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DYNAMIC MODEL OF MARKET WITH UNINFORMED
MARKET MAKER
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We model a market with multiple liquidity takers and a single market maker maximizing his
discounted consumption while keeping a prescribed probability of bankruptcy. We show that,
given this setting, spread and price bias (a difference between the midpoint- and the expected
fair price) depend solely on the MM’s inventory and his uncertainty concerning the fair price.
Tested on ten-second data from ten US electronic markets, our model gives significant results
with the price bias decreasing in the inventory and increasing in the uncertainty and with the
spread mostly increasing in the uncertainty.
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1. INTRODUCTION

One of the greatest challenges of mathematical finance is the problem of optimal trading
on a continuous-time limit order market. In all its generality, decision problems faced
by the traders exhibit infinitely dimensional state spaces (it is possible to put arbitrary
numbers of limit orders), so they are intractable. Therefore, researches resort to sim-
plifications; they either use simplified settings (e. g., one-period models or models with
restricted strategy space, see e. g., [4] or [18]) or – in extreme – they do not assume any
rationality at all, constructing so called zero intelligence models (see e. g. [5] or [22]). In
the present paper, we go the former route: we assume that there is only one (possibly
representative) rational agent – a market maker1 – trading against many irrational and
many averagely rational liquidity traders by posting only two limit orders at a time.

There is a large number of papers studying behaviour of market makers by means
of tractable simplified rational models. One of the earliest paper of that kind was [8],
followed by many others, e. g., [17, 25], or [9]. For more references, see surveys [4] or [26].
It follows from those works that functioning of a market maker (MM) is associated with
two main risks, for which the MM demands compensations in the form of spread: the risk

DOI: 10.14736/kyb-2017-5-0922
1In fact, our model can be applied to any agent posting at most two limit orders of different type –

even though our MM is obliged to put exactly two limit orders, posting only zero or one order can be
emulated by setting quotes with unrealistic prices.
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of running out of the traded instrument (the inventory risk) and the risk associated
with the uncertainty about the “true” value of the instrument (the adverse selection
risk).2 There are many empirical studies confirming the following implications of these
theoretical works:

(M1) market makers try to sell (buy) extra (missing) inventory,

(M2) large trades have a permanent impact to price (speaking for the presence of
adverse selection)

(M3) spreads widen at the times of uncertainty.

For details, see [4], especially Table 1 therein.
In addition to these classical papers, there are several works dealing with truly dy-

namical decision problems, e. g. [2, 7, 10, 12], all being similar to (or directly based on)
the seminal work [11]. In this paper, the MM maximizes his expected utility from the
terminal wealth by continuously setting his quotes under the assumption of decreasing
(increasing) demand (supply) of the liquidity traders. It is demonstrated that the re-
sulting optimal quotes depend solely on time, the amount of cash held by the MM, and
his inventory. Interestingly, the spread itself does not depend on the inventory.

In the present paper, we build a (discrete time) dynamical model in which we let the
MM maximize the discounted running consumption plus the terminal wealth. Even if
we in fact assume a linear utility function, our MM cannot be viewed as risk neutral
as he keeps the probability of his bankruptcy at a prescribed level. In line with [11],
we assume that the market orders’ arrival intensities increase linearly with distances of
the quotes from the “fair” (log)price; contrary to [11], however, our fair price is random
rather than constant, following a normal random walk. Similarly to [7], our MM tries to
avoid running out of the cash or the instrument traded; contrary to this paper, however,
our constraints are probabilistic.

There are four main original contributions of our paper: Firstly, the value of the
fair price might not be known exactly to the MM in our setting, which makes the
adverse selection implicit to our model. Secondly, the time horizon may be infinite, so
we may avoid problematic final valuation of the inventory. Thirdly, we (approximately)
describe a joint distribution of the quotes - hence of the market price - and the MM’s
inventory. Finally, we show how the price increments and their conditional volatility
may be decomposed into three components: the first one “caused” by the fair price, the
second one by the inventory and the third one by the uncertainty.

We proceed as follows: after the definitions (Section 2), we derive an approximate
joint conditional distribution of the fair price and the inventory given the MM’s quotes
(Section 3). Further, our main result is formulated, saying that the MM’s quotes depend
solely on the expected fair price, the inventory level and the MM’s uncertainty (Section
4). Further, we discuss some implications of our results, namely the price decomposition
resulting from the model and the joint dynamics of the midpoint price, spread and
the inventory (Section 5). Consequently we estimate the parameters of the resulting

2[26], in addition, mentions an “option” risk stemming from the fact that, by putting a limit order,
the MM in fact underwrites an option with the strike price equal to the limit price; this risk, however,
may be minimized by frequent adjustments of the quotations.
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equations in the presence of noise limit orders using 10-second high frequency data of
three US stocks from ten US electronic markets, and we demonstrate that results at
least do not contradict our model and that they mostly confirm stylized facts (M1) and
(M3) (Section 6). In addition, we show that three simple benchmark models assuming
irrationality of the MM’s and/or of the liquidity takers may be rejected in favour of our
model (Section 7). Finally, we conclude the paper (Section 8). Two longer proofs, a
discussion of consistency and asymptotic normality of our estimates, and the detailed
results of the estimation are presented in the Appendix.

2. THE SETTING

In the present Section, we formally define our model and do some approximations nec-
essary for the model to be at least partially tractable.

2.1. The agents

We assume that there is a (single representative) market maker, continuum of irrational
liquidity traders and continuum of averagely rational (informed) liquidity traders.

At each t ∈ N,3 the market maker sets the log-quotes at and bt (the actual best ask
and best bid, i. e. the prices for which the liquidity traders can buy, sell, respectively,
are then At = eat , Bt = ebt , respectively) in order to maximize his overall discounted
consumption and terminal wealth (see Section 2.2).

In reaction to the quotes, averagely rational liquidity traders post buy and sell market
orders, i. e. requests to buy or to sell certain amount of the instrument for the ask price,
bid price, respectively. The numbers of those buy- and sell-market orders having arrived
between times t− 1 to t, are Poisson distributed with intensities

λ(at−1 − πt−1), λ(πt−1 − bt−1),

respectively, where

λ(z) =

{
r
(
1− z

D

)
z ≤ D

0 z > D
for some r > 0 and D > 0

and πt ∈ R is a log-fair price.
The numbers of irrational liquidity traders’ market orders, on the other hand, follow

a Poisson distribution with constant intensity κ for both buy and sell orders.
The sizes of the market orders are random, with a common distribution D having

mean µ and the non-central second moment s (i. e. the variance of D is s−µ2), dependent
neither on each other nor on the number of the orders arrived.

The log-fair price π follows a normal random walk with E∆πt = 0. We distinguish
three possible degrees of information, available to the MM:

(I) The MM is fully informed, i. e., the values of π are observable to him.

3Different trading frequencies may be modelled by scaling of the time.
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(P) The MM is partially informed, i. e., he observes a proxy

et = πt + γt

instead of πt at each t ≥ 0, where γt is normal with E(γt) = 0.

(U) The MM is uninformed.

As cases (I) and (U) may be approximated by (P) with var(γt) very small, very large,
respectively, we shall assume only (P) in the rest of the paper.

Denoting Xt and Yt the total volume of the buy market orders, sell market orders,
respectively, arriving from t− 1 to t, and denoting

Ξτ = (π0, e0, X1, Y1, e1, π1, . . . , Xτ , Yτ , eτ , πτ ), τ ∈ N0, (1)

all the (historical) information relevant for the market, our setting may be formally
defined as follows: For each t > 0,

(D1) Xt|Ξt−1 ∼ CP (κ+ λ(at−1 − πt−1),D) ,

(D2) Yt|Ξt−1 ∼ CP (κ+ λ(πt−1 − bt−1),D) ,

(D3) ∆πt ∼ N (0, v∆π), for some constant v∆π,

(D4) γt ∼ N (0, vγ) for some constant vγ ,

(I1) ∆πt, γt and (Ξt−1, Xt, Yt) are mutually independent,

(I2) Ξt−1, Xt and Yt are mutually conditionally independent given (at−1−πt−1, πt−1−
bt−1).

Here, CP(ι,Q) denotes the compound Poisson distribution with intensity ι and sum-
mands’ distribution Q.

Remark 2.1. If at−1 = bt−1 = p for some p (i. e. if the market price were p), then
the expected4 total volume of the buy market orders, sell market orders, respectively,
between t−1 and t would be equal to D̄t(p) := µ[κ+λ(p−πt−1)], S̄t(p) := µ[κ+λ(πt−1−
p)], respectively. Thus, we may interpret functions D̄t and S̄t as the (expected) demand
curve, supply curve, respectively. Moreover, since πt−1 = arg maxp[D̄t(p) ∧ S̄t(p)] we
may regard πt−1 as the equilibrium price. Further, if the market price was πt−1, then
the expected overall traded volume between t−1 and t would be D̄t(πt−1) = S̄t(πt−1) =
µ(κ+ r) (note that this amount does not depend on πt).

4The expectation is a conditional one, given (πt−1, at−1, bt−1)
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2.2. The MM’s decision problem

Let us turn our attention to the decision problem. Assume that MM holds M0 units of
cash and N0 units of the traded instrument at the time 0. Given that he sets quotes
to at and bt at each time t = 0, 1, . . . and consumes Ct at each time t = 1, 2, . . . , the
increments of his cash holding, instrument holding, respectively, are

∆Mt = ∆mt − Ct, ∆mt = eat−1Xt − ebt−1Yt, t > 0, (2)

∆Nt = Yt −Xt, t > 0. (3)

We assume that the consumption Ct may be also negative, i. e. it is allowed to MM to
“put money into the business” if needed. Moreover, we allow the MM to borrow stocks
for a single period.

As the MM observes values of the fair price only through the proxy, his information
set at the time t consists of

ξt = (e0, X1, Y1, e1, X2, Y2, . . . Xt, Yt, et)

(recall that et = πt in case of (I)).
As it was premised, we assume the MM to maximize his discounted consumption

at time t plus his discounted wealth at a time horizon so that both the probability
of running out of the money (i. e. of Mt+1 < 0) and the probability of depleting the
instruments (i. e. of Nt+1 < 0) at the next step are less than a prescribed level.

Definition 2.2. The decision problem, solved by the MM at each t ∈ N ∪ {0}, is given
by

Vt(ξt) = sup
aτ ,bτ ,Cτ∈R,t≤τ<T

E

[
T−1∑
τ=t

e−ρ(τ−t)Cτ + e−ρ(T−t)(MT + eπTNT )|ξt

]
(4)

subject to
E(τ) (aτ , bτ , Cτ ) is σ(ξτ )measurable,
A(τ) aτ ≥ bτ
M(τ) P [Mτ+1 < 0|ξτ ] ≤ γ,
N (τ) P [Nτ+1 < 0|ξτ ] ≤ γ,

t ≤ τ < T.

Here, T is a time horizon fulfilling t ≤ T ≤ ∞, ρ is a discount factor and γ is a pre-chosen
probability level.

2.3. Approximation

For any τ , denote
hτ = E(πτ |ξτ ),

the (conditionally) expected log-fair price. Our next aim is to describe the dynamics of
hτ and the distribution of the fair price observation error

ητ = hτ − πτ .
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Denote
vη,τ = var(ητ |ξτ )

its conditional variance.
Because, except of an (unrealistic) case (I), the computation of hτ and a distribution

of ητ is non-trivial, we have to approximate our model. To this end, note that, once r and
κ are high enough, we may approximate the Compound Poisson conditional distribution
of Xt given Ξt−1 by

N (µ[κ+ λ(at−1 − πt−1)], s[κ+ λ(at−1 − πt−1)])

(see [3], Sec. 3.9). Further, if
at−1 − ht−1 � D

and
√
vη,t−1 � D

then, by Chebyshev inequality, the conditional probability of event

[at−1 − πt−1 > D] = [at−1 − ht−1 + ηt−1 > D]

is small, so we may assume

λ(at−1 − πt−1) = r

(
1− at−1 − πt−1

D

)
,

(i. e., that λ is linear in bt−1). Both this and an analogous approximation of λ(•− bt−1)
may be formally expressed by keeping (D3), (D4), (I1) and (I2) and assuming

(A1) Xt|Ξt−1 ∼ N
(
µκ+ µr

(
1− at−1−πt−1

D

)
, sκ+ sr

[(
1− at−1−πt−1

D

)
∨ 0
])

,

(A2) Yt|Ξt−1,∼ N
(
µκ+ µr

(
1− πt−1−bt−1

D

)
, sκ+ sr

[(
1− πt−1−bt−1

D

)
∨ 0
])
.

