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EMPIRICAL APPROXIMATION IN MARKOV GAMES
UNDER UNBOUNDED PAYOFF: DISCOUNTED
AND AVERAGE CRITERIA

Fernando Luque-Vásquez and J. Adolfo Minjárez-Sosa

This work deals with a class of discrete-time zero-sum Markov games whose state process
{xt} evolves according to the equation xt+1 = F (xt, at, bt, ξt), where at and bt represent the
actions of player 1 and 2, respectively, and {ξt} is a sequence of independent and identically
distributed random variables with unknown distribution θ. Assuming possibly unbounded pay-
off, and using the empirical distribution to estimate θ, we introduce approximation schemes for
the value of the game as well as for optimal strategies considering both, discounted and average
criteria.
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1. INTRODUCTION

In most studies where a stochastic game is analyzed, it is assumed that all the compo-
nents that define its behavior are completely known by players. However, the environ-
ment itself where it evolves makes this assumption unrealistic or too strong. Hence, it
is important to have available approximation and estimation algorithms to provide the
players some insights on the evolution of the game, in order to more accurately select
their actions.

This paper proposes an empirical approximation-estimation algorithm for a class of
discrete-time two person zero-sum Markov games evolving according to the difference
equation

xt+1 = F (xt, at, bt, ξt), t = 0, 1, . . . , (1)

where {xt} is the state process, (at, bt) represents the actions chosen by players 1 and
2, respectively, at time t, and {ξt} is the disturbance process which is an observable
sequence of independent and identically distributed random variables in a Borel space
with arbitrary unknown distribution θ.

Specifically, assuming possibly unbounded payoffs, we use an empirical procedure to
estimate θ which in turn defines an algorithm to approximate the value of the game and
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optimal pairs of strategies. This is done under both, discounted and average criteria, by
applying the following general ideas.

As is well known (see, e. g. [5,12,16]), the study of Markov games in discounted case
is analyzed via Shapley’s equation, which can be represented as Tαθ V

α = V α, where
V α is the value of the game and Tαθ is a minimax (maximin) operator depending on
the distribution θ and the discount factor α. Then, in the scenario of θ completely
known, a stationary optimal pair of strategies

(
ϕ1
∗, ϕ

2
∗
)

could be computed. Now, under
unknown θ, given a sample ξ̄n = (ξ0, ξ1, . . . , ξn−1) , the corresponding empirical measure
θn (·) = θn

(
·; ξ̄n

)
defines a random operator Tαθn

and an empirical value V αn satisfying
Tαθn

V αn = V αn . So, it is possible to get an optimal pair
(
ϕ1
n, ϕ

2
n

)
for the n−empirical

game. Under suitable conditions, we prove the convergence V αn → V α and the existence
of a limit point

(
ϕ1
∞, ϕ

2
∞
)

of
{(
ϕ1
n, ϕ

2
n

)}
that is an optimal pair for the original game. It

is worth observing that by the randomness of operator Tαθn
as well as of function V αn , the

pair
(
ϕ1
∞, ϕ

2
∞
)

is a random variable. Hence, additionally we prove that its expectation
determines an optimal (non random) pair of strategies

(
ϕ̂1
∞, ϕ̂

2
∞
)
.

On the other hand, the average criterion is studied as a limit of the discounted case.
That is, as in [12], we analyze the relation between the average game and the limit
behavior of the discounted game, as the discount factor converges to 1. In particular,
the limit behavior is obtained by choosing an appropriate sequence {αn} of discount
factors converging to one, then we combine this with the process of empirical measures
{θn} to get the value functions V αn

n for the αn−discounted empirical game. In this
sense, the average optimality is obtained letting n → ∞. For the nature of the average
criterion, in contrast to the discounted case, the pair of strategies

(
π1, π2

)
, π1 =

{
ϕ1
n

}
and π2 =

{
ϕ2
n

}
, computed as the game evolves over time, turns out to be average

optimal for the original game.
Similar problems have been studied previously in [16,17] for the discounted and aver-

age games, respectively, but under the assumption that θ has a density. In this particular
case, because unbounded payoff is assumed, a complicated density estimation method
is proposed. Thus, our present results, in addition to providing a more general method
for estimating value functions and for construction of optimal strategies, can be seen
as approximation methods in cases where θ can be known but difficult to handle, i. e.,
θ is replaced by a simpler distribution, namely, the empirical distribution θn. Further,
strategies in [16] are constructed as the game evolves. This means that in distant stages
players have more information about the unknown density, and therefore their decisions
might be better. However, since the discounted optimality criterion depends heavily on
the early stages where the information about the density is poor, this procedure does
not guarantee optimality of the resulting strategies. It is for this reason that in [16]
the optimality is studied in an asymptotic sense, unlike this work where we obtain an
approximation method of optimal strategies.

