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DERIVATIVES OF HADAMARD TYPE
IN SCALAR CONSTRAINED OPTIMIZATION

Karel Pastor

Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order
optimality condition for the constrained vector problem in terms of Hadamard derivatives. We
will consider its special case for a scalar problem and show some corollaries for example for
`–stable at feasible point functions. Then we show the advantages of obtained results with
respect to the previously obtained results.
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1. INTRODUCTION

Many second-order optimality conditions were stated for different optimization problems.
They were very often stated in terms of generalized derivatives, see for example the
monographs [23, 29, 33].

Various second-order optimality conditions have been presented for optimization
problems with C1,1 functions (see e. g. [10, 11, 17, 18, 19, 20, 26, 27, 34, 35, 36]).
We recall that a function f : Rn → R is a C1,1 function near x ∈ Rn if it is (Gâteaux)
differentiable on some neighbourhood of x and its derivative f ′(·) is Lipschitz there.

The authors of [2] introduced an `–stable property which decreases a C1,1–property
and presented a second-order sufficient optimality condition for the unconstrained scalar
problem in terms of Dini derivatives. The properties of scalar or vector functions that
are `–stable at some point functions and their applications in optimization were studied
e. g. in [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 24, 25, 28, 30, 31]. Let us remind
that a second-order sufficient optimality condition for the constrained scalar problem
for `–stable at some point function in terms of Dini derivatives was introduced in [28].

Later, V. I. Ivanov [21] stated general necessary and sufficient conditions for the
constrained vector problem in terms of Hadamard derivatives.

We will show in Sections 3 and 4 that the corollaries of the general theorem given in
[21] give interesting results also for smooth classes of functions. In particular, we will
devote the attention to the class of `–stable at some point functions and prove that the
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corollary obtained from the general result given in [21] is tighter than the result given
in [28].

2. PRELIMINARIES

Let us recall gradually the general sufficient condition of vector optimization problem
obtained by Vsevolod Ivanov [21] in terms of the derivatives of Hadamard type.

Let f : Rn → Rr and g : Rn → Rm be given, and let C ⊂ Rr and K ⊂ Rm be
closed, convex and pointed cones with intC 6= ∅ and intK 6= ∅. For the definitions and
properties of such cones, see e. g. [22, 32, 33]. We denote by 〈a, b〉 the scalar product of
vectors a ∈ Rn and b ∈ Rn. We denote by C∗ the positive polar cone of C by C∗, that
is

C∗ := {λ ∈ Rr; 〈λ, x〉 ≥ 0 for all x ∈ C}.
Let us consider the problem

min f(x), such that g(x) ∈ −K. (1)

We denote by S the feasible set, that is

S := {x ∈ X; g(x) ∈ −K}.
A feasible point x0 is called an isolated local minimizer of order 2 for the problem (1)

if there exist a constant A and a neighbourhood U , x0 ∈ U , such that for all x ∈ S ∩ U
there is

λ∗ ∈ C∗, λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
r) 6= 0,

r∑
i=1

(λ∗i )
2 = 1,

which depends on x, with

〈λ∗, f(x)〉 ≥ 〈λ∗, f(x0)〉+A‖x− x0‖2.

The lower Hadamard directional derivative of a function f : Rn → R ∪ {+∞} at
a point x ∈ dom f in direction u ∈ Rn is defined as follows:

f
(1)
− (x;u) = lim inf

t↓0,u′→u

f(x+ tu′)− f(x)
t

.

We note that if the considered function f is Lipschitz near x (i. e. there exist a neigh-
bourhood U of x and a constant K > 0 such that |f(y) − f(z)| ≤ K‖y − z‖, for every
y, z ∈ U), then the lower Hadamard derivative coincides with the lower Dini derivative,
i. e.

f
(1)
− (x;u) = f `(x;u) := lim inf

t↓0

f(x+ tu)− f(x)
t

. (2)

Some other properties of the Hadamard derivative can be found in [14].

The lower Hadamard subdifferential of the function f : Rn → R at the point x ∈
dom f is defined by the following relation:

∂
(1)
− f(x) = {x∗ ∈ L(Rn,R); 〈x∗, u〉 ≤ f (1)

− (x;u) for all directions u ∈ Rn}.
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Now, we recall the definition of the lower second-order derivative of Hadamard type,
which was introduced in [21].