Unfortunately, even given this approximation, we would not get analytical formulas for
the conditional distribution of ηt given ξt which we need to describe the dynamics of the
price-volume process (the reason being dependence of conditional variances on both Xt

and Yt on πt−1). One way to overcome this would be to approximate the conditional
density; however, since the formulas resulting from that approach would still be quite
complex, we rather assume that, instead of both the volumes Xt and Yt, the MM takes
into account only their difference (the increase of the inventory)

∆Nt = Yt −Xt,

whose conditional variance does not depend on πt−1 given that κ+ r[1− at−1−πt−1
D ] > 0,

κ + r[1 − πt−1−bt−1
D ] > 0, probability of which, however, we assumed to be negligible.

This simplification could be partially justified by the fact that when we do it, the loss



928 M. ŠMÍD AND M. KOPA

of information would not be large.5 Hence, we assume that the information available to
the MM is the proxy and the inventory, i. e.

(A3) ξt = (e0,∆N1, e1, . . . ,∆Nt, et)

until the end of the paper.
Before going on, note that, given (A1) and (A2),

∆Nt|Ξt−1 ∼ N
(
µr

D
(at−1 + bt−1 − 2πt−1), 2sκ+ sr

[
2− at−1 − bt−1

D

])
and

∆mt|Ξt−1 ∼ N (eat−1E(Xt|Ξt−1)− ebt−1E(Yt|Ξt−1),

e2at−1var(Xt|Ξt−1) + e2bt−1var(Yt|Ξt−1))

and, specially, that var (∆mt|Ξt) > 0 if κ > 0.

3. CONDITIONAL DISTRIBUTIONS

The goal of the present Section is to determine the conditional distributions, important
for the rest of the paper, and to describe the evolution of the fair price estimator ht. To
this end, denote

Pτ =
aτ + bτ

2
the (log)midpoint price and define, for any t > 0,

δt = Pt − ht, σt =
at − bt

2
, (5)

the price bias, half-spread, respectively.

Proposition 3.1. Let t ∈ N. Assume (D3), (D4), (I1), (I2), (A1)-(A3). If

ηt−1|ξt−1 ∼ N (0, vη,t−1) (6)

for some ξt−1-measurable variable vη,t−1, then

(i) 
∆πt
γt

∆Nt
ηt−1


∣∣∣∣∣∣∣∣ ξt−1 ∼ N




0
0

kδt−1

0

 ,

v∆π 0 0 0

0 vγ 0 0
0 0 vN,t kvη,t−1

0 0 kvη,t−1 vη,t−1




5Say that we want to construct a linear estimate of πt based on (et, Xt, Yt). As, due to (2.3), the
variances of Yt and Xt are similar, being around sκ + sr, and as their relation to et is symmetric.
the absolute values of the corresponding coefficients in the estimate should be close to being the same.
Further, as Yt depends on πt reverse way than Xt does, the signs of the coefficients should be opposite.
Thus, any linear estimator or πt based on (Xt, Yt, et) should not be much different from a that based
on (∆Nt, et).
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where k = 2µrD and vN,t = vN (vη,t−1, σt−1) = 2s(κ+ r − rσt−1
D ) + k2vη,t−1.

(ii)
∆ht = cN,t(k−1∆Nt − δt−1) + ce,t(et − ht−1)

where
cN,t = cN (vη,t−1, σt−1), ce,t = ce(vη,t−1, σt−1),

for some differentiable functions cN and ce,

(iii)
ηt|ξt ∼ N (0, vη,t)

where
vη,t = vη(vη,t−1, σt−1) (7)

for some differentiable function vη.

P r o o f . See Appendix A. �

Remark 3.2. (ii) of the Proposition in fact says that the MM may obtain information
about the fair price not only from the proxy but also from the results of trading.

Corollary 3.3. Let t ∈ N. Given the assumptions of Proposition 3.1, it holds that ∆πt
γt
ηt−1

∣∣∣∣∣∣
[
ξt−1

∆Nt

]
= N

 0
0

cη,t
(
k−1∆Nt − δt−1

)
 ,
 v∆π 0 0

0 vγ 0
0 0 wη,t−1


where wη,t−1 = vη,t−1 −

kv2
η,t−1
vN,t

, cη,t = vη,t−1
vN,t

.

P r o o f . The corollary follows from the well known formula for the conditional distri-
bution of a Gaussian sub-vector ([6], Proposition 3.13) applied to (i) of Proposition 3.1.

�

Corollary 3.4. If η0 is centred normal, then (i)-(iii) hold for any t, and, moreover,
there exists a function ṽη such that vη,t = ṽη(σt−1, σt−2, . . . , σ0), and similarly for vN,t,
cN,t, ce,t and cη,t.

P r o o f . The assertion follows from a recursive application of Proposition 3.1. �

Throughout the rest of the paper, assume that η0 is normal with known unconditional
variance vη,0.

4. THE OPTIMAL DECISION

Before proceeding, note that, as ht is (by definition) ξt-measurable, any feasible strategy
of (4) may be alternatively expressed by (δτ , στ , Cτ )τ<T where δτ and στ are defined by
(5).

The following Proposition shows that, out of the whole MM’s past information ξt,
the optimal decision at t depends solely on Mt, Nt, ht and vη,t and that δt and σt alone
depend solely on Nt and vη,t.
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Proposition 4.1. Let κ > 0 and let either

(F) T be finite

or

(N) T =∞, ρ > 1
2 (vγ + v∆π) and the problem (4) has additional constraints

C(τ) δτ ∈ [−D0, D0], στ ≤ S0, τ < T, D0, S0 ∈ R+.

Let 0 ≤ t < T . Then
Vt(ξt) = Mt + ehtW (Nt, vη,t, T − t) (8)

where W (N, v, 0) = Nev
2/2 and, for any τ < T ,

W (N.v, T − τ) = sup
δ,σ

F (δ, σ,N, v, T − τ) (9)

Ã σ ≥ 0

Ñ ϕ

(
− N + kδ√

vN (v, σ)

)
≤ γ

for some function F . Here ϕ is the standard normal c.d.f.
Further, for any optimal solution (δτ , στ , Cτ )t≤τ≤T , of (4) it holds that

δt = δ(Nt, vη,t, T − t) for some function δ, (10)

στ = σ(Nt, vη,t, T − t) for some function σ, (11)

Cτ = Mτ + ehτΨ(δτ , στ , vη,τ ) for some function Ψ. (12)

Here,∞−t =∞ by definition; in particular, f(n, v,∞−t) denotes a function dependent
only on its first two arguments.

P r o o f . See Appendix B. �

Remark 4.2. An analytical formula for Ψ exists and is given in the proof.

As it is clear from the proof, there is probably no chance for any analytical expression
of the optimal policies δ and σ; thus, δ and σ have to be computed numerically. The
important fact for us is, however, that, given the infinite horizon, both δ and σ depend
solely on the inventory and the conditional variance of η.

Until the end of the paper, assume (N), i. e. that the horizon is infinite.

5. IMPLICATIONS

In the present Section, we show how the price and its volatility may be naturally decom-
posed into the parts associated with the fair price, the inventory and the uncertainty,
and we formulate equations approximately describing the dynamics of the quotes and
the inventory stemming from the optimal behaviour of the MM.
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5.1. Price decomposition

If we approximate (10) by
δ(n, v) .= d0 + dNn+ dvv, (13)

where d0, dN and dv are some real constants, then the log-midpoint price may be
naturally decomposed as

Pt = ht + δ(Nt, vη,t) = πt + ηt + δ(Nt, vη,t)
.= πt︸︷︷︸

fair price

+ ηt + dvvη,t︸ ︷︷ ︸
uncertainty

+ d0 + dNNt︸ ︷︷ ︸
inventory

,

for any t > 0. This is, to a certain extent, analogous to a well known decomposition
of spread into order processing, inventory and adverse selection components, widely
discussed in market macro-structure (see e. g., [13]). Moreover, as Eηt = 0, the price
bias δt may be understood as a correction of the price for the inventory and uncertainty.

Before we give a decomposition of the mean price increments and their volatility, note
that, given (I), we would have h ≡ π and vη ≡ 0 so it would be

∆Pt = ∆πt︸︷︷︸
fair price

+ ∆δ(Nt)︸ ︷︷ ︸
inventory

.= ∆πt︸︷︷︸
fair price

+ dN∆Nt︸ ︷︷ ︸
inventory

with
∆Pt|ξt−1∼̇N (dNδt−1︸ ︷︷ ︸

inventory

, v∆π︸︷︷︸
fair price

+ dNv
?
N,t︸ ︷︷ ︸

inventory

) (14)

where v?N,t = 2s(κ + r − rσt−1
D ). The components of the mean and variance associated

with the uncertainty thus naturally emerge by a comparison of (14) with the distribution
of price increments given (P):

∆Pt
.= ∆πt + dN∆Nt + ce,t(γt − ηt−1) + cN,t(k−1∆Nt − δt−1) + dv∆vη,t,

with
∆Pt|ξt−1∼̇N (µt, v∆P,t) µt = dNδt−1︸ ︷︷ ︸

inventory

+ cN,tδt−1 + dv∆vη,t︸ ︷︷ ︸
uncertainty

v∆P,t = var(∆πt) + (dN + cN,tk
−1)2var(∆Nt|ξt−1) + c2e,tvar(γt)

+ c2e,tvar(ηt−1|ξt−1) + 2ce,t(dN + cN,tk
−1)cov(ηt−1,∆Nt|ξt−1)

= v∆π+(dN +cN,tk−1)2(v?N,t+k
2vη,t−1)+c2e,tvγ+c2e,tvη,t−1−2ce,t(dN +cN,tk−1)kvη,t−1

= v∆π︸︷︷︸
fair price

+ d2
Nv

?
N,t︸ ︷︷ ︸

inventory

+(2dNcN,tk−1 + c2N,tk
−2)v?N,tdN + c2e,tvγ + [(kdN + cN,t)2 + ce,t(kce,t − 2kdN − 2cN,t)]vη,t−1︸ ︷︷ ︸

uncertainty

(To understand the calculation, see Proposition 3.1 (i) and note that vN,t = v?N,t +
k2vη,t−1).
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5.2. Approximate dynamics

In the present Subsection, we describe the dynamics of (at, bt, Nt) expressed equivalently
by (Pt, σt, Nt). As, by Proposition 4.1, both Pt and σt are computed by means of
functions of δ, σ, vη, whose analytic description is unknown to us, we have to use an
approximation - in particular, we use a linearisation (13) for δ, and we approximate the
non-negative functions σ and vη geometrically, i. e.

σ(N, v) .= s0 exp(N)sN vsv , s0 > 0, sN , sv ∈ R (15)

and
vη(σ, v) .= ω0σ

ωσvωv , ω0 > 0, ωσ, ωv ∈ R. (16)

Denote

St,i = S(σt−i, σt−i−1, . . . , σt−i−j0) =
j0∑
j=0

ωjv ln(σt−i−j), i ∈ {1, 2},

where j0 is large enough. Given that |ωv| < 1, it follows from (16), applied iteratively,
that

ln vη,t
.=

lnω0

1− ωv
+ ωσSt,1,

or equivalently,

vη,t
.= ω

1
1−ωv
0 exp(ωσSt,1) = ω

1
1−ωv
0

j0∏
j=0

σ
ωσω

j
v

t−1−j . (17)

A combination of (17) and (13) then yields

δt
.= d0 + dNNt + dS exp(ωσSt,1), dS = dvω

1
1−ωv
0 . (18)

Similarly, we may express (15) by

lnσt
.= ln s0 + sv

lnω0

1− ωv
+ sNNt + svωσSt,1. (19)

According to Proposition 3.1 (i), we then have

∆Nt = kδ(Nt−1, vη,t−1)+
√
vN,tFt

.= k (d0 + dNNt−1 + dS exp(ωσSt,2))+
√
vN,tFt (20)

where Ft is standard normal independent of ξt−1, and where, by Proposition 3.1 (i) and
(17),

vN,t
.= ν0 + νσσt−1 + νS exp(ωσSt,2), v0 = 2s(κ+ r), vσ =

2sr
D
, vS = k2ω

1
1−ωv
0 .