Approximation algorithms for stochastic games, as well as games with partial infor-
mation have been studied from several points of view (see, e. g., [1, 5, 6, 13, 14, 16, 17,
18, 19, 20, 21, 22], and reference therein). However, for statistical estimation and con-
trol procedures for stochastic games, literature remains scarce; we can cite, in addition
to [16, 17], for instance [18, 21, 22]. In particular, [18] deals with semi-Markov zero-sum
games with unknown sojourn time distribution. The works [21,22] study repeated games
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assuming that the transition law depends on an unknown parameter, which is estimated
by maximum likelihood method.

The paper is organized as follows. In Section 2 is presented the game model, while
Section 3 contains the assumptions and some preliminary results about standard games.
Next, in Section 4 is introduced the discounted empirical game, and the empirical average
game is analyzed in Section 5. We conclude in Section 6 with some remarks about our
assumptions.

Notation. As usual, N (respectively N0) denotes the set of positive (resp. nonnega-
tive) integers. On the other hand, given a Borel space X (that is, a Borel subset of a
complete and separable metric space) its Borel sigma-algebra is denoted by B(X), and
“measurable”, for either sets or functions, means “Borel measurable”. Let X and Y be
Borel spaces. Then a stochastic kernel γ(dx | y) on X given Y is a function such that
γ(· | y) is a probability measure on X for each fixed y ∈ Y, and γ(B | ·) is a measurable
function on Y for each fixed B ∈ B(X). The space of probability measures on X is
denoted by P(X), which is endowed with the weak topology. In addition, we denote by
P(X | Y ) the family of stochastic kernels on X given Y. Finally, throughout the paper
we assume that a probability space (Ω,F , P ) is given, and a.s. means almost surely with
respect to P.

2. THE GAME MODEL

A two person zero-sum Markov game model on Borel spaces is generally described by
the following objects. The state space X, the actions spaces A and B for player 1 and
2, respectively, and the corresponding constraint sets KA ⊂ X ×A and KB ⊂ X ×B. It
is assumed that all these sets are Borel spaces. For each x ∈ X, the x−sections

A(x) := {a ∈ A : (x, a) ∈ KA}

and
B(x) := {b ∈ B : (x, a) ∈ KB},

stand for sets of admissible actions or controls for players 1 and 2, respectively, and the
set

K = {(x, a, b) : x ∈ X, a ∈ A(x), b ∈ B(x)}

of admissible state-actions triplets is a Borel subset of the Cartesian product X×A×B.
Moreover, the dynamic of the game is represented by a transition law Q(·|x, a, b) which
is the distribution of the state variable at time t+ 1, given that the state and actions of
players at time t are x, a, and b, respectively. Finally, the one-stage payoff r(·, ·, ·) is a
measurable function on K.

Let {ξt} be a sequence of observable independent and identically distributed (i.i.d.)
random variables defined on the probability space (Ω,F , P ), taking values in a Borel
space S, with common distribution θ ∈ P(S). Consider a Markov game evolving accord-
ing to the difference equation

xt+1 = F (xt, at, bt, ξt), t ∈ N0. (2)



Empirical approximation in Markov games 697

Then the transition law Q is determined by the function F : K × S → X and the
distribution θ as

Q(D|x, a, b) : = P [xt+1 ∈ D|xt = x, at = a, bt = b]

=
∫
S

1D[F (x, a, b, s)]θ(ds), D ∈ B(X), (x, a, b) ∈ K. (3)

Hence, this paper is concerned with a zero-sum Markov game, modeled by

GM := (X,A,B,KA,KB , S, F, θ, r), (4)

which, in a standard sense, is played as follows. At each time t ∈ N0, the players
observe the state of the game xt = x ∈ X. Next, players 1 and 2 select, independently,
actions at = a ∈ A(x) and bt = b ∈ B(x) respectively. Then, player 1 receives a payoff
r(x, a, b) from player 2, and the game jumps to a new state xt+1 = y ∈ X according
to the transition law (3). Once the game is in the new state, the process is repeated.
Therefore, according to the optimality criterion, the goal of player 1 (player 2) is to
maximize (minimize) either a discounted or average payoff.

In our empirical approximation settings, we assume that the distribution θ ∈ P(S)
is unknown by players, and it is estimated by the corresponding empirical distribution
θt. Thus, before choosing the actions, on the record of ξ0, ξ1, . . . , ξt, players 1 and 2
get an estimated θt(ξ0, ξ1, . . . , ξt) = θt to select the actions a = at(θt) and b = bt(θt)
respectively.

The actions are selected by means of strategies defined as follows. Let H0 := X and
Ht := K×S ×Ht−1 for t ∈ N. Then, a generic element of Ht is denoted as

ht := (x0, a0, b0, s0, . . . , xt−1, at−1, bt−1, st−1, xt)

which represents the history of the game up to time t. On the other hand, for each
x ∈ X, we denote A(x) := P(A(x)) and B(x) := P(B(x)), as well as the sets of stochastic
kernels

Φ1 : =
{
ϕ1 ∈ P(A|X) : ϕ1(·|x) ∈ A(x) ∀x ∈ X

}
Φ2 : =

{
ϕ2 ∈ P(B|X) : ϕ2(·|x) ∈ B(x) ∀x ∈ X

}
.