Definition 2.1. Let f : Rn → R∪{+∞} be an arbitrary proper extended real function.
Suppose that x∗1 is a fixed element from the lower Hadamard subdifferential ∂(1)

− f(x) at
the point x ∈ dom f . Then the lower second-order derivative of Hadamard type of f at
x in direction u ∈ Rn is defined as follows:

f
(2)
− (x;x∗1;u) = lim inf

t↓0,u′→u

f(x+ tu′)− f(x)− t〈x∗1, u′〉
t2/2

.

We suppose that x0 is a feasible point for the problem (1), i. e. x0 is an element of
feasible set S for the problem (1). Let us consider the function

F (x) := max{〈λ, f(x)− f(x0)〉+ 〈µ, g(x)〉; (λ, µ) ∈ Λ},

where Λ := {(λ, µ);λ ∈ C∗, µ ∈ K∗,
∑r
i=1 λ

2
i +

∑m
j=1 µ

2
j = 1}.

Using the function F , V. I. Ivanov stated the following optimality conditions for the
problem (1).

Theorem 2.2. (Ivanov [21, Theorem 5.2]) Let x0 be a feasible point for the problem
(1). Then the following claims are equivalent:

(a) x0 is an isolated local minimizer of second-order;

(b) the following conditions hold for all u ∈ Rn:

F
(1)
− (x0;u) ≥ 0 and F

(2)
− (x0; 0;u) > 0, u 6= 0; (3)

(c) the following conditions

F
(1)
− (x0;u) ≥ 0, ∀u ∈ Rn (4)

and
u 6= 0, F (1)

− (x0;u) = 0 =⇒ F
(2)
− (x0; 0;u) > 0 (5)

are satisfied.

3. SCALAR PROBLEM

Let f : Rn → R and gi : Rn → R, i = 1, 2, . . . ,m, be given. If we put C = {t ∈ R; t ≥ 0},
g = (g1, g2, . . . , gm) : Rn → Rm, and K = {(y1, y2, . . . , ym) ∈ Rm; y1 ≥ 0, y2 ≥ 0, . . . ,
ym ≥ 0} in the problem (1), we obtain the following scalar constrained problem

min f(x), such that gi(x) ≤ 0, i = 1, 2, . . . ,m. (6)

Now, the feasible set can be expressed as

S = {x ∈ Rn; gi(x) ≤ 0, i = 1, 2, . . . ,m}.
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Because of C∗ = {t ∈ R; t ≥ 0}, choosing λ∗ = 1 in the definition of isolated local
minimizer of order 2 for the problem (1), we can say that x0 is a feasible point if there
exist a neighbourhood U and a constant A > 0 such that

f(x) ≥ f(x0) +A‖x− x0‖2, ∀x ∈ U ∩ S.

We denote by SRn the unit sphere of Rn, i. e.

SRn = {u ∈ Rn; ‖u‖ = 1}.

Theorem 3.1. Let x0 be a feasible point for the problem (6). Suppose that for every
u ∈ SRn there are λ ≥ 0 and βi ≥ 0, for i = 1, 2, . . . ,m, such that it holds

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t

≥ 0. (7)

Suppose that for every u ∈ SRn with the property

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t

= 0, (8)

it holds

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t2/2

> 0. (9)

Then x0 is an isolated minimizer of second-order for the problem (6).

P r o o f . We can consider problem (6) as a special case of problem (1) with

C = {t ∈ R; t ≥ 0}, K = {(y1, y2, . . . , ym) ∈ Rm; y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0},

and
g : Rn → Rm : g = (g1, g2, . . . , gm).