(21)
Analogously, by Proposition 3.1 (ii),

∆Pt = ∆δt + ∆ht
.= ∆δt + cN,t(k−1∆Nt − δt−1) + ce,t(et − ht−1).
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As
et − ht−1 = (πt + γt)− (πt−1 + ηt−1) = ∆πt + γt − ηt−1

ans as, by Corollary 3.3,

et − ht−1|ξt−1,∆Nt = N
(
−cη,t(k−1∆Nt − δt−1), wη,t−1 + vγ + v∆π

)
,

we have

∆Pt = ∆δt + (cN,t − ce,tcη,t)(k−1∆Nt − δt−1) + ce,t
√
wη,t−1 + vγ + v∆πGt

where Gt is standard normal, independent on (ξt−1,∆Nt), hence on (ξt−1,∆Nt, Ft).6

Consequently, by (18),

∆Pt
.= dN∆Nt + dS [exp(ωσSt,1)− exp(ωσSt,2)]

+(cN,t−ce,tcη,t)[k−1∆Nt−d0−dNNt−1−dS exp(ωσSt,2)]+ce,t
√
wη,t−1 + vγ + v∆πGt.

(22)

Thus, the approximate dynamics of the “trade and quote” data is given by (19), (20)
and (22).

6. ECONOMETRIC EVIDENCE

The goal of the present Section is to get an econometric evidence supporting our model,
namely whether and how σt and δt depend on the inventory and/or the uncertainty, as
it is predicted by our model.

6.1. Dynamics with noise limit orders

Having “trade and quote” data (a, b,N) at our disposal, we may observe the quotations
and the inventory increments. In real-life, however, not all the agents putting limit orders
are MM’s. Therefore, we assume that there are some “noise” limit orders being put into
the spread by the “non-MM” agents7 so the information observed by an econometrician
at time t is

ξ̃t = (ã1, b̃1,∆N1, . . . , ãt, b̃t,∆Nt)

where
bt ≤ b̃t < ãt ≤ at.

Denote

εσ,t =
σ̃t
σt
, σ̃t =

ãt − b̃t
2

6To see it, note that ∆Nt = f(ξt−1, Ft) for some function f , bijective in its second argument.
7Consequently, not all the trades are made through the MM’s. Moreover, because the trade data

we have at our disposal are not matched with the quote changes so we had to use our own algorithm
succeeding to match only about approximately 70% cases, the inventory data themselves are known
only subject to an error, too. We, however, do not take this “matching” noise into account in the
present paper because this would prevent the parameters or the model to be identifiable.
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the relative spread reduction and

εP,t =
(ãt − at) + (b̃t − bt)

2

the imbalance of the one-sided spread reductions. It is quite natural to assume that the
intensity of noise trading does not depend on the side of trading, i. e.

E(εP,t|σ̃t−1,Ξt−1) = 0.

It is also likely (and evident from the data) that the rate of in-spread order placement
increases with widening of the spread, which can be expressed as

E(εσ,t|σ̃t−1, εP,t,Ξt) = exp(α1σ̃t−1 + α2σ̃
2
t−1) (23)

for some constants α1 and α2 such that α1s + α2s
2 ≤ 0 for each s ≥ 0. Strengthening

(23) a little, we assume
εσ,t = exp(α1σ̃t−1 + α2σ̃

2
t−1)ε?t (24)

where (ε?t )τ∈N are i.i.d. positive independent of (Ξτ , εP,τ )τ∈N with Ee?τ = 1. Note that
then, for any τ ,

ln σ̃τ = lnστ + α1σ̃τ−1 + α2σ̃
2
τ−1 + ln ε?t . (25)

Further, denote

Zt,i = Z(σ̃t−i, . . . , σ̃t−i−1−j0 ;ωv, α1, α2)

=
j0∑
j=0

ωjv ln σ̃t−i−j −
j0∑
j=0

ωjv(α1σ̃t−i−1−j + α2σ̃
2
t−i−1−j), i ∈ {1, 2}

and note that

Sτ,i = Zτ,i −
j0∑
j=0

ωjv ln ε?τ−i−j

for any τ . Using this and (25), we are getting

ln σ̃t
.= s̃0 + α1σ̃t−1 + α2σ̃

2
t−1 + sN

t∑
τ=1

∆Nτ + sSZt,1 + Et (26)

s̃0 = ln s0 + sv
lnω0

1− ω0
+ sNN0 +

1− sS
j0∑
j=0

ωjv

E ln ε?1

sS = svωσ

Et = ln ε?t − E ln ε?1 − sS
j0∑
j=0

ωjv(ln ε
?
t−1−j − E(ln ε?1)).
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Further, if we assume that the initial inventory, denoted by N0, is constant unknown,
then we get from (20) that

∆Nt = n0 + nN

t−1∑
τ=1

∆Nτ + nS exp (ωσZt,2) + Ft (27)

n0 = kd0 + kdNN0

nN = kdN

nS = kdSE(θ1)
Ft = kdS exp (ωσZt,2) (θt−2 − E(θ1)) +

√
vN,tFt,

θt = exp(−ωσ
j0∑
j=0

ωjv ln ε?t−j).

Finally, if we take cN,t
.= cN , ce,t

.= ce, cη,t
.= cη for some constants cN , ce, cη, 8 and

denote
cP = cN − cecη.

relation (22) becomes

∆Pt
.= −cP (d0 + dNN0) + (dN + cP k

−1)∆Nt − cP dN
t−1∑
τ=1

∆Nτ

dS exp(ωσSt,1)− dS(1 + cP ) exp(ωσSt,2) + ce
√
wη,t−1 + vγ + v∆πGt.

Consequently, the dynamics of the increments of the noised price

P̃t =
ãt + b̃t

2
= Pt + εP,t

will be

∆P̃t = φ0+φ∆N∆Nt+φN
t−1∑
τ=1

∆Nτ+φS,1 exp(ωσZt,1)+φS,2 exp(ωσZt,2)+Gt (28)

φ0 = −cP (d0 + dNN0)
φ∆N = dN + k−1(cN − cecη)
φN = −cP dN
φS,1 = dSEθ1

φS,2 = −dS(1 + cP )Eθ1

Gt = εP,t − εP,t−1 + dS exp(ω0Zt,1) (θt−1 − E(θ1))
−dS(1 + cP ) exp(ω0Zt,2) (θt−2 − E(θ1)) + ce

√
wη,t−1 + vγGt.

The noised version of the approximate dynamics (19), (20) and (22) is thus given by
(26), (27) and (28).

8An alternative would be to approximated cN,t and ce,t, too, which would lead to an equation with
additional independent variables (e. g. exp(2ωσSt,2)) – we, however, do not go this way for simplicity.
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6.2. Estimation

Because the equations defining the noised dynamics are non-linear and, moreover, some
of the coefficients are shared among equations, we estimated the equations jointly by
a non-linear least squares weighted by standard errors of the individual equations (see
Appendix C for details and discussion about consistency and asymptotic normality of
the estimators).

The actual estimation was performed by a C++ program, developed by the authors,
employing the MMA (Method of Moving Asymptotes) minimization algorithm from the
NLOPT package (see [15]).

As a dataset, we used 10 seconds high frequency trade and quote data from March
20099 supplied by Tickdata Inc., of three stocks:

GE General Electric

MSFT Microsoft

XOM Exxon Mobile

from ten electronic markets: ISE, NASDAQ OMX BX,NSE,NASD ADF, Chicago,
NYSE, ARCA, NASDAQ T, CBOE, BATS, which were actually all the markets, covered
by the data, where the particular stocks were traded. The results of the estimation of
parameters from (26), (27) and (28) can be seen in Appendix D.

6.3. Testing for implications of the decision model

The aim of the present Subsection is to examine a dependence of δ and σ on the in-
ventory and the uncertainty, predicted by our model. Given our approximations (13)
and (15), this dependence would manifest itself by non-zero linear coefficients in (20),
(19), respectively. Even though, except for sN , these coefficients cannot be estimated
directly from (26), (27) and (28), their signs and significances may be deduced from
these equations. In particular, the significance and the sign of. . .

ˆ . . . sv may be taken from this of sS (note that ωσ > 0 by assumption).

ˆ . . . dN may be taken from this of nN (its significance and sign is inherited by dN ).

ˆ . . . dv may be got from those of nS and φS,1 (as Eθ1 > 0, their signs and signifi-
cances are inherited by dS and consequently by dv).

The signs of dependence resulting from our estimation together with significances of
the corresponding coefficients may be seen in Table 1 (the blank fields in the table mean
that the given stock was not traded on the given market).

Immediately we see that the most obvious dependence is the largely prevailing pos-
itive dependence of the spread on the uncertainty, speaking in favour of M3 (see the
Introduction). Then there is a mostly significant dependence of the spread on the in-
ventory which, however, changes sign.

9We chose this month arbitrarily in advance.
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ISE NAS. QB NSE NAS. ADF Chicago

XOM

σ in N
σ in v
δ in N
δ in v (via ∆N)

δ in v (via ∆P )

↓*
↑***
↓*
↓
↑***

↓***
↑***
↓
↑
↑***

↑
↑***
↑**
↓*
↑***

↓***
↑***
↓***
↑***
↑***

GE

σ in N
σ in v
δ in N
δ in v (via ∆N)

δ in v (via ∆P )

↓***
↑***
↓
↑
↑***

↓***
↑***
↓***
↓*
↑***

↑***
↑***
↓
↑
↑***

↓
↑***
↓***
↑***
↑***

↓***
↑***
↓*
↓
↑***

MSFT

σ in N
σ in v
δ in N
δ in v (via ∆N)

δ in v (via ∆P )

↑***
↑***
↓
↑
↑***

↑***
↑***
↓
↓
↑***

↑***
↓***
↓
↑
↑***

↑***
↑***
↓***
↓
↑***

↓***
↑***
↑
↑**
↑***

NYSE ARCA NAS. T COEB BATS

XOM

σ in N
σ in v
δ in N
δ in v (via ∆N)

δ in v (via ∆P )

↓***
↑***
↓**
↓***
↑

↓***
↑***
↓
↓*
↑

↓***
↑***
↓*
↑
↓

↓***
↑***
↑
↓***
↑***

↑**
↑***
↓***
↓***
↓**

GE

σ in N
σ in v
δ in N
δ in v (via ∆N)

δ in v (via ∆P )

↑***
↑***
↓*
↑*
↑

↑***
↑***
↓
↓
↓

↑***
↑***
↓
↑
↑

↓***
↑***
↓**
↓
↑***

↑***
↑***
↓
↓
↑*

MSFT

σ in N
σ in v
δ in N
δ in v (via ∆N)

δ in v (via ∆P )

↑
↑***
↑
↑
↑***

↓***
↑***
↓
↓
↑***

↑***
↑***
↓*
↑
↑***

Tab. 1. Dependence of δ and σ on the inventory and uncertainty.

The number of stars denote a significance on levels 0.05, 0.01 and

0.001, respectively.
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The dependence of the price bias δ on the inventory is almost always negative (but
not always significant), which again speaks for the findings of the market micro-structure
theory, namely for M1 from the Introduction. Further, we can observe mostly positive
dependence of δ on the uncertainty.

7. COMPARISON WITH BENCHMARK MODELS

An objection may arise whether our empirical findings are not spurious in some way.
Even if it is impossible to refute completely such an objection (one can never exclude a
possibility that another, perhaps richer, model explains the data better), we try to meet
such objection by examining three simple benchmark hypotheses.

7.1. All agents irrational

Assume first that neither the MM nor the liquidity traders are rational and the limit and
market orders are put in the zero-intelligence way in the sense of [24]. Then, however,
the flow of the market orders would be independent of the past, which is proved to be
false by the significant results in (27).