A strategy for player 1 is a sequence π1 = {π1
t } of stochastic kernels π1

t ∈ P(A|Ht) such
that π1

t (A(xt)|ht) = 1 ∀ht ∈ Ht, t ∈ N0. We denote by Π1 the family of all strategies for
player 1. A strategy π1 = {π1

t } ∈ Π1 is called a Markov strategy if π1
t ∈ Φ1 ∀t ∈ N0,

and it is called stationary if π1
n(·|hn) = ϕ1(·|xn) ∀hn ∈ Hn, n ∈ N0, for some stochastic

kernel ϕ1 in Φ1, so that π1 is of the form π1 =
{
ϕ1, ϕ1, . . .

}
:=
{
ϕ1
}

. We denote by Π1
s

the class of stationary strategies for player 1. The sets Π2 and Π2
s of all strategies and

all stationary strategies for player 2 are defined similarly.
Wherever appropriate, we shall use the following notation related with the probability

measures in the sets A(x) and B(x). For probability measures ϕ1(·|x) ∈ A(x) and
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ϕ2(·|x) ∈ B(x), x ∈ X, we write ϕi(x) = ϕi(·|x), i = 1, 2, and, in addition, for a
measurable function u : K→ <,

u(x, ϕ1, ϕ2) = u(x, ϕ1(x), ϕ2(x)) :=
∫
B(x)

∫
A(x)

u(x, a, b)ϕ1(da|x)ϕ2(db|x). (5)

For instance, for x ∈ X and s ∈ S, we have

r(x, ϕ1, ϕ2) :=
∫
B(x)

∫
A(x)

r(x, a, b)ϕ1(da|x)ϕ2(db|x),

and
v(F (x, ϕ1, ϕ2, s)) :=

∫
B(x)

∫
A(x)

v((F (x, a, b, s))ϕ1(da|x)ϕ2(db|x),

for a measurable function v : X → <.

Optimality criteria. For each pair of strategies (π1, π2) ∈ Π1 × Π2 and initial state
x0 = x ∈ X, we define the total expected α−discounted payoff as

V θα (x, π1, π2) := Eπ
1,π2

x

[ ∞∑
t=0

αtr(xt, at, bt)

]
, (6)

where α ∈ (0, 1) represents the discount factor, and Eπ
1,π2

x denotes the expectation
operator with respect to the probability measure Pπ

1,π2

x induced by the pair (π1, π2) ∈
Π1 ×Π2 and x0 = x (see, e. g., [3]). We also define the long-run expected average payoff
as

J(x, π1, π2) := lim inf
n→∞

1
n
Eπ

1,π2

x

n−1∑
t=0

r(xt, at, bt). (7)

The lower and the upper value of the discounted game are given as:

Lα(x) := sup
π1∈Π1

inf
π2∈Π2

V θα (x, π1, π2), x ∈ X,

and
Uα(x) := inf

π2∈Π2
sup
π1∈Π1

V θα (x, π1, π2), x ∈ X,

respectively. Observe that, in general, Uα(·) ≥ Lα(·), but if it holds that Uα(·) = Lα(·),
the common function is called the α−value of the game and is denoted by V θα (·). Now,
if the discounted game has a value V θα (·), a strategy π1

∗ ∈ Π1 is said to be α−optimal
for player 1 if

V θα (x) = inf
π2∈Π2

V θα (x, π1
∗, π

2), x ∈ X.

Similarly, a strategy π2
∗ ∈ Π2 is said to be α−optimal for the player 2 if

V θα (x) = sup
π1∈Π1

V θα (x, π1, π2
∗), x ∈ X.
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In this case, (π1
∗, π

2
∗) is an α−optimal pair of strategies.

The lower value L(·) and upper value U(·), for the average payoff criterion, are defined
similarly, and the average value of the game is denoted by J(·). Then, if the average
game has a value J(·), a strategy π1

∗ ∈ Π1 is said to be average optimal for player 1 if

inf
π2∈Π2

J(x, π1
∗, π

2) = J(x), x ∈ X;

and a strategy π2
∗ ∈ Π2 is said to be average optimal for the player 2 if

sup
π1∈Π1

J(x, π1, π2
∗) = J(x), x ∈ X.

The pair (π1
∗, π

2
∗) is called average optimal pair of strategies.

3. ASSUMPTIONS AND PRELIMINARY RESULTS

In order to guarantee the existence of values of the discounted and average games, we
impose the following sets of assumptions. The first one contains standard continuity
and compactness conditions, while Assumption 3.2 is an ergodicity condition, needed
to analyze the average criterion (see, e. g., [12, 17] and references therein, and [8, 9] for
Markov control processes).