Using inequality (7), for every u ∈ SRn , there exist λ ≥ 0, βi ≥ 0, i ∈ {1, 2, . . . ,m}, such
that (λ, (β1, β2, . . . , βm)) ∈ Λ and

F
(1)
− (x0;u) = lim inf

t↓0,u′→u

F (x0 + tu′)− F (x0)
t

= lim inf
t↓0,u′→u

F (x0 + tu′)
t

≥ lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t

≥ 0. (10)

Therefore, the condition (4) from Theorem 2.2 is satisfied.
Now, we suppose that for some u ∈ SRn it holds F (1)

− (x0;u) = 0. Then by means of
formula (7) there are λ ≥ 0, βi ≥ 0, i ∈ {1, 2, . . . ,m}, such that it holds
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0 ≤ lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t

≤ lim inf
t↓0,u′→u

F (x0 + tu′)
t

= lim inf
t↓0,u′→u

F (x0 + tu′)− F (x0)
t

= F
(1)
− (x0;u) = 0. (11)

Then, it follows from inequalities (8) and (9) that

F
(2)
− (x0; 0;u) = lim inf

t↓0,u′→u

F (x0 + tu′)− F (x0)
t2/2

≥ lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t2/2

> 0. (12)

Thus also the condition (5) from Theorem 2.2 is satisfied. �

In the sequel, we will present the corollary of the previous theorem. By a critical set
we will mean the set

D(x0) = {u ∈ SRn ; f (1)
− (x0;u) ≤ 0, gi

(1)
− (x0;u) ≤ 0 for i ∈ I(x0)},

where I(x0) = {i ∈ {1, 2, . . . ,m}; gi(x0) = 0}.

Corollary 3.2. Let x0 be a feasible point for the problem (6). If for every u ∈ D(x0)
there exist λ ≥ 0 and βi ≥ 0, i ∈ I(x0) = {i1, i2, . . . , is} ⊂ {1, 2, . . . ,m}, such that

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + βi1gi1(x0 + tu′) + · · ·+ βisgis(x0 + tu′)
t

= 0, (13)

and

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + βi1gi1(x0 + tu′) + · · ·+ βisgis(x0 + tu′)
t2/2

> 0, (14)

then x0 is an isolated minimizer of second-order for problem (6).

P r o o f . If u ∈ SRn is not a critical direction, i. e. u /∈ D(x0), then there are two
possibilities:

Case 1. If

lim inf
t↓0,u′→u

f(x0 + tu′)− f(x0)
t

> 0,

then we put λ = 1 and βi = 0 for every i ∈ {1, 2, . . . ,m}. Hence,

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t

= lim inf
t↓0,u′→u

f(x0 + tu′)− f(x0)
t

> 0,

and the condition (7) from Theorem 3.1 is satisfied.
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Case 2. If

lim inf
t↓0,u′→u

gi0(x0 + tu′)− gi0(x0)
t

> 0,

for some i0 ∈ I(x0), then we put λ = 0, βi = 0 for i ∈ {1, 2, . . . ,m} \ {i0}, and
βi0 = 1. Hence,

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + β1g1(x0 + tu′) + · · ·+ βmgm(x0 + tu′)
t

= lim inf
t↓0,u′→u

gi0(x0 + tu′)− gi0(x0)
t

> 0,

and the condition (7) from Theorem 3.1 is also satisfied.

If u ∈ SRn is a critical direction, i. e. u ∈ D(x0), then we put βi = 0 for i ∈ {1, 2, . . . ,m}\
I(x0) and the conditions (13) and (14) mean that the conditions (8) and (9) from
Theorem 3.1 are satisfied. Therefore, x0 is an isolated minimizer of second-order for
problem (6). �

If the considered functions are Gâteaux differentiable at the considered feasible point
x0 and Lipschitz near x0, then we can state the following corollary. We recall that a
function f : Rn → R is Gâteaux differentiable at x0, if there exists a linear continuous
functional f ′(x0) such that

f ′(x0)h = lim
t→0

f(x0 + th)− f(x0)
t

for every h ∈ SRn .

Corollary 3.3. Let x0 be a feasible point for the problem (6) and we suppose that the
functions f and gi, i ∈ I(x0), are Gâteaux differentiable at x0 and Lipschitz near x0.
If for every u ∈ D(x0) there exist λ ≥ 0 and βi ≥ 0, i ∈ I(x0) = {i1, i2, . . . , is} ⊂
{1, 2, . . . ,m}, such that

λf ′(x0)u+ βi1g
′
i1(x0)u+ βisg

′
is(x0)u = 0, (15)

and

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + βi1gi1(x0 + tu′) + · · ·+ βisgis(x0 + tu′)
t2/2

> 0, (16)

then x0 is an isolated minimizer of second-order for problem (6).