7.2. Irrational liquidity takers

Now, say that the MM’s are possibly rational but the liquidity traders are not, meaning
that they do not consider (their estimate of) the fair price but buy and sell the stocks
randomly, i. e., it is λ(•) ≡ 0. This, however, would mean that

Xt|Ξt−1 ∼ CP(κ,D), Yt|Ξt−1, Xt ∼ CP(κ,D)

saying again that ∆Nt are independent of the past, which is falsified by the significant
results from (27).

7.3. Irrational market makers

Another case could be that the LT’s would be possibly rational and the actions of the
MM would not depend on his uncertainty. Instead, the dependence would be caused
only by the price movements. In particular, once a market order arrived and caused the
movement of a corresponding quote, the MM would set the new quote proportionally to
the size of the market order, which could be mathematically described as

∆σt = f(|∆Nt|) + εt

for some f and white noise ε•. Then, however, σt would depend only on σt−1 and ∆Nt
but not on the earlier values of σ, which is evidently not true whenever sS comes out
significant in (26).

8. CONCLUSION

A model describing the behaviour of a market with a rational partially informed market
maker has been proposed and partially verified.
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Even though, as it is common in finance, the model did not succeed to explain ma-
jor parts of corresponding variances, it may contribute to understanding of such phe-
nomenons as micro-structure noise or the relation between price and inventory (hence
of the traded volume).

The model might be further refined in many possible ways.
A step towards its realism, suggesting itself the most, would be to assume multiple

rational agents; then, however, the model would become a dynamical stochastic game,
analysis of which would require methods of analysis completely different from those used
in the present paper.

Less radical enhancements of the model could be done, too, such as considering other
than linear utility function, or modelling the fair price by a process different from the
random walk, such as the GARCH. In both these cases, our main theoretical results
could be preserved for the price of increasing of the state space of the dynamics. The
econometric verification, however, would be probably much more complicated than this
performed in the present paper.
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A. PROOF OF PROPOSITION 3.1

As, by (I1), ∆πt⊥⊥ξt−1, ηt−1, we have, by [16] Proposition 6.8, that ∆πt⊥⊥ξt−1ηt−1.
Therefore and because, by [16] Proposition 6.6, L(∆πt|ξt−1) = L(∆πt), we get. using
also (6), that ∆πt, ηt−1|ξt−1 ∼ N (0,diag(v∆π, vη,t−1)).

By an analogous procedure, we get

γt,∆πt, ηt−1|ξt−1 ∼ N (0,diag(vγ , v∆π, vη,t−1)). (29)

Further, denote

ϑt = ∆Nt −mt, mt = E(∆Nt|Ξt−1) = k

(
at−1 + bt−1

2
− πt−1

)
= k(δt−1 + ηt−1).

By (I1), Xt, Yt⊥⊥Ξt−1γt,∆πt and, as mt ∈ Ξt−1 and (ξt−1, ηt−1) ∈ Ξt−1, we get, by [16]
Corollary 6.7 used twice, that

Xt, Yt,mt⊥⊥Ξt−1ξt−1, ηt−1, γt,∆πt,

which is, by [16], Proposition 6.6., equivalent to

L(Xt, Yt,mt|Ξt−1, ξt−1, ηt−1, γt,∆πt) = L(Xt, Yt,mt|Ξt−1).

trivially implying

L(ϑt|Ξt−1, ξt−1, ηt−1, γt,∆πt) = L(ϑt|Ξt−1). (30)

Further, by (I2) and the fact that mt is conditionally constant given Ξt−1 hence condi-
tionally independent on any random variable given Ξt−1, we have

L(ϑt|Ξt−1) = L(Xt|Ξt−1) ◦ L(−Yt|Ξt−1) ◦ δ−mt
A1,A2

= N (0, vϑ,t) (31)

where

vϑ,t = 2sκ+ sr

(
2− at−1 − bt−1

D

)
= 2s

(
κ+ r − r

D
σt−1

)
.

As vϑ,t is a function of σt−1, L(ϑt|Ξt−1) is σt−1-measurable, hence ξt−1-measurable, so
it may serve as a conditional probability of ϑt given ξt−1 which, in the combination with
(30) and (31), gives

L(ϑt|Ξt−1, ξt−1, ηt−1, γt,∆πt) = L(ϑt|ξt−1) = N (0, vϑ,t)

i. e. ϑt⊥⊥ξt−1Ξt−1, ηt−1, γt,∆πt, trivially implying

ϑt⊥⊥ξt−1ηt−1, γt,∆πt.

By combining this and (29), we are getting

ϑt, γt,∆πt, ηt−1|ξt−1 ∼ N (0,diag(vϑ,t, vγ , v∆π, vη,t−1)).
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Point (i) of the Proposition now follows from the fact that
∆πt
γt

∆Nt
ηt−1

 =


0
0

kδt−1

0

+


1 0 0 0
0 1 0 0
0 0 1 k
0 0 0 1




∆πt
γt
ϑt
ηt−1

 .
Further, since

πt = ht−1 − ηt−1 + ∆πt (32)

∆Nt = kδt−1 + kηt−1 + ϑt, (33)

et = πt + γt = ht−1 − ηt−1 + ∆πt + γt, (34)

we are getting that πt
∆Nt
et

∣∣∣∣∣∣ ξt−1

∼ N

 ht−1

kδt−1

ht−1

 ,
 vη,t−1 + v∆π −kvη,t−1 vη,t−1 + v∆π

−kvη,t−1 vϑ,t + k2vη,t−1 −kvη,t−1

vη,t−1 + v∆π −kvη,t−1 v∆π + vγ + vη,t−1

 , (35)

from which we get by the well known formula for conditional normal distribution ([6],
Proposition 3.13), that L(πt|ξt) = L(πt|∆Nt, et, ξt−1) is normal with mean

ht−1 +
[
−kvη,t−1

vη,t−1 + v∆π

]
×
(
vϑ,t + k2vη,t−1 −kvη,t−1

−kvη,t−1 v∆π + vγ + vη,t−1

)−1 [
k−1∆N t − δt−1

et

]
(36)

and variance

vη,t = vη,t−1 + v∆π −
[
−kvη,t−1

vη,t−1 + v∆π

]
×
(
vϑ,t + k2vη,t−1 −kvη,t−1

−kvη,t−1 v∆π + vγ + vη,t−1

)−1 [ −kvη,t−1

vη,t−1 + v∆π

]
. (37)

As all the variables on the RHS’s in (36) and (37) are constants except for vη,t−1 and
vϑ,t, which is a function of σt−1 and vη,t−1, (36) proves (ii) (note that ht = E[πt|ξt])
and (37) proves (iii) (note that ηt = E(πt|ξt) − πt and that the conditional variance of
E(πt|ξt), which is ξt-measurable with respect to ξt, is zero).

B. PROOF OF PROPOSITION 4.1

Assume (F) first. Let us prove (8) by induction: If T = t then (8) holds because

VT (ξT ) = MT +NTE(eπT |ξT ) = MT +NT e
hT evη,T /2



Dynamic model of market with uninformed market maker 943

(to see it, note that E(eπT |ξT ) = E(e−ηT ehT |ξT ) = ehTE(e−ηT |ξT ))
Now let t < T and assume (8) to hold for t+ 1. Applying the Bellman principle, we

get that the value function Vt and the optimal solution (Ct, δt, σt) must satisfy

Vt(ξt) = sup
δt,σt,Ct

A(t),M(t),N(t)

[
Ct + e−ρE (Vt+1(ξt+1)|ξt)

]
. (38)

which, by (8), may be written as

Vt(ξt) = sup
δt,σt,Ct

A(t),M(t),N(t)

[
Ct + e−ρE

(
Mt+1 + eht+1W (Nt+1, vη,t+1, T − t− 1)|ξt

)]
. (39)

Using trivial identity E(Mt+1|ξt) = Mt + E(∆Mt|ξt), imposing into (2) and noting that
at = ht + δt + σt, bt = ht + δt − σt, we further rewrite (39) as

Vt(ξt) = e−ρMt + sup
δt,σt,Ct,...

[Ct + e−ρ(E(∆mt+1|ξt)− Ct)

+ e−ρehtE(e∆ht+1W (Nt+1, vη,t+1, T − t− 1)|ξt)]. (40)

Now, as

E(∆Xt+1|ξt) = E(E(∆Xt+1|Ξt)|ξt) = E(µ(κ+ r(1− at − πt
D

)|ξt)

= E(µ(κ+ r(1− ηt + δt + σt
D

)|ξt) = µ(κ+ r(1− δt + σt
D

))

and as an analogous procedure may be applied to E(∆Xt+1|ξt), it holds that

E(∆mt+1|ξt) = eht+δt+σtE(∆Xt+1|ξt)− eht+δt−σtE(∆Yt+1|ξt) = ehtf(δt, σt) (41)

where
f(δ, σ) = eδ+σµ(κ+ r(1− δ + σ

D
))− eδ−σµ(κ+ r(1− σ − δ

D
)).

Further, as both vη,t+1 and ∆ht+1 are functions of (∆Nt+1, et+1 − ht, vη,t, δt, σt) (see
Proposition 3.1), we have

E(e∆ht+1W (Nt+1, vη,t+1, T − t− 1)|ξt)]
= E(g(Nt,∆Nt+1, et+1 − ht, vη,t, δt, σt, T − t)|ξt) = G(Nt, vη,t, δt, σt, T − t) (42)

for some g and G (the last “=” is due to the fact that the conditional distribution of
(∆Nt+1, et+1−ht) given ξt depends only on (δt, σt, vη,t), see Proposition 3.1 (i) and note
that et+1 − ht = πt+1 + γt+1 − ht = ∆πt+1 − ηt + γt+1).

Using (41) and (42), we may now write

Vt(ξt) = e−ρMt + sup
δt,σt,Ct,...

[(1− e−ρ)Ct + e−ρehtf(δt, σt)

+ e−ρehtG(Nt, vη,t, δt, σt, T − t)]. (43)
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Because neither f nor G depend on Ct,M(t) will be fulfilled with “=” given that Ct
is optimal (if not then a greater C would strictly increase the objective function) which
determines optimal Ct uniquely as

Ct = sup{c : φ(c−Mt|ξt) ≤ γ) (44)

where φ is a conditional c.d.f. of ∆mt+1|ξt, which is given by

φ(x|ξt) = E(P(∆mt+1 ≤ x|Ξt)|ξt)

= E

(
ϕ

(
x− E(∆mt+1|Ξt)√

var(∆mt+1|Ξt)

)∣∣∣∣∣ ξt
)

= E

ϕ
 x− eht

(
eδ+σµ[κ+ (1− δ+σ+ηt

D )]− eδ−σµ[κ+ (1− σ−δ−ηt
D )]

)
eht
√
e2(δ+σ)s(κ+ (1− δ+σ+ηt

D )) + e2(δ−σ)s(κ+ r(1− σ−δ−ηt
D ))

∣∣∣∣∣∣ ξt


= E(θ(e−htx; δ, σ, ηt)|ξt)

where

θ(y; δ, σ, η) = ϕ

 y −
(
eδ+σµ[κ+ (1− δ+σ+η

D )]− eδ−σµ[κ+ (1− σ−δ−η
D )]

)
√
e2(δ+σ)s(κ+ (1− δ+σ+η

D )) + e2(δ−σ)s(κ+ r(1− σ−δ−η
D ))

 .

As the only random element inside the expectation is ηt, we may write

φ(x|ξt) = Φ(e−htx; δt, σt, vη,t), Φ(y; δ, σ, v) = Eη∼N (0,v)θ(y; δ, σ, η).

(recall that the conditional distribution of ηt|ξt depends only on vη,t by Proposition 3.1).
Therefore, (44) may be rewritten as

Ct = sup{c : Φ(e−ht(c−Mt)|δt, σt, vη,t) ≤ γ)

= Mt + sup{c−Mt : Φ(e−ht(c−Mt); δt, σt, vη,t) ≤ γ)

= Mt + eht sup{e−ht(c−Mt) : Φ(e−ht(c−Mt); δt, σt, vη,t) ≤ γ)

= Mt + eht sup{x : Φ(x; δt, σt, vη,t) ≤ γ)

= Mt + ehtΨ(δt, σt, vη,t), Ψ(δ, σ, v) = Φ−1(γ; δ, σ, v) (45)

which proves (12) (the last “=” holds because Φ(•; δ, σ, v) is continuous and strictly
monotonous for each δ, σ, v).