Assumption 3.1. (a) The multifunctions x 7−→ A(x) and x 7−→ B(x) are compact-
valued and continuous.

(b) The payoff function r is continuous on K, and there exist a continuous function
W : X → [1,∞) and a constant M > 0 such that |r(x, a, b)| ≤ MW (x) for all
(x, a, b) ∈ K. Moreover, the function

(x, a, b) 7−→
∫
S

W [F (x, a, b, s)] θ(ds)

is continuous on K.

(c) For each s ∈ S, the function F (x, a, b, s) is continuous in (x, a, b) ∈ K.

Assumption 3.2. There exist a measurable function ψ : K → [0, 1], a probability
measure m∗ on X and a constant β ∈ (0, 1) such that:

(a)
∫
S
W [F (x, a, b, s)]θ(ds) ≤ βW (x) + ψ(x, a, b) d, ∀(x, a, b) ∈ K, where

d :=
∫
X

W (x)m∗(dx) <∞;

(b) Q(D|x, a, b) ≥ ψ(x, a, b)m∗(D), ∀D ∈ B(X), (x, a, b) ∈ K;

(c)
∫
X

Ψ̄(x)m∗(dx) > 0, where Ψ̄(x) := inf
a∈A(x)

inf
b∈B(x)

ψ(x, a, b) is assumed to be a

measurable function.
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Assumption 3.3. For the constants β and d in Assumption 3.2, the functionW satisfies

W [F (x, a, b, s)] ≤ βW (x) + d, ∀(x, a, b, s) ∈ K×S.

Remark 3.4. (a) If the payoff function r is bounded, say by the constant M, then
Assumption 3.3 holds by taking W ≡ 1 and d = 1.

(b) Observe that Assumption 3.1(c) implies that the mapping

(x, a, b) 7−→
∫
S

v [F (x, a, b, s)]µ(ds)

is continuous on K for every bounded and continuous function v on X and µ ∈ P(S).

(c) We consider the following class of probability measures

M(S) :=
{
µ ∈ P(S) :

∫
S

W [F (x, a, b, s)]µ(ds) ≤ βW (x) + d, (x, a, b) ∈ K
}
.

Observe that Assumption 3.2(a) implies that θ ∈M(S), that is∫
S

W [F (x, a, b, s)]θ(ds) ≤ βW (x) + d, (x, a, b) ∈ K. (8)

On the other hand, under Assumption 3.3, any probability measure µ ∈ P(S) belongs
to M(S), that is M(S) = P(S).

Let BW be the family of measurable functions v : X →< with finite W -norm

||v||W := sup
x∈X

|v(x)|
W (x)

.

We denote by CW ⊂ BW the class of continuous functions v ∈ BW .
For each µ ∈ P(S) and α ∈ (0, 1), we define the operator

Tαµ v(x) := inf
ϕ2∈B(x)

sup
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2) + α

∫
S

v(F (x, ϕ1, ϕ2, s))µ(ds)
]
, v ∈ BW , x ∈ X.

(9)
Provided that Assumption 3.1 holds, standard results on game theory (see, e. g., [12]) en-
sure that, for each µ ∈M(S), Tαµ maps CW into itself, and furthermore the interchange
of inf and sup in (9) holds:

Tαµ v(x) = sup
ϕ1∈A(x)

inf
ϕ2∈B(x)

[
r(x, ϕ1, ϕ2) + α

∫
S

v(F (x, ϕ1, ϕ2, s))µ(ds)
]
. (10)

Remark 3.5. (Contraction property of Tαµ ) For each discount factor α ∈ (0, 1), we fix
an arbitrary number γα ∈ (α, 1) and define the function W̄ (x) := W (x) + e, x ∈ X,

where e := d (γα/α− 1)−1. Consider the space BW̄ of measurable functions v : X → <
with finite W̄−norm, that is

‖v‖W̄ := sup
x∈X

|v(x)|
W̄ (x)

<∞.
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Observe that BW = BW̄ and the norms ‖·‖W and ‖·‖W̄ are equivalent since

‖v‖W̄ ≤ ‖v‖W ≤ lα ‖v‖W̄ , v ∈ BW (11)

where
lα := 1 + e = 1 +

αd

γα − α
. (12)

Then, from [25, Lemma 1], for any µ ∈M(S), the function W̄ satisfies the inequality

α

∫
S

W̄ [F (x, a, b, s)]µ(ds) ≤ γαW̄ (x), ∀(x, a, b) ∈ K. (13)

Thus, following straightforward calculations, it is easy to see that, for each α ∈ (0, 1)
and µ ∈ M(S), inequality (13) implies that operator Tαµ is a contraction with respect
to the W̄−norm with modulus γα. That is, for all v, u ∈ BW ,∥∥Tαµ v − Tαµ u∥∥W̄ ≤ γα ‖v − u‖W̄ . (14)

From [12, Theorem 4.2], we have the following result.