P r o o f . We will show that the condition (13) from Corollary 3.2 is satisfied. If i ∈ I(x0),
then gi(x0) = 0. Thus for every u ∈ D(x0) we have

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + βi1gi1 (x0 + tu′) + · · ·+ βisgis (x0 + tu′)

t

= lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + βi1 (gi1 (x0 + tu′)− gi1 (x0)) + · · ·+ βis (gis (x0 + tu′)− gis (x0))

t
,

(17)
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where λ and βij , j ∈ {1, . . . , s}, are those for which in the assumptions of Corollary 3.3
the validity of formulas (15) and (16) is supposed for the considered u ∈ D(x0). Since
the functions f and gi, i ∈ I(x0), are Lipschitz near x0, it holds

lim inf
t↓0,u′→u

λ(f(x0 + tu′)− f(x0)) + βi1 (gi1 (x0 + tu′)− gi1 (x0)) + · · ·+ βis (gis (x0 + tu′)− gis (x0))

t

= lim inf
t↓0

λ(f(x0 + tu′)− f(x0)) + βi1 (gi1 (x0 + tu′)− gi1 (x0)) + · · ·+ βis (gis (x0 + tu′)− gis (x0))

t
.

(18)

Finally, using the Gâteaux differentiability of f and gi, i ∈ I(x0), we obtain

lim inf
t↓0

λ(f(x0 + tu′)− f(x0)) + βi1 (gi1 (x0 + tu′)− gi1 (x0)) + · · ·+ βis (gis (x0 + tu′)− gis (x0))

t

= λf
′
(x0)u+ βi1g

′
i1

(x0)u+ · · ·+ βisg
′
is

(x0)u. (19)

It folows from the formulas (17), (18), (19), and (15) that the condition (13) is satisfied.
Because of the conditions (14) and (16) are the same, by Corollary 3.2 x0 is an isolated
minimizer of second-order for problem (6). �

4. `–STABLE FUNCTIONS

In this section we recall some notions concerning `–stability and state for this class of
functions the optimality conditions for problem (6). We also compare our result with the
previous result obtained for `–stable at some point functions by S. J. Li and S. Xu [28].

We have already introduced the Dini lower derivative of a function f : Rn → R at a
point x ∈ Rn in the direction u ∈ Rn in formula (2), and mentioned that it equals to
f

(1)
− (x;u) if f is Lipschitz near x.

We recall the definition of `–stable at some point function which was introduced in [2].

Definition 4.1. A function f : Rn → R is called `–stable at x ∈ Rn if there exist a
neighbourhood U of x and L > 0 such that

|f `(y;u)− f `(x;u)| ≤ L‖y − x‖, ∀y ∈ U,∀u ∈ SRn .

We note that the class of `–stable at some point functions was introduced to weaken
C1,1–property in some optimization problems. It was shown in [2] that the class of
functions that are `–stable at some point properly contains the class of functions that
are C1,1 near this point.

We recall that a function f : Rn → R is strictly differentiable at x ∈ Rn if there exists
a linear continuous functional f ′s(x) such that

f ′s(x)u = lim
y→x,t↓0

f(y + th)− f(y)
t

, ∀u ∈ SRn ,

and the limit is uniform with respect to u ∈ SRn .
It is easy to show that if a function f : Rn → R is strictly differentiable at x ∈ Rn,

then it is also Gâteaux differentiable at x and f ′s(x) = f ′(x).
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Proposition 4.2. (Bednař́ık and Pastor [2]) If a function f : Rn → R is `–stable at
x ∈ Rn, then it is strictly differentiable at x and Lipschitz near x.

Definition 4.3. The second-order lower Dini directional derivative of a function f :
Rn → R at x ∈ Rn in direction u ∈ Rn is defined as

f ′`(x;u) = lim inf
t↓0

f(x+ tu)− f(x)− tf `(x;h)
t2/2

.

The following proposition follows from the proof of Proposition 6.3 given in [21].

Proposition 4.4. Let f : Rn → R be `–stable at x ∈ Rn. If for every u ∈ SRn we have
f ′(x)u = 0, then

f ′`(x;u) = f
(2)
− (x; 0;u), ∀u ∈ SRn .