Now, by imposing (45) into (43) and dropping the constraint M̃, we are getting

Vt(ξt) = e−ρMt + sup
δt,σt,Ã,Ñ

{(1− e−ρ)[Mt + ehtΨ(δt, σt, vη,t)]

+ e−ρehtf(δt, σt) + e−ρehtG(Nt, vη,t, δt, σt, T − t)}
= Mt + ehtW (Nt, vη,t, T − t)
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where

W (N.v, T−t) = sup
δ,σ,Ã,Ñ

[(1−e−ρ)Φ−1(γ; δ, σ, v)+e−ρf(δ, σ)+e−ρG(N, v, σ, δ, T−t)] (46)

i. e., (8) is proved, because W is of the form of (9) and (Ñ ) may be rewritten as in (8).
Relations (11) and (10) follow from (8) and the Bellman principle.10

Before dealing with the infinite horizon, let us prove a lemma.

Lemma B.1. (i) var(ητ |ξτ ) ≤ vγ ,

(ii) var(∆hτ |ξτ−1) ≤ vγ + v∆π,

(iii) var(∆hτ ) ≤ vγ + v∆π

(iv) if δτ−1 and στ−1 are bounded then |Xτ | + |Yτ | ≤ d1 + d2V for some constants
d1, d2 and random variable V with E(V |ξτ−1) = 0 and bounded var(V |ξτ−1).

P r o o f . (i) follows from the fact that var(ητ |ξτ ) = var(γτ |ξτ ) = vγ − [positive term],
which we obtain by a procedure similar to the computation of vη,t in the previous proof
(see (37)) with γt instead of πt and with the covariances changed appropriately in (35).
(ii) Noting that var(∆hτ |ξτ−1) = var(hτ |ξτ−1) = var(E(πτ |ξτ )|ξτ−1) we get, by the Law
of Iterated Variance, that

var(∆hτ |ξτ−1) = var(πτ |ξτ−1)− E(var(πτ |ξτ )|ξτ−1)

≤ var(πτ |ξτ−1) = v∆πτ + vη,τ−1

(i)

≤ v∆π + vγ .

(iii) By the same Law,

var(∆hτ ) = E(var(∆hτ |ξτ−1) + var(E(∆hτ |ξτ−1)) = E(var(∆hτ |ξτ−1))
(ii)

≤ v∆πτ + vγ .

(iv) There exist constants c1,2,3.4 such that the distributions would not change when we
put Xτ = c1 + c2(aτ−1 − πτ−1) +

√
(c3 + c4(aτ−1 − πτ−1)) ∨ 0U1 with U1 ∼ N (0, 1)

independent of ξτ−1. Further, because aτ −πτ = ητ + δτ +στ and as ητ−1 = √vη,τ−1U2

for some U2 ∼ N (0, 1) such that (U1, U2) is independent of ξτ−1, we have

|Xτ | ≤ k1 + k2|U2|+
√
k3 + k4|U2||U1| ≤ k1 + k2|U2|+ (

√
k3 +

√
k4

√
|U2|)|U1|

for some k1,2,3,4. As the term has finite expectation and, by the Schwarz inequality, also
finite second moment, and as |Yτ | may be bounded analogously, we are getting (iv). �

10Strictly speaking, (11) and (10) hold only under additional assumption that the choice between
possible multiple solutions does not depend on random variables which are not arguments of the value
function.
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Now assume (N). Recall that then

Vt(ξt) = sup
Cτ ,δτ ,στ fulfilling

E(τ),C(τ),A(τ),N(τ),M(τ),τ≥t

E

[ ∞∑
τ=t

e−ρ(τ−t)Cτ

∣∣∣∣∣ ξt
]
. (47)

First we prove that, for any t ≥ 0,

Vt(ξt) = lim
T→∞

Ṽt,T (ξt), Ṽt,T (ξt) = sup
Cτ ,δτ ,στ fulfilling

E(τ),C(τ),A(τ),N(τ),M(τ),τ≥t

E

[
T−1∑
τ=t

e−ρ(τ−t)Cτ

∣∣∣∣∣ ξt
]
.

(48)
Before doing so, note that that the Proposition holds for the problem underlying Ṽt,T
(indeed, our proof would be valid even if the constraint C(τ) is added and the zero
terminal criterion Ṽt,T (ξT ) = MT = MT + ehT−1 · 0 is assumed).

Now let us show the limit and the expectation may be exchanged in (48). In order to
do so, realize that, by (12), ψehτ ≤ Cτ−Mτ ≤ ψehτ where ψ = minC(τ),v≤vγ Ψ(δτ , στ , v),
ψ = maxC(τ),v≤vγ Ψ(δτ , στ , v) whenever Cτ is optimal.11 Consequently

|Cτ −Mτ | ≤ ehτψ, ψ = |ψ + ψ|,

and, further,

|Cτ | ≤ |Cτ −Mτ |+ |Mτ | = |Cτ −Mτ |+ |Mτ−1 + ∆mτ − Cτ−1|
≤ ψ(ehτ + ehτ−1) + |∆mτ |

with

|∆mτ | = |eaτ−1Xτ − ebτ−1Yτ | ≤ ehτ−1(eδτ−1+στ−1 |Xτ |+ eδτ−1−στ−1 |Yτ |)
≤ ehτ−1c(|Xτ |+ |Yτ |)

for some c (thanks to C(τ − 1)).
Now, let ρ1, ρ2 > 0 be such that ρ1 + ρ2 = ρ and ρ2 ≥ vγ+v∆π

2 . Assume t = 0 w.l.o.g.
and denote ετ = exp{−ρτ}Cτ . We have

|ετ | ≤ exp{−ρτ} (exp{hτ}ψ + exp{hτ−1}(ψ + c(|Xτ |+ |Yτ |)))
= ψ exp{−ρ1τ + uτ}+ ψ exp{−ρ1τ + vτ }+ c exp{−ρ1τ + wτ},

uτ = −ρ2τ + hτ , vτ = −ρ2τ + hτ−1, wτ = −ρ2τ + hτ−1 + log(|Xτ |+ |Yτ |).
As, by Proposition (3.1) (ii), hτ is a ξτ -martingale with differences having bounded
variance (by Lemma B.1 (iii)), we have 1

τ hτ → 0 a.s. by the Strong LLN for Martingale
Differences ([20] Ch. 15 par 4.1. Theorem 8). As the probability space may be chosen
so that 1

τ (wτ − hτ ) → −ρ1 a.s.,12 we have 1
τwτ → −ρ1 a.s. implying wτ → −∞ a.s.

11The minimum and maximum of Ψ exist as Ψ is continuous on a compact, the variable v may be
restricted thanks to Lemma B.1 (i).

12To see this, note that 1
τ
|Xτ | → 0 in distribution thanks to Lemma B.1 (iv) and that, by the

Almost Sure Representation, we cam choose the probability space space such that the convergence is
a.s., similarly for |Yτ |.
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Consequently, there exists a r.v. K, finite almost sure, such that wτ ≤ 0, τ ≥ K, which
further gives

∞∑
τ=0

exp{−ρ1τ + wτ} =
K−1∑
τ=0

exp{−ρ1τ + wτ}+
∞∑
τ=K

exp{−ρ1τ} <∞. a.s.

After analogous procedures with uτ and vτ we get that that
∑t
τ |ετ | converges a.s., which

implies a.s. convergence of
∑t
τ ετ .

Further, as E(exp{∆hτ − ρ2}|ξτ−1) = exp{ 1
2var(∆hτ |ξτ−1) − ρ2} ≤ exp{ 1

2 (v∆π +
vγ)− ρ2} ≤ 1 (by Lemma B.1 (ii) and by (N)) and E(|Xτ |+ |Yτ ||ξτ−1) ≤ d1 (by Lemma
B.1 (iv)), we have

Eewτ = e−ρ2E(e∆h1−ρ2E(. . .E(e∆hτ−1−ρ2E(ψ + cE(|Xτ |+ |Yτ ||ξτ−1)ξt−2)) . . . )ξ1)
≤ φ+ cd1,

which gives, together with similar inequalities for euτ and evτ , that E|ετ |) ≤ exp{−ρ1τ}k
for some constant k. Therefore and by the Monotone Convergence Theorem, E(

∑∞
τ |ετ |) =∑∞

τ E(|ετ |) < ∞. i. e.
∑∞
τ |ετ | may serve as an integrable majorant for

∑t
τ ετ ; this,

together with the convergence of
∑t
τ ετ , proves the desired interchangeability by the

Fatou-Lesbeque Theorem.
The fact that the sup and the lim may be interchanged follows from variational

analysis theory: First, let us take

pτ = ϕ(Cτ ), τ > 0,

as a decision variable rather than Cτ to get a compact feasible set. Further, since ϕ−1(•)
is monotone and differentiable, the objective functions fT = E(

∑T−1
τ=t e

−ρ(τ−t)ϕ−1(pτ )|ξt),
t ∈ N, are monotone and differentiable, too. Monotonicity, differentiability and com-
pactness imply the epi-convergence of fT to f∞ = E(

∑∞
τ=t ϕ

−1(pτ )|ξt). Finally, having
compact set of feasible solutions, the epi-convergence of objective functions allows for
interchange of supremum and limit. See [1] (Theorem 1.10, Theorem 2.11) or [19](Th.
7.33) for more details.

Thus, we have proved (49).
Further, by (8) with Ṽt,T instead of Vt (the fact that (8) holds for Ṽt,T follows from

the discussion above),
Vt(ξt) = Mt + ehtW (Nt, vη,t,∞),

where W (N, v,∞) = limT→∞W (N, v, T − t) where W is computed from the problem
underlying Ṽt,T . Using this and the Bellman equation

Vt(ξt) = sup
δt,σt,Ct, fulfilling C(t),A(t),M(t),N (t)

[
Ct + e−ρE(Vt+1(ξt+1)|ξt)

]
. (49)

easily following from (47), we further get the Proposition the same way as in case (F).
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C. ASYMPTOTIC PROPERTIES OF THE LS ESTIMATOR

Denote

θ = (n0, s̃0, φ0, nN , sN , φ∆N , φN , nS , sS , φS,1, φS.2, ωσ, ωv, α1, α2)

the vector of true values of the parameters and assume that

A1 the parameter space S is bounded (the bound may be arbitrarily large);

A2 vector θ is such that there exist (possibly very large) K,L, such that, with proba-
bility 1, there exists an infinite increasing sequence (k1, k2, . . . ) fulfilling

(Nki−j , lnσki−j) ∈ [−K,K]× [−L,L], 0 < j ≤ j0, i ∈ N, (50)

(note that then necessarily nN < 0 because otherwise Nt would explode).

First, let us renumber the observations so that observations violating (50) (i. e., obser-
vations with indices other than ki) are excluded13 and rewrite the estimated equations
(26), (27) and (28 ), weighted by corresponding standard errors, as

Yn = λngn(θ) + hn, n ∈ N,

where, for any k ∈ N ∪ {0},

Y3k+1 = λk,1∆Nk, Y3k+2 = λk,2 ln σ̃k, Y3k+3 = λk,3∆P̃k

h3k+1 = λk,1Fk, h3k+2 = λk,2Ek, Y3k+3 = λk,3Gk,

λk,1 =
1

ŝk,N
, λk,2 =

1
ŝk,σ

, λk,3 =
1

ŝk,P
,

where ŝk,σ, ŝk,N and ŝk,P, are standard errors of residuals from (26), (27) and (28),
respectively, estimated individually, and

g3k+j = gk,j , k ∈ N, j ∈ {1, 2, 3},

where

gk,1(n0, nN , nS , ωσ, ωv, α1, α2)

= n0 + nN

k−1∑
τ=1

∆Nτ + nS exp (ωσZ(σ̃k−2, . . . , σ̃k−j0−3;ωv, α1, α2))

gk,2(s̃0, sN , sS , ωv, α1, α2)

= s̃0 + α1σ̃k−1 + α2σ̃
2
k−1 + sN

k∑
τ=1

∆Nτ + sSZ(σ̃k−1, . . . , σ̃k−j0−2;ωv, α1, α2)

13In the actual data, both σ̃t and Nt seem to be mean reverting so, given large enough bounds, no
observation should be thrown out.
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gk,3(φ0, φ∆N , φN , φS,1, φS,2, ωv, α1, α2)

= φ0 + φ∆N∆Nk + φN

k−1∑
τ=1

∆Nτ + φS,1 exp(ωσZ(σ̃k−1, . . . , σ̃k−j0−2;ωv, α1, α2))

+ φS,2 exp(ωσZ(σ̃k−2, . . . , σ̃k−j0−3;ωv, α1, α2)).