Theorem 3.6. Suppose that Assumption 3.1 holds and θ ∈ M(S). Then, for each
α ∈ (0, 1):

(a) The discounted game has a value V θα ∈ CW and there exists a constant L := L(α, β)
such that ∥∥V θα∥∥W ≤ L.
(b) The value V θα satisfies Tαθ V

θ
α = V θα , and there exists (ϕ1

∗, ϕ
2
∗) ∈ Φ1 × Φ2, such that

ϕ1
∗(x) ∈ A(x) and ϕ2

∗ ∈ B(x) satisfy

V θα (x) = r(x, ϕ1
∗, ϕ

2
∗) + α

∫
S

V θα [F (x, ϕ1
∗, ϕ

2
∗, s)]θ(ds)

= max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2

∗) + α

∫
S

V θα [F (x, ϕ1, ϕ2
∗, s)]θ(ds)

]
(15)

= min
ϕ2∈B(x)

[
r(x, ϕ1

∗, ϕ
2) + α

∫
S

V θα [F (x, ϕ1
∗, ϕ

2, s)]θ(ds)
]
, ∀x ∈ X. (16)

In addition, π1
∗ =

{
ϕ1
∗
}
∈ Π1

s and π2
∗ =

{
ϕ2
∗
}
∈ Π2

s form an optimal pair of strategies.

Furthermore, from [12, Theorem 4.3], we have the following result related with the
average game.

Theorem 3.7. Under Assumptions 3.1 and 3.2, the average game has a value J(·) = j∗,
that is

j∗ = inf
π2∈Π2

sup
π1∈Π1

J(x, π1, π2) = sup
π1∈Π1

inf
π2∈Π2

J(x, π1, π2), ∀x ∈ X.

In addition, both players has optimal strategies.
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Remark 3.8. (Vanishing discount factor approach) The relation between the dis-
counted and average criteria is given as follows. Let z ∈ X be a fixed state, and define,
for α ∈ (0, 1)

jθα := (1− α)V θα (z), φθα(x) := V θα (x)− V θα (z), x ∈ X. (17)

Observe that from Theorem 3.6(b),

jθα + φθα(x) = Tαθ φ
θ
α(x) = r(x, ϕ1

∗, ϕ
2
∗) + α

∫
S

φθα[F (x, ϕ1
∗, ϕ

2
∗, s)]θ(ds)

= max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2

∗) + α

∫
S

φθα[F (x, ϕ1, ϕ2
∗, s)]θ(ds)

]
= min

ϕ2∈B(x)

[
r(x, ϕ1

∗, ϕ
2) + α

∫
S

φθα[F (x, ϕ1
∗, ϕ

2, s)]θ(ds)
]
, ∀x∈X.(18)

Then, from [12, Theorem 4.3], under Assumptions 3.1 and 3.2

lim
t→∞

jθαt
= j∗, (19)

for any sequence {αt} of discount factors, such that αt ↗ 1. Moreover,

sup
α∈(0,1)

∥∥φθα∥∥W <∞. (20)

4. THE DISCOUNTED EMPIRICAL GAME

We consider the approximated zero-sum Markov game model of the form:

GMα
t := (X,A,B,KA,KB , S, F, θt, r), (21)

where θt ∈ P(S), t ∈ N0, is the empirical distribution of the disturbance process {ξt}
defined as follows. Let ν ∈ P(S) be a given probability measure. Then

θ0 := ν,

θt(D) = θt(D)(ω) :=
1
t

t−1∑
i=0

1D(ξi(ω)), for all t ∈ N, D ∈ B(S), ω ∈ Ω.

Note that for each D ∈ B(S), θt(D)(·) is a random variable, and for each ω ∈ Ω,
θt(·)(ω) is the uniform distribution on the set {ξ0(ω), . . . , ξt−1(ω)} ⊂ S.

The empirical approximation scheme consists in solving the approximate game GMt,
for each t ∈ N. That is, the discounted game is analyzed when both players use the
empirical distribution θt instead of the original distribution θ. This procedure leads up
to obtain an optimal pair of strategies (π1

t , π
2
t ) ∈ Π1

s × Π2
s for the game GMα

t , t ∈ N,
provided, of course, that the corresponding value of the game V θt

α exists. Under this
settings, our hope is that the optimal pair (π1

t , π
2
t ) has a good performance in the game

GM, whenever the sequence of empirical values
{
V θt
α

}
gives a good approximation to

the value V θα . We introduce these ideas in precise terms as follows.
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For each t ∈ N0, let

V θt
α (x, π1, π2) := Ex,π

1,π2

t

[ ∞∑
i=0

αir(xi, ai, bi)

]
, (22)

be the α-discounted expected payoff function in which all random variables ξt0, ξ
t
1, . . . ,

have the same distribution θt.