We define the Lagrange function for the problem (6):

L(x) = f(x) +
∑

i∈I(x0)

βigi(x), ∀x ∈ Rn.

If the functions f and gi, i ∈ I(x0), are `–stable at x0, then also the function L is
`–stable at x0 by Lemma 3 from [12].

Now, we can formulate the following sufficient optimality condition for the problem
(6) when the considered functions are `–stable at the feasible point.

Corollary 4.5. Let x0 be a feasible point for the problem (6) and suppose that the
functions f and gi, i ∈ I(x0) are `–stable at x0. Suppose that there are βi ≥ 0,
i ∈ {1, 2, . . . ,m}, such that for each u ∈ SRn it holds

L′(x0)u = 0 (20)

and moreover,
L′`(x0;u) > 0, ∀u ∈ D(x0). (21)

Then x0 is an isolated minimizer of second-order for problem (6).

P r o o f . We will show that the assumptions of Corollary 3.3 are satisfied. By Proposi-
tion 4.2 the functions f and gi, i ∈ I(x0), are Gâteaux differentiable at x0 and Lipschitz
near x0. The condition (20) implies the condition (15) immediately (with λ = 1).

We notice that gi(x0) = 0 for every i ∈ I(x0). Then, since the Lagrange function
L is `–stable at x0 ∈ Rn, by Proposition 4.4 and formula (20) we have L′`(x0;u) =
L

(2)
− (x0; 0, u) and the condition (21) implies the condition (16).

Summarizing the previous considerations, all assumptions of Corollary 3.3 are satis-
fied and it means that x0 is an isolated minimizer of second-order for problem (6).

�
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We will compare the previous result with the result given in [28] where the authors
also stated the second-order sufficient optimality condition for the problem (6) with
`–stable functions. S.J. Li and S. Xu considered the Lagrange function

L̂(x) = f(x) +
m∑
i=1

βigi(x), ∀x ∈ Rn,

where βi ≥ 0, i = 1, . . . ,m. Then they separated the set I(x) = {i; gi(x) = 0} into the
sets

M(x) = {i ∈ I(x);βi = 0}

and
J(x) = {i ∈ I(x);βi > 0}.

Finally, they defined the set

E(x) = {u ∈ SRn ; g′i(x0)u ≤ 0,∀i ∈M(x), g′i(x0)u = 0,∀i ∈ J(x)},

and stated the following theorem.

Theorem 4.6. (Li and Xu [28, Theorem 3.2]) Let x0 be a feasible point for the problem
(6) and we suppose that the functions f and gi, i ∈ {1, 2, . . . ,m}, are `–stable at x0.
We suppose that there are βi ≥ 0, i ∈ {1, 2, . . . ,m}, such that for each u ∈ SRn it holds

m∑
i=1

βigi(x0) = 0, (22)

and
L̂′(x0)u = 0. (23)

Moreover, we suppose that

L̂′`(x0;u) > 0, ∀u ∈ E(x0). (24)

Then x0 is an isolated minimizer of second-order for problem (6).

P r o o f . We will prove that Theorem 4.6 follows from Corollary 4.5. From formula (22)
it follows that βi = 0 for every i ∈ {1, 2, . . . ,m} \ I(x0) and thus L̂(x) = L(x). Now, it
suffices to show that

D(x0) ⊂ E(x0). (25)

We notice that for `–stable functions

D(x0) = {u ∈ SRn ; f (1)
− (x0;u) ≤ 0, gi

(1)
− (x0;u) ≤ 0 for i ∈ I(x0)},

= {u ∈ SRn ; f ′(x0)u ≤ 0, g′i(x0)u ≤ 0 for i ∈ I(x0)},

and
E(x0) = {u ∈ SRn ; g′i(x0)u ≤ 0,∀i ∈M(x0), g′i(x0)u = 0,∀i ∈ J(x0)}.

So, let us consider that d ∈ SRn such that d /∈ E(x0). Then there are two possibilities.
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• Case 1. There exists i0 ∈ M(x0) such that g′i0(x0)d = gi0
(1)
− (x0; d) > 0. Then

d /∈ D(x0).