First we show that the residuals of Y ’s are martingale differences:

Proposition C.1. E(hk,j |H3k+j) = 0 where H3k+j =

{
ξ̃k−1 if j = 1
(ξ̃k−1,∆Nk) if j > 1

.

P r o o f . Let j > 1 (the slightly more complicated case) first. The assertion follows from
[23], Lemma A.1 (ii); to see it, put U = (ε?k, . . . , ε

?
k−j0−1, Ek,Gk). and V = (ξk−1, Nk) in

the Lemma. For j = 1, the proof is similar. �

Further, let us assume

A3 nS 6= 0, ωσ 6= 0

A4 All moments of ε?1 are finite and the fourth moment of log ε?1 is finite.

Remark C.2. Note that (A4) together with (A1) and (A2) implies that (A4) holds
with εσ,1 instead of ε?1.

Consistency

For any θ̂ and k and j, denote

∆θ̂ = θ̂ − θ, dk,j = dk,j(θ̂) = gk,j(θ̂)− gk,j(θ),

First, note that, thanks to the fact that the variance of the residuals in (26), (27) and
(28) is bounded from below (in the less transparent case (27) it is because vN,t is bounded
from below), we have that

lim inf
k
ŝk,σ > 0, lim inf

k
ŝk,N > 0, lim inf

k
ŝk,P > 0. (51)

We gradually verify the conditions, sufficient for the consistency by [14]:

LIP(fk(θ)) holds because in for all j the derivatives of gk,j are continuous bounded
(which is thanks to A1).

SI({Dn(θ)}) Denote ‖‖ the max norm. Note that the condition is satisfied if, for any
δ > 0 and θ̂ fulfilling

∥∥∥∆θ̂
∥∥∥ ≥ δ,
Hj =∞, Hj :=

∞∑
k=1

d2
k,j (52)
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almost surely for at least one j ∈ {1, 2, 3}; note further that this is satisfied if,
for some j, there exists a filtration Ii, a constant ε and a (possibly random)
subsequence ki fulfilling

var(dki,j |Ii) ≥ ε, (53)

var(δki,j) <∞, δi,j = d2
i,,j − E(d2

i,,j |Ii) (54)

and

lim
τ

τ∑
i=1

(var(δki,j |Ii))/τ2 <∞ (55)

in which case
1
τ

τ∑
i=1

δki,j = 0 (56)

a.s. by the Strong LLN for martingale differences ([21] p 487, Theorem 4), implying

lim
1
τ

τ∑
i=1

d2
ki,j = lim

1
τ

τ∑
k=1

[δki,j + E(d2
ki,j |Ii)] ≥ lim

1
τ

τ∑
k=1

[δki,j + var(d2
ki,j |Ii)] ≥ ε

by (56), further yielding
∑
d2
k,j =∞ which suffices for (52).

In particular, if, for some j,
dk,j = ck + fk (57)

where ck is Ik measurable then

δk,j = 2ck(fk − E(fk|Ik)) + (f2
k − E(f2

k |Ik))

so, thanks to the fact that (x+ y)2 ≤ 3(x2 + y2) and the Hölder inequality,

var(δk,j |Ik) = E(δ2
k,j |Ik) ≤ 12c2kvar(fk|Ik) + 3var(f2

k |Ik)

≤ 12c2kE(f2
k |Ik) + 3E(f4

k |Ik) ≤ 12c2k
√

E(f4
k |Ik) + 3(f4

k |Ik).

Thus, for (55) to hold, it suffices when the conditional fourth moments of fk and
the conditional second moments of ck are uniformly bounded by constants F , C,
respectively which, in addition, proves (54) because

var(δk,j) = E(δ2
k,j) ≤ 12E(|ck|f2

k )+3E(f4
k ) ≤ 12

√
Ec2kE(f4

k )+3E(f4
k ) ≤ 12

√
CF+3F.

Coming to condition SI itself, agree to write ∆n0, ∆s0, etc., for the first, second,
etc., component of ∆θ̂ and assume first that at least one of values ∆α1,∆α2,∆sS
is non-zero. Then

dk,2 = ∆s̃0 + ∆α1σ̃k−1 + ∆α2σ̃
2
k−1 + ∆sN

k∑
i

∆Ni + ∆sSZk,1 + sS∆Zk,1

which may be expressed in the language of (57) with

Ik = (ξ∞, εσ,1, . . . , εσ,k−2),
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ck = ∆s̃0+∆sN
∑

∆Nτ+∆sS(
j0∑
j=1

ωjv ln σ̃k−1−j−
j0∑
j=0

ωjv(α1σ̃k−2−j+α2σ̃
2
k−2−j))

+ sS(
j0∑
j=1

(ω̂jv − ωjv) ln σ̃k−1−j −
j0∑
j=0

ωjv(∆α1σ̃k−2−j + ∆α2σ̃
2
k−2−j)

and

fk = akEk, ak =

 ∆α1ηk
∆α2η

2
k

∆sS

 , Ek =

 ε?k−1

(ε?k−1)2

ln ε?k−1


ηk = σk−1 exp(α1σ̃k−1 + α2σ̃

2
k−1).

As the residuals in (26) are i.i.d. non-degenerated, we can select a sequence ki
such that σ̃ki ≥ h for some h > 0. Thus, there exists εη > 0 fulfilling ηki ≥ εη for
each i, which implies existence of εa > 0 such that ‖aki‖ = α2

1η
2
k + α2

2η
4
k + s2

S ≥ εa
and, consequently, var(dk,2|Ik) = a′kivar(E1)aki ≥ ε2aλmin where λmin is the least
eigenvalue of var(E1) i. e. (53) is fulfilled. Further, by A2 and A4 and by the fact
that ε?ki are i.i.d., Ec2ki and Ef4

ki
are uniformly bounded, hence also (54) and (55)

are verified. Summarized, (52) is proved if at least one of values ∆α1,∆α2,∆sS is
non-zero.
Now let ∆α1,∆α2,∆sS be zero but let ∆ωv be non-zero. Then

dk,2 = ∆s0+∆sN
∑

∆Nτ+sS(
j0∑
j=1

(ω̂jv−ωjv)σ̃k−j−1) = sS(
j0∑
j=1

(ω̂jv−ωjv)(σ̃k−j−1+qt)),

where qt = ∆s0+sN
P

∆Nτ

sS
Pj0
j=1(ωjv−ω̂jv)

: as neither σ̃k nor Nk is convergent (note that the

variances in the residuals in (27) are bounded from below), a subsequence ki exists
such that d2

ki,2
≥ ε directly implying (52).

If ∆α1,∆α2,∆sS ,∆ωv are zero but at least one of the values ∆sN ,∆s0 are non
zero then, for similar reasons, ε and ki exist such that d2

ki,2
≥ ε yielding (52).

Let now ∆α1,∆α2,∆sS ,∆ωv,∆sN ,∆s0 be zero (implying that ∆Zt,2 = 0). Then
we can decompose dk,2 according to (57) as

dk,2 = ck + fk

with Ik = (ξ∞, εσ,1, . . . , εσ,k−3).

ck = ∆n0 + ∆nN
∑

∆Nτ ,

fk = ∆nS exp (ω̂σZt,2) + nS [exp (ω̂σZt,2)− exp (ωσZt,2)]

= (∆ns + nS)(ε?k−2)ω̂σ exp (ω̂σzk)− nS(ε?k−2)ωσ exp (ωσzk) = bkFk
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where

bk = ((∆ns + nS) exp (ω̂σzk) ,−nS exp (ωσzk))

= exp (ω̂σzk)nS

(
(
∆ns
nS

+ 1),− exp (−∆ωσzk)
)

Fk = ((ε?k−2)ω̂σ , (ε?k−2)ωσ ), zk = Zk,2 − ln ε?k−2

so
var(fk|Ik) = b′kV bk

where V is a variance matrix of F1 (note that it is regular because otherwise ∆ωσ
would be zero). Note also that

‖bk‖2 = exp (2ω̂σzk)n2
S

[(
∆ns
nS

+ 1
)
− exp (−∆ωσzk)

]2

.

If at least one of values ∆ωσ,∆nS is non-zero then, thanks to A3 and the non-
convergence of σ̃′s, there exists ki and h > 0 such that ‖bki‖ > h implying (53)
analogously as above. Thanks to A1 and A2, also (54) holds true so (52) is satisfied.
Let now ∆α1,∆α2,∆sS ,∆sN ,∆s0,∆ωv,∆n,∆ωσ,∆nS be zero but at least one
of the values ∆n0,∆nN be non zero. Then

dk,1 = ∆n0 + ∆nN
∑
τ

∆Nτ ,

which diverges thanks to the non-convergence of Nk which again implies (52).
Finally, let ∆α1,∆α2,∆sS ,∆sN ,∆s0,∆ωv,∆n,∆ωσ,∆nS ,∆n0,∆nN be zero. Then,
however,

dk,3 = ∆φ0 + ∆φ∆N∆Nk + ∆φNNk + ∆φS,1 exp(ωσZk,1) + ∆φS,2 exp(ωσZk,2)

with at least one of the coefficients being non-zero – the proof of (52) follows the
non-convergence of σk and ∆Nk similarly as above.

VAR(σk) Thanks to (51) and the fact that only observations fulfilling A2 are involved,
it is easily seen from (26), (27) and (28) that lim supk var(Yk|Fk−1) < ∞ which
suffices for VAR by [14], Section 5.

The consistency now follows from Proposition 3.1. of [14].

Asymptotic normality

Finally, we verify the conditions sufficient form the asymptotic normality. In order to
do this, we put an additional assumption

A5 Limit of

Lk(θ) =
1
k

k∑
i=1

hi(θ)hTi (θ)

is deterministic where h′3k+j = h′k,j , j ∈ {1, 2, 3},
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hk,1(θ) = 1
λk,1



1
0
0∑k−1 ∆Nτ
0
0
0

exp{ωσZk,2}
0
0
0

nSZk,2 exp{ωσZk,2}
nSωσ exp{ωσZk,2} ∂

∂ωv
Zk,2

nSωσ exp{ωσZk,2} ∂
∂α1

Zk,2
nSωσ exp{ωσZk,2} ∂

∂α2
Zk,2



, hk,2(θ) = 1
λk,2



0
1
0
0∑k

τ ∆Nτ
0
0
0

Zk,1
0
0
0

sS
∂
∂ωv

Zk,1
σ̃k−1 + sS

∂
∂α1

Zk,1
σ̃2
k−1 + sS

∂
∂α2

Zk,1



,

hk,3(θ) =
1
λk,3



0
0
1
0
0

∆Nk∑k−1
τ ∆Nτ

0
0

exp{ωσZk,1}
exp{ωσZk,2}

φS,1Zk,1 exp{ωσZk,1}+ φS,2Zk,2 exp{ωσZk,2}
φS,1 exp{ωσZk,1} ∂

∂α1
Zk,1 + φS,2 exp{ωσZk,2} ∂

∂α1
Zk,2

φS,1 exp{ωσZk,1} ∂
∂α2

Zk,1 + φS,2 exp{ωσZk,2} ∂
∂α2

Zk,2
φS,1 exp{ωσZk,1} ∂

∂ωv
Zk,1 + φS,2 exp{ωσZk,2} ∂

∂ωv
Zk,2



with ∂
∂α1

Zk,i = −
∑j0
j=0 ω

j
vσ̃t−i−1−j , ∂

∂α2
Zk,i = −

∑j0
j=0 ω

j
vσ̃t−i−1−j , and

∂
∂ωv

Zk,i =
∑j0
j=1 jω

j−1
v (ln σ̃t−i−j − α1σ̃t−i−1−j − α2σ̃

2
t−i−1−j)

Before verifying the conditions required for the asymptotic normality, note that

Mn =
1
n
L−1
n

for matrix Mn defined in Section 6 of [14].