Observe that, under Assumption 3.3, θt ∈M(S), for every t ∈ N, that is∫
S

W [F (x, a, b, s)]θt(ds)(ω) ≤ βW (x) + d, ∀(x, a, b) ∈ K.

Then Theorem 3.6 yields the following result.

Theorem 4.1. Suppose that Assumptions 3.1 and 3.3 hold. Then for each t ∈ N and
ω ∈ Ω,

(a) the game GMt has a value V θt
α = V

θt(ω)
α ∈ CW such that∥∥V θt

α

∥∥
W
≤ L and Tαθt

V θt
α = V θt

α ;

(b) there exists (ϕ1
t , ϕ

2
t ) = (ϕ1

t (ω), ϕ2
t (ω)) ∈ Φ1×Φ2 such that, ϕ1

t (x, ω) := ϕ1
t (·|x, ω) ∈

A(x) and ϕ2
t (x, ω) := ϕ2

t (·|x, ω) ∈ B(x) satisfy

V θt
α (x) = r(x, ϕ1

t , ϕ
2
t ) + α

∫
S

V θt
α [F (x, ϕ1

t , ϕ
2
t , s)]θt(ds)

= max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2

t ) + α

∫
S

V θt
α [F (x, ϕ1, ϕ2

t , s)]θt(ds)
]

(23)

= min
ϕ2∈B(x)

[
r(x, ϕ1

t , ϕ
2) + α

∫
S

V θt
α [F (x, ϕ1

t , ϕ
2, s)]θt(ds)

]
, ∀x ∈ X.

(24)

Remark 4.2. (a) Observe that, for each t ∈ N0, the value function V θt
α is a random

function, and ϕit(x, ω), i = 1, 2, define a random optimal pair of strategies (π1
t , π

2
t ) :=({

ϕ1
t

}
,
{
ϕ2
t

})
∈ Π1

s ×Π2
s for the game GMα

t .

(b) Let us fix (x, ω) ∈ X × Ω, and consider the multifunction given by (x, ω) 7−→ A(x).
Since A(x) is a compact subset of A, A(x) is a compact subset of P(A) (with the weak
topology). Then, from [10, Proposition D.5] (see also [23]), there exists ϕ1

∞ ∈ Φ1 such
that ϕ1

∞(x, ω) = ϕ1
∞(·|x, ω) ∈ A(x) is an accumulation point of {ϕ1

t (x, ω)}. Similarly,
there exists ϕ2

∞ ∈ Φ2 such that ϕ2
∞(x, ω) = ϕ2

∞(·|x, ω) ∈ B(x) is an accumulation point
of {ϕ2

t (x, ω)}.
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The estimation process. The key points to obtain the approximation of the empir-
ical values V θt

α to the value V θα are the convergence properties of the empirical distribu-
tion. At first glance, it is well-known that θt converges weakly to θ a.s., that is, for each
(x, a, b) ∈ K,∫

S

u(F (x, a, b, s))θt(ds)→
∫
S

u(F (x, a, b, s))θ(ds) a.s., as t→∞,

for every continuous and bounded function u on X. However, in the scenario of possibly
unbounded payoff, this kind of convergence is not sufficient for our objectives. In fact,
we need uniform convergence on the set K. In order to state our estimation process, we
impose the following assumption.

Assumption 4.3. The family of functions

VW :=
{
V θα (F (x, a, b, ·))

W (x)
: (x, a, b) ∈ K

}
(25)

is equicontinuous on S.

Remark 4.4. Observe that from Theorem 3.6, the family of functions VW is uniformly
bounded. Then, under Assumption 4.3 and using [24, Theorem 3.1] we have

∆t → 0 a.s., as t→∞, (26)

where

∆t := sup
(x,a,b)∈K

∣∣∣∣∫
S

V θα (F (x, a, b, s))
W (x)

θt(ds)−
∫
S

V θα (F (x, a, b, s))
W (x)

θ(ds)
∣∣∣∣ .

Hence, we can state our main results related with the discounted empirical approxi-
mation as follows.

Theorem 4.5. Under Assumptions 3.1, 3.3, and 4.3, P − a.s.

(a)
∥∥V θt

α − V θα
∥∥
W
→ 0 as t→∞;

(b) the random pair of strategies (π1
∞, π

2
∞) ∈ Π1

s × Π2
s defined as π1

∞ =
{
ϕ1
∞
}

and
π2
∞ =

{
ϕ2
∞
}

is optimal for the game GM (see Remark 4.2 (b)).

(c) Furthermore, there exists an optimal (non random) pair of strategies (ϕ̂1
∞, ϕ̂

2
∞) ∈

Π1
s ×Π2

s for the game GM given as

ϕ̂i∞ (·|x) =
∫

Ω

ϕit(·|x, ω)P (dω), i = 1, 2.

