûni), as required. This gives the normal

limit of δ̂i. Now, for δ̃12 = δ̂12/ tr(Σ1Σ2)− 1, let n0 = n/n1n2 and write

Ûn1n2 = [

n1∑
k=1

a′ikΣ2ajk/n1 +

n2∑
k=1

a′jkΣ1ajk/n2]/ tr(Σ1Σ2)− n0

with E(Ûn1n2
) = 0 and

Var(Ûn1n2) = n0[2 tr(Σ1Σ2)2 +M2]/[tr(Σ1Σ2)]2.

The normal limit follows, under assumptions, as for one-sample case. As Cov(δ̃1, δ̃12)
converges to a fixed limit, 0, and samples are independent, it gives the joint limit in (11)
and also that of T2. Writing (T2−E(T2))/σT2

= {(T2−E(T2))/σ̂T2
}{σ̂T2

/σT2
}, and

using the consistency of σ̂T2
, the limit remains valid by replacing σT2

with σ̂T2
. This

completes the proof. �
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