Now let us verify the conditions, required for the normality by [14].



954 M. ŠMÍD AND M. KOPA

UNC({θn}) Because the first and the second derivatives of h are bounded (say by
a constant C) and because the parameter space S is compact, we have∣∣∣∣∣1k

k∑
i=1

hi(θn)hTi (θn)L−1
k − I

∣∣∣∣∣ =

∣∣∣∣∣1k
(

k∑
i=1

hi(θn)hTi (θn)− 1
k

k∑
i=1

hi(θ)hTi (θ)

)
L−1
k

∣∣∣∣∣
≤ 1
k

∥∥∥∥∥
k∑
i=1

hi(θn)(hi(θn)− hi(θ))T +
k∑
i=1

hi(θ)(hi(θn)− hi(θ))T
∥∥∥∥∥∥∥L−1

k

∥∥
≤

(∥∥∥∥∥1
k

k∑
i=1

hi(θn)(h′i(θ) + o(θn − θ))T
∥∥∥∥∥+

∥∥∥∥∥1
k

k∑
i=1

hi(θ)(h′i(θ) + o(θn − θ))T
∥∥∥∥∥
)

× ‖θn − θ‖
∥∥L−1

k

∥∥
≤ ‖θn − θ‖ (2C + o(θn − θ))

∥∥L−1
k

∥∥→ 0

which proves UNC.

LIM{{θn}} would be proved similarly

SI{(Mn[l, j])−1} For SI to hold, it suffices that there exists n0 such that

|L−1
k [l, j]| ≤ K, n ≥ n0,

for some deterministic K because then∣∣∣∣ 1
Mn[l, j]

∣∣∣∣ =
∣∣∣∣ n

Ln[l, j]

∣∣∣∣ ≥ n

K
, n ≥ n0, (58)

which verifies SI. However, as the inversion of a matrix is continuous in all the
points in which the inversion exists, (58) is verified by A5.

Now, thanks to A5 and the CLT for martingale arrays (as cited e. g. in [14], Sec 8, p.
24), the estimate is asymptotically normal by Proposition 6.2 of [14].

Remark C.3. Note that the seemingly arbitrary assumptions A2 and A5 are satisfied
if the process (at, bt, Nt) is stationary ergodic.

D. ESTIMATES OF NOISED APPROXIMATE DYNAMICS

The following table shows a brief descriptive statistics and results of a joint estimation
of equations (26), (27) and (28) from Section 6 for each stock-market pair. The number
of stars denote significance on levels 0.05, 0.01 and 0.001, respectively. The actual values
of parameters σN , φN and nN are scaled by 105, parameters φS,1 and φS,2 are scaled by
108.
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D.1. XOM

XOM / ISE
Volume/s: 7.09537
Trades/s: 0.05105
Avg. spread: 0.05510

ωσ 0.05344(0.019317) **
ωv 0.87165(0.0073743) ***
α1 426.2(7.7373) ***
α2 − 48407(1882.5) ***

s̃0 − 3.6899(0.033508) ***
sN − 0.018084(0.0058002) ***
sS 0.13473(0.0024467) ***

φ0 − 0(0) *
φ∆N − 0.024115(0.00023285) ***
φN 8.0031e − 06(3.5142e − 06) *
φS,1 5.0649e+ 05(1.0585e+ 05) ***
φS,2 − 4.5818e + 05(97310) ***

n0 12.469(10.676)
nN − 9.8757(2.3125) ***
nS − 93.184(43.857) *

XOM / NASD OB
Volume/s: 4.5922
Trades/s: 0.054805
Avg. spread: 0.022481

ωσ 0.95(6.099e + 12)
ωv 1(0.0070012) ***
α1 893.54(16.052) ***
α2 − 1.1861e + 05(4888.5) ***

s̃0 − 3.4517(0.035459) ***
sN − 0.16428(0.012957) ***
sS 0.11421(0.0020317) ***

φ0 − 0(0) ***
φ∆N − 0.073961(0.00092821) ***
φN 4.3614e − 05(1.0476e − 05) ***
φS,1 3.5831e + 05(7.1984e + 19)
φS,2 − 3.8423e + 05(8.453e + 19)

n0 0.35364(0.28444)
nN − 4.5709(2.2478) *
nS 7.0504(3.5887e + 15)

XOM / NSE
Volume/s: 6.4547
Trades/s: 0.041187
Avg. spread: 0.37276

ωσ 0.083754(0.018494) ***
ωv 0.77437(0.00543) ***
α1 105.7(1.1647) ***
α2 − 1271.5(25.103) ***

s̃0 − 2.4592(0.020582) ***
sN 0.0016863(0.00079383) *
sS 0.18717(0.0022769) ***

φ0 − 0(0) *
φ∆N − 0.057546(0.0015561) ***
φN 9.0614e − 07(1.9825e − 06)
φS,1 1.0607e+ 06(1.5185e+ 05) ***
φS,2 −1.0353e+06(1.4727e+05) ***

n0 10.449(5.0425) *
nN 1.3314(0.26952) ***
nS − 90.467(24.021) ***

XOM / NASD ADF
Volume/s: 26.465
Trades/s: 0.15398
Avg. spread: 0.32196

ωσ 0.059761(0.0029591) ***
ωv 0.96131(0.003483) ***
α1 57.467(2.3121) ***
α2 − 735.07(155.42) ***

s̃0 − 2.5948(0.02412) ***
sN − 0.0030441(0.00010484) ***
sS 0.12215(0.0011744) ***

φ0 0(0)
φ∆N − 0.066904(0.0010776) ***
φN − 2.2403e − 07(1.5121e − 07)
φS,1 2.7007e + 06(93368) ***
φS,2 − 2.6154e + 06(89575) ***

n0 197.8(5.9637) ***
nN − 0.72481(0.031148) ***
nS 376.77(29.54) ***

XOM / NYSE
Volume/s: 118.22
Trades/s: 0.55785
Avg. spread: 0.025279

ωσ 0.95(1.1359e + 13)
ωv 1(0.014246) ***
α1 1474.7(11.841) ***
α2 − 8.2627e + 05(12192) ***

s̃0 − 5.9748(0.020342) ***
sN − 0.001624(1.1325e − 05) ***
sS 0.02855(0.0011552) ***

φ0 0(0) **
φ∆N − 0.0050195(3.6664e − 05)
***
φN 4.9935e − 08(3.9065e − 08)
φS,1 − 2.5328e + 05(1.1494e + 20)
φS,2 − 2.4135e + 05(1.0479e + 20)

n0 396.08(9.7161) ***
nN − 1.2386(0.1736) ***
nS − 25569(1.1499e + 19)

XOM / ARCA
Volume/s: 86.567
Trades/s: 0.81679
Avg. spread: 0.014917

ωσ 0.95(8.1009e + 12)
ωv 1(0.0056599) ***
α1 934.99(3.1889) ***
α2 7983.5(3911.8) *

s̃0 − 5.7256(0.0060374) ***
sN − 0.024096(4.61e − 05) ***
sS 0.021896(0.00034323) ***

φ0 − 0(0) ***
φ∆N − 0.02135(6.1542e − 05) ***
φN 5.5859e − 06(8.0615e − 07) ***
φS,1 − 1.5334e + 06(5.0362e + 20)
φS,2 1.5346e + 06(5.0555e + 20)

n0 41.901(3.5983) ***
nN − 4.8412(1.4614) ***
nS − 81937(2.6208e + 19)

XOM / NASDAQ T
Volume/s: 114.54
Trades/s: 0.98704
Avg. spread: 0.015841

ωσ 0.95(3.7084e + 13)
ωv 1(0.0034162) ***
α1 911.21(6.0542) ***
α2 8284.3(10181)

s̃0 − 4.8612(0.0067711) ***
sN − 0.0011634(2.3809e − 05) ***
sS 0.046558(0.00042438) ***

φ0 − 0(0) ***
φ∆N − 0.019435(6.4418e− 05) ***
φN − 1.563e− 06(3.5772e− 07) ***
φS,1 − 21938(6.3972e + 19)
φS,2 5.9243e + 05(8.642e + 20)

n0 − 42.272(4.5421) ***
nN − 3.4918(0.79933) ***
nS − 973.61(1.5786e + 18)

XOM / CBOE
Volume/s: 0.23657
Trades/s: 0.0017438
Avg. spread: 1.1452

ωσ 0.085351(0.0013758) ***
ωv 0.86287(0.0013625) ***
α1 − 16.428(0.4417) ***
α2 525.92(7.6943) ***

s̃0 − 0.36012(0.0094829) ***
sN − 0.6677(0.028159) ***
sS 0.23972(0.00083618) ***

φ0 − 0(0) ***
φ∆N 0.043113(0.021867) *
φN 0.0011916(0.00015559) ***
φS,1 1.0205e + 07(88056) ***
φS,2 − 9.9257e + 06(82612) ***

n0 5.0641(0.29297) ***
nN − 2.3629(0.86311) **
nS − 15.015(1.9858) ***

XOM / BATS
Volume/s: 73.509
Trades/s: 0.73198
Avg. spread: 0.016484

ωσ 0.95(8.7076e + 12)
ωv 1(0.0039107) ***
α1 678.01(5.6187) ***
α2 − 66251(2977.7) ***

s̃0 − 4.3373(0.011628) ***
sN 0.0035177(0.00012081) ***
sS 0.082578(0.00080128) ***

φ0 − 0(0) ***
φ∆N − 0.030682(0.00014181) ***
φN − 6.7286e − 06(8.0554e − 07)
***
φS,1 − 5.7162e + 05(1.7723e + 20)
φS,2 4.3218e + 05(1.332e + 20)

n0 − 171.81(2.3484) ***
nN − 10.087(0.98432) ***
nS 2415(8.7173e + 17)



956 M. ŠMÍD AND M. KOPA

D.2. MSFT

MSFT / ISE
Volume/s: 15.51570
Trades/s: 0.05852
Avg. spread: 0.01086

ωσ 0.05183(0.066963)
ωv 0.91097(0.014496) ***
α1 222.78(16.434) ***
α2 56274(10488) ***

s̃0 − 5.9451(0.040337) ***
sN 0.040779(0.00058426) ***
sS 0.049948(0.0020674) ***

φ0 − 0(0)
φ∆N − 0.012552(6.2532e− 05) ***
φN − 2.0493e − 06(1.0396e − 06) *
φS,1 7.6087e + 05(6.436e + 05)
φS,2 − 6.8694e + 05(5.8646e + 05)

n0 − 35.949(80.939)
nN − 2.2009(1.5806)
nS 124.21(386.03)

MSFT / NASD OB
Volume/s: 15.555
Trades/s: 0.062039
Avg. spread: 0.015007

ωσ 0.94998(1.0911e + 11)
ωv 1(0.022246) ***
α1 − 400.56(9.6241) ***
α2 3.9123e + 05(2714.3) ***

s̃0 − 5.9264(0.042675) ***
sN 0.045934(0.0058773) ***
sS 0.037898(0.0023373) ***

φ0 − 0(0) ***
φ∆N − 0.020949(0.00013103) ***
φN − 1.6842e − 05(3.1455e − 06)
***
φS,1 1.0413e + 06(3.8469e + 18)
φS,2 − 9.219e + 05(3.4058e + 18)

n0 − 4.509(1.9475) *
nN − 11.147(3.1107) ***
nS 10.646(9.2742e + 14)

MSFT / NSE
Volume/s: 4.3454
Trades/s: 0.02742
Avg. spread: 0.017626

ωσ 0.043958(0.0060394) ***
ωv 0(0.018443)
α1 374.75(1.474) ***
α2 − 8212.5(54cm21) ***

s̃0 − 8.4278(0.025502) ***
sN 0.036478(0.0042794) ***
sS − 0.098783(0.0023787) ***