P r o o f . (a) Since θt ∈ M(S), t ∈ N0, from (14) we have that the operator Tαθt
is a

contraction on BW̄ . Hence, from Theorems 3.6 and 4.1, for each t ∈ N0,∥∥V θα − V θt
α

∥∥
W̄
≤

∥∥Tαθ V θα − Tαθt
V θα
∥∥
W̄

+
∥∥Tαθt

V θα − Tαθt
V θt
α

∥∥
W̄

≤
∥∥Tαθ V θα − Tαθt

V θα
∥∥
W̄

+ γα
∥∥V θα − V θt

α

∥∥
W̄

a.s.
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Thus ∥∥V θt
α − V θα

∥∥
W̄
≤ 1

1− γα
∥∥Tαθ V θα − Tαθt

V θα
∥∥
W̄
. (27)

On the other hand, using the fact that W̄ (·) > W (·), for each x ∈ X and t ∈ N0,∥∥Tαθ V θα − Tαθt
V θα
∥∥
W̄

≤ sup
x∈X

sup
ϕ1∈A(x),ϕ2∈B(x)

∣∣∣∣∫
S

V θα [F (x, ϕ1, ϕ2, s)]
W (x)

θ(ds)−
∫
S

V θα [F (x, ϕ1, ϕ2, s)]
W (x)

θt(ds)
∣∣∣∣

≤ ∆t. (28)

Combining (27) and (28) we get

∥∥V θt
α − V θα

∥∥
W̄
≤ 1

1− γα
∆t,

and from (11) ∥∥V θt
α − V θα

∥∥
W
≤ lα

1− γα
∆t. (29)

Finally, (26) proves the part (a).

(b) Since for each (x, ω) ∈ X×Ω, ϕ1
∞(x, ω) = ϕ1

∞(·|x, ω) ∈ A(x) is an accumulation point
of {ϕ1

t (x, ω)}, there exists a subsequence {ϕ1
tk

(x, ω)} of {ϕ1
t (x, ω)} such that ϕ1

∞(x, ω) =
limk→∞ ϕ1

tk
(x, ω). Under the same arguments, there exists a subsequence {ϕ2

tk
(x, ω)} of

{ϕ2
t (·|x, ω)} such that ϕ2

∞(x, ω) = limk→∞ ϕ2
tk

(x, ω). Observe that we can use the same
subsequence {tk} for both cases. In the remainder of the proof, to ease notation, we let
tk = k.

We shall now proceed to prove the optimality of the pair (π1
∞, π

2
∞) ∈ Π1

s ×Π2
s.

Firstly, observe that, for each x ∈ X,

sup
(a,b)∈A(x)×B(x)

∣∣∣∣∫
S

V θt
α (F (x, a, b, s)) θt(ds)−

∫
S

V θα (F (x, a, b, s)) θ(ds)
∣∣∣∣→0 a.s., as t→∞.

(30)
Indeed, ∣∣∣∣∫

S

V θt
α (F (x, a, b, s)) θt(ds)−

∫
S

V θα (F (x, a, b, s)) θ(ds)
∣∣∣∣

≤
∫
S

∣∣V θt
α (F (x, a, b, s))− V θα (F (x, a, b, s))

∣∣ θt(ds)
+
∣∣∣∣∫
S

V θα (F (x, a, b, s))θt(ds)−
∫
S

V θα (F (x, a, b, s))θ(ds)
∣∣∣∣

≤
∥∥V θt

α − V θα
∥∥
W

(βW (x) + d) + ∆tW (x).

Thus, (30) follows from part (a) and (26).
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Now, from (23),

V θk
α (x) = max

ϕ1∈A(x)

[
r(x, ϕ1, ϕ2

k) + α

∫
S

V θk
α [F (x, ϕ1, ϕ2

k, s)]θk(ds)
]
. (31)

In addition, for a fixed ϕ̄1 ∈ A(x)

lim inf
k

max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2

k) + α

∫
S

V θk
α [F (x, ϕ1, ϕ2

k, s)]θk(ds)
]

≥ lim inf
k

[
r(x, ϕ̄1, ϕ2

k) + α

∫
S

V θk
α [F (x, ϕ̄1, ϕ2

k, s)]θk(ds)
]
. (32)

On the other hand,∫
S

V θk
α [F (x, ϕ̄1, ϕ2

k, s)]θk(ds) =
∫
S

V θk
α [F (x, ϕ̄1, ϕ2

k, s)]θk(ds)

−
∫
S

V θα [F (x, ϕ̄1, ϕ2
k, s)]θ(ds) +

∫
S

V θα [F (x, ϕ̄1, ϕ2
k, s)]θ(ds).