• Case 2. There exists i0 ∈ J(x0) such that g′i0(x0)d 6= 0. If we suppose that d ∈
D(x0), then g′i0(x0)d < 0, f ′(x0)d ≤ 0 and g′i(x0)d ≤ 0 for every i ∈ I(x0) \ {i0}.

Then, L′(x0)d = L̂′(x0)d < 0, but it is a contradiction with the formula (23).
Therefore, d /∈ D(x0).

Summarizing the previous considerations, we have that d /∈ E(x0) implies d /∈ D(x0).
Thus we proved the formula (25). �

Remark 4.7. It seems that the only advantage of Corollary 4.5 with respect to Theo-
rem 4.6 is the fact that the `–stability of the functions gi is required only for i ∈ I(x0).

On the other hand, supposing moreover in Corollary 4.5 that all functions gi, for
i ∈ {1, 2, . . . ,m} are `–stable at x0, Theorem 4.6 is equivalent to Corollary 4.5. Indeed,
having in mind the previous proof, it suffices to show that E(x0) ⊂ D(x0). So, let us
consider d ∈ SRn such that d /∈ D(x0). Then there are two possibilities.

• Case 1. There exists i0 ∈ I(x0) such that g′i0(x0)d > 0. Then d /∈ E(x0).

• Case 2. It holds f ′(x0)d > 0. If we suppose that d ∈ E(x0), then g′i(x0)d = 0 for
every i ∈ J(x0) and because of βi = 0 for every i ∈M(x0), we have βig′i(x0)d = 0
for every i ∈ I(x0). Summarizing the previous facts, we obtain L′(x0)d > 0, but
it is a contradiction with the formula (20).

Finishing our paper, we present an example which illustrates the advantage of Corol-
lary 3.3 with respect to Theorem 4.6 and Corollary 4.5.

Example 4.8. We define an objective function f as follows

f(x) =
{ ∫ |x|

0
t(1 + sin(ln t))dt , if x 6= 0,

0 , if x = 0.

Let us consider the constrained programming problem (6)

min f(x),

such that g1(x) = x
4
3 ≤ 0, g2(x) = x3 ≤ 0, g3(x) = 2x− 5 ≤ 0.

Since f ′(x)h = x( 19
20 + sin(ln |x|)h for x 6= 0, h ∈ R, and f ′(0) = 0, f is C1,1 function.

The functions g2 and g3 are C2 functions. Therefore, f , g2 and g3 are also `–stable
functions at 0. On the other hand, the function g1 is C1 function, but it is not `–stable
at 0.

Thus, to verify that 0 is an isolated local minimizer of order 2 we cannot use neither
Corollary 4.5 nor Theorem 4.6.
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But we can use Corollary 3.3. We notice that I(0) = {1, 2}, S = {0} and D(0) =
{−1, 1} because f ′(0) = g′1(0) = g′2(0) = 0. To satisfy the conditions of Corollary 3.3 we
need to find λ > 0, β1 ≥ 0, and β2 ≥ 0 such that

λf ′(0)u+ β1g
′
1(0)u+ β2g

′
2(0) = 0,

for u = ±1. Since f ′(0) = g′1(0) = g′2(0) = 0, we can consider λ = 1, β1 = 0 and β2 = 1.
Now, we check the condition (16) from Corollary 3.3. At first, we note that it is easy to
calculate

f(tu′) =
t2u′2

2
+

1
5
t2u′2(2 sin(ln |tu′|)− cos(ln |tu′|)), t ∈ R.

Then

lim inf
t↓0,u′→1

f(tu′) + g2(tu′)
t2/2

= lim inf
t↓0,u′→1

t2u′2

2 + 1
5 t

2u′2(2 sin(ln |tu′|)− cos(ln |tu′|)) + t3u′3

t2/2

= lim inf
t↓0,u′→1

(
u′2 +

2
5
u′2(2 sin(ln |tu′|)− cos(ln |tu′|)) +

tu′3

2

)
= 1− 2

√
5

5
> 0.

Analogously, also

lim inf
t↓0,u′→−1

f(tu′) + g2(tu′)
t2/2

> 0.

Thus, the assumptions of Corollary 3.3 are satisfied and it means that 0 is an isolated
minimizer of second-order.

(Received February 1, 2017)
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