φ0 − 0(0) ***
φ∆N − 0.033465(0.00039222) ***
φN − 5.6632e − 06(3.9276e − 06)
φS,1 4.7512e + 05(41206) ***
φS,2 1.4588e + 05(16672) ***

n0 2.4794(25.867)
nN − 2.2667(1.25) *
nS − 0.95859(36.216)

MSFT / NASD ADF
Volume/s: 4.4333
Trades/s: 0.021722
Avg. spread: 0.077888

ωσ 0.065717(0.0033765) ***
ωv 0.84524(0.0034994) ***
α1 155.64(2.1107) ***
α2 − 3768.9(140.85) ***

s̃0 − 2.7232(0.026542) ***
sN 0.015255(0.0021335) ***
sS 0.16088(0.0015159) ***

φ0 − 0(0) ***
φ∆N − 0.016447(0.00048424) ***
φN − 1.3724e − 06(3.5257e − 06)
φS,1 2.7998e + 06(90649) ***
φS,2 − 2.5635e + 06(81901) ***

n0 34.393(5.8984) ***
nN − 4.4514(0.91891) ***
nS − 66.016(28.5) *

MSFT / Chicago
Volume/s: 1.0754
Trades/s: 0.0021385
Avg. spread: 0.21988

ωσ 0.064128(0.0018865) ***
ωv 0.91767(0.0016575) ***
α1 50.013(0.46573) ***
α2 − 239.82(10.865) ***

s̃0 − 1.0415(0.011989) ***
sN − 0.039426(0.0042225) ***
sS 0.18947(0.000755) ***

φ0 − 0(0) ***
φ∆N − 0.0067275(0.0011691) ***
φN 3.5934e − 05(1.2277e − 05) **
φS,1 6.1937e + 06(95814) ***
φS,2 − 5.9308e + 06(89319) ***

n0 − 22.61(2.8023) ***
nN 1.7243(1.6636)
nS 88.14(14.309) ***

MSFT / ARCA
Volume/s: 58.437
Trades/s: 0.30532
Avg. spread: 0.010469

ωσ 0.049997(0.14235)
ωv 0.9437(0.0073105) ***
α1 − 46.117(15.878) **
α2 2.4978e + 05(9822.2) ***

s̃0 − 4.0192(0.028369) ***
sN 0.0011309(0.00034024) ***
sS 0.10424(0.0019419) ***

φ0 − 0(0)
φ∆N − 0.015401(1.8155e− 05) ***
φN 2.2894e − 06(7.8214e − 07) **
φS,1 5.7362e + 05(1.1006e + 06)
φS,2 − 5.5472e + 05(1.0682e + 06)

n0 − 297.25(879.73)
nN 0.45912(2.0278)
nS 1643.8(3243.9)

MSFT / CBOE
Volume/s: 0.081456
Trades/s: 0.0005438
Avg. spread: 0.17358

ωσ 0.07184(0.0050463) ***
ωv 1(0.0045003) ***
α1 32.128(0.55648) ***
α2 − 75.827(4cm993) ***

s̃0 − 4.2534(0.031282) ***
sN − 0.8546(0.073113) ***
sS 0.02747(0.0011386) ***

φ0 − 0(0) ***
φ∆N − 0.28355(0.020379) ***
φN 0.00010124(0.00023608)
φS,1 4.5651e + 06(4cm9e + 05) ***
φS,2 −3.6996e+06(2.4034e+05) ***

n0 0.86831(0.35448) **
nN − 1.7913(1.5784)
nS − 4.0915(2.4088) *

MSFT / BATS
Volume/s: 87.766
Trades/s: 0.5192
Avg. spread: 0.010857

ωσ 0.047686(0.10571)
ωv 0.93997(0.017539) ***
α1 289.15(17.314) ***
α2 90485(10185) ***

s̃0 − 5.7613(0.044663) ***
sN 0.015231(0.00023101) ***
sS 0.053509(0.0026472) ***

φ0 − 0(0)
φ∆N − 0.017061(4.7478e− 05) ***
φN − 6.7627e − 07(4.3914e − 07)
φS,1 5.8381e + 05(7.8721e + 05)
φS,2 − 5.851e + 05(7.9192e + 05)

n0 − 59.903(167.9)
nN − 5.2091(1.3578) ***
nS 153.83(807.19)
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D.3. GE

GE on ISE
Volume/s: 58.47722
Trades/s: 0.13993
Avg. spread: 0.01042

ωσ 0.05000(0.10717)
ωv 0.98542(0.0051133) ***
α1 115.01(6.0202) ***
α2 − 4511.7(1798.9) **

s̃0 − 1.6382(0.017086) ***
sN − 0.0089245(0.00011842) ***
sS 0.15541(0.0017559) ***

φ0 − 0(0)
φ∆N − 0.0085401(3.74e − 05) ***
φN 6.4443e − 06(9.7995e − 07) ***
φS,1 1.4619e + 06(2.0482e + 06)
φS,2 − 1.1426e + 06(1.6029e + 06)

n0 − 435.06(1027)
nN − 1.5806(2.1401)
nS 2531.6(3805.3)

GE on NASD OB
Volume/s: 14.445
Trades/s: 0.051471
Avg. spread: 0.013025

ωσ 0.049965(0.028969) *
ωv 0.9157(0.010515) ***
α1 17.966(7.0558) **
α2 39606(1857.5) ***

s̃0 − 4.4864(0.03378) ***
sN − 0.10196(0.0018156) ***
sS 0.07572(0.0021302) ***

φ0 − 0(0) *
φ∆N − 0.048436(0.00034748) ***
φN 1.8813e − 05(4.3037e − 06) ***
φS,1 1.2406e+ 06(3.1599e+ 05) ***
φS,2 −1.0206e+06(2.6586e+05) ***

n0 99.5(49.375) *
nN − 13.359(1.6544) ***
nS − 314.73(119.95) **

GE on NSE
Volume/s: 53.203
Trades/s: 0.080859
Avg. spread: 0.015904

ωσ 0.95(5.1851e + 09)
ωv 1(0.020567) ***
α1 131.05(5.525) ***
α2 1905.8(805.75) **

s̃0 − 5.1914(0.041067) ***
sN 0.02047(0.00039725) ***
sS 0.046802(0.0025796) ***

φ0 − 0(0) ***
φ∆N − 0.0052975(1.5484e − 05)
***
φN − 5.4966e − 07(6.2755e − 07)
φS,1 1.4369e + 06(2.1952e + 17)
φS,2 − 1.3306e + 06(2.0319e + 17)

n0 − 6.9068(9.8679)
nN 0.51362(2.1661)
nS − 611.64(3.8078e + 14)

GE on NASD ADF
Volume/s: 30.757
Trades/s: 0.095042
Avg. spread: 0.040949

ωσ 0.94974(3.0689e + 08)
ωv 1(0.01761) ***
α1 130.29(2.8319) ***
α2 − 2086.1(172.41) ***

s̃0 − 4.599(0.041907) ***
sN − 0.0028928(0.0010147) **
sS 0.059258(0.0027775) ***

φ0 − 0(0) ***
φ∆N − 0.020868(0.00018253) ***
φN 3.778e − 06(1.5339e − 06) **
φS,1 2.3346e + 06(1.9568e + 16)
φS,2 − 2.2646e + 06(1.8962e + 16)

n0 − 33.712(6.5207) ***
nN − 6.6238(0.9183) ***
nS 732.59(8.5141e + 12)

GE on Chicago
Volume/s: 3.7557
Trades/s: 0.010167
Avg. spread: 0.035606

ωσ 0.94961(2.0005e + 07)
ωv 1(0.0062228) ***
α1 70.561(0.75797) ***
α2 − 406.97(9.2038) ***

s̃0 − 2.3243(0.022114) ***
sN − 0.29927(0.0045229) ***
sS 0.10119(0.0015389) ***

φ0 − 0(0) ***
φ∆N − 0.045754(0.0012499) ***
φN 0.00012536(2.2774e − 05) ***
φS,1 3.3047e + 06(1.6352e + 15)
φS,2 − 3.434e + 06(1.6926e + 15)

n0 9.142(1.2257) ***
nN − 12.571(2.4598) ***
nS − 31.283(2.5398e + 11)

GE on NYSE
Volume/s: 327.09
Trades/s: 0.53195
Avg. spread: 0.011136

ωσ 0.95(1.8282e + 10)
ωv 1(0.0023119) ***
α1 401.48(0.65944) ***
α2 − 69615(190.01) ***

s̃0 − 2.5455(0.0031375) ***
sN 0.0017114(4.0711e − 06) ***
sS 0.036345(0.00023) ***

φ0 − 0(0) **
φ∆N − 0.0040295(1.2378e − 05)
***
φN 1.4787e − 06(3.3802e − 07) ***
φS,1 − 6.0035e + 05(4.2306e + 17)
φS,2 − 5.1887e + 06(3.1578e + 18)

n0 − 117.67(34.702) ***
nN − 3.2554(1.9402) *
nS 2.0426e + 05(1.2446e + 17)

GE on ARCA
Volume/s: 181.35
Trades/s: 0.62776
Avg. spread: 0.010746

ωσ 0.94999(4.0059e + 09)
ωv 1(0.0047224) ***
α1 596.6(0.6428) ***
α2 − 1.1469e + 05(168.82) ***

s̃0 − 3.6532(0.0043017) ***
sN 0.005801(4.2141e − 06) ***
sS 0.019062(0.00027262) ***

φ0 − 0(0)
φ∆N − 0.0066309(1.402e− 05) ***
φN − 4.4906e − 07(4.0948e − 07)
φS,1 8.6993e + 07(1.2133e + 19)
φS,2 8.233e + 07(1.1391e + 19)

n0 − 106.56(32.759) ***
nN − 5.6455(1.5924) ***
nS − 1.0665e + 06(1.4819e + 17)

GE on NASDAQ T
Volume/s: 293.88
Trades/s: 0.84622
Avg. spread: 0.01035

ωσ 0.95(5.7593e + 10)
ωv 1(0.0012615) ***
α1 433.97(0.38833) ***
α2 − 63431(107.18) ***

s̃0 − 2.0757(0.0020717) ***
sN 0.0033185(2.3404e − 06) ***
sS 0.043354(0.00015339) ***

φ0 − 0(0)
φ∆N − 0.0075907(1.4062e − 05)
***
φN 5.0327e − 08(5.6622e − 07)
φS,1 1.8891e + 06(3.6913e + 18)
φS,2 − 8.8483e + 06(1.7359e + 19)

n0 − 63.698(31.068) *
nN − 6.4363(2.5091) **
nS − 67683(1.3368e + 17)

GE on CBOE

Volume/s: 1.781
Trades/s: 0.0022853
Avg. spread: 0.056185

ωσ 0.94187(2.7481e + 06)
ωv 1(0.0092024) ***
α1 38.611(1.1982) ***
α2 − 109.06(28.624) ***

s̃0 − 2.6066(0.027653) ***
sN − 0.43132(0.012505) ***
sS 0.1035(0.0023159) ***

φ0 − 0(0) ***
φ∆N − 0.036403(0.0016178) ***
φN 0.00031822(4cm327e − 05) ***
φS,1 4cm78e + 06(2.5388e + 14)
φS,2 − 3.9319e + 06(2.3965e + 14)

n0 8.1851(1.9947) ***
nN − 15.071(3.474) ***
nS 20.363(3.1185e + 10)
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GE on BATS
Volume/s: 115.91
Trades/s: 0.54623
Avg. spread: 0.010922

ωσ 0.95(1.2363e + 11)
ωv 1(0.0032372) ***
α1 416.27(1.0944) ***
α2 − 63840(287.03) ***

s̃0 − 3.7054(0.0059007) ***
sN 0.015501(1.8261e − 05) ***
sS 0.049293(0.00043825) ***

φ0 − 0(0)
φ∆N − 0.021838(2.8481e− 05) ***
φN − 5.2713e − 07(7.9203e − 07)
φS,1 7.1366e + 05(2.8686e + 18)
φS,2 − 1.5651e + 06(6.3608e + 18)

n0 − 40.825(10.561) ***
nN − 3.8637(1.2664) **
nS 707.46(3.2538e + 15)
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