Then, from (30), Fatou´s Lemma, and using the continuity of the functions V θα and F,

lim inf
k

∫
S

V θk
α [F (x, ϕ̄1, ϕ2

k, s)]θk(ds) = lim inf
k

∫
S

V θα [F (x, ϕ̄1, ϕ2
k, s)]θ(ds)

≥
∫
S

V θα [F (x, ϕ̄1, ϕ2
∞, s)]θ(ds) a.s. (33)

Therefore, taking liminf as k → ∞ in (31), relations (32) and (33) together part (a)
yield

V θα (x) ≥ r(x, ϕ̄1, ϕ2
∞) + α

∫
S

V θα [F (x, ϕ̄1, ϕ2
∞, s)]θ(ds).

Since ϕ̄1 ∈ A(x) is arbitrary, we have

V θα (x) ≥ max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2

∞) + α

∫
S

V θα [F (x, ϕ1, ϕ2
∞, s)]θ(ds)

]
,

which implies

V θα (x) = max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2

∞) + α

∫
S

V θα [F (x, ϕ1, ϕ2
∞, s)]θ(ds)

]
, (34)

because (see (15))

V θα (x) = min
ϕ2∈B(x)

max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2) + α

∫
S

V θα [F (x, ϕ1, ϕ2, s)]θ(ds)
]

≤ max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ2) + α

∫
S

V θα [F (x, ϕ1, ϕ2, s)]θ(ds)
]
, ∀ϕ2 ∈ B(x).
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Similarly, from (24),

V θk
α (x) = min

ϕ2∈B(x)

[
r(x, ϕ1

k, ϕ
2) + α

∫
S

V θk
α [F (x, ϕ1

k, ϕ
2, s)]θk(ds)

]
,

and for an arbitrary and fixed ϕ̄2 ∈ B(x)

lim sup
k

min
ϕ2∈B(x)

[
r(x, ϕ1

k, ϕ
2) + α

∫
S

V θk
α [F (x, ϕ1

k, ϕ
2, s)]θk(ds)

]
≤ lim sup

k

[
r(x, ϕ1

k, ϕ̄
2) + α

∫
S

V θk
α [F (x, ϕ1

k, ϕ̄
2, s)]θk(ds)

]
.

Thus, applying Fatou’s Lemma with limsup, we obtain

V θα (x) ≤ r(x, ϕ1
∞, ϕ̄

2) + α

∫
S

V θα [F (x, ϕ1
∞, ϕ̄

2, s)]θ(ds),

which, in turns, implies

V θα (x) = min
ϕ2∈B(x)

[
r(x, ϕ1

∞, ϕ
2) + α

∫
S

V θα [F (x, ϕ1
∞, ϕ

2, s)]θ(ds)
]
. (35)

Finally, combining (34) and (35), and applying standard procedures in game theory, we
prove that (π1

∞, π
2
∞) ∈ Π1

s×Π2
s is a random optimal pair of strategies for the game GM.

(c) For i = 1, 2, let π̂i∞ be the strategies determined by

ϕ̂i∞(x) = ϕ̂i∞(·|x) :=
∫

Ω

ϕi∞(·|x, ω)P (dω) ∈ Φi.

We define

H(x, a, b) := r(x, a, b) + α

∫
S

V θα [F (x, a, b, s)]θ(ds), (x, a, b) ∈ K, (36)

Observe that, from (35) and (5),

V θα (x) = min
ϕ2∈B(x)

H(x, ϕ1
∞(ω), ϕ2)

= min
ϕ2∈B(x)

∫
A(x)

H(x, a, ϕ2)ϕ1
∞(da|x, ω) a.s., x ∈ X.

Hence,

V θα (x) =
∫

Ω

min
ϕ2∈B(x)

∫
A(x)

H(x, a, ϕ2)ϕ1
∞(da|x, ω)P (dω)

≤ min
ϕ2∈B(x)

∫
A(x)

H(x, a, ϕ2)
∫

Ω

ϕ1
∞(da|x, ω)P (dω)

= min
ϕ2∈B(x)

∫
A(x)

H(x, a, ϕ2)ϕ̂1
∞(da|x)

= min
ϕ2∈B(x)

H(x, ϕ̂1
∞, ϕ

2), x ∈ X.
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Therefore, from (36) and Theorem 3.6,

V θα (x) = min
ϕ2∈B(x)

[
r(x, ϕ̂1

∞, ϕ
2) + α

∫
S

V θα [F (x, ϕ̂1
∞, ϕ

2, s)]θ(ds)
]
, ∀x ∈ X. (37)

Similarly, we can prove that, for each x ∈ X,

V θα (x) = max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ̂2

∞) + α

∫
S

V θα [F (x, ϕ1, ϕ̂2
∞, s)]θ(ds)

]
, ∀x ∈ X,

which, combined with (37), yields the optimality of the pair (π̂1
∞, π̂

2
∞) ∈ Π1

s×Π2
s for the

game GM. �

5. EMPIRICAL APPROXIMATION UNDER AVERAGE CRITERION

The empirical approximation scheme for the average criterion is obtained by combining
the vanishing discount factor approach (see Remark 3.8) and a suitable convergence
property of the empirical process. Therefore, we will take advantage of the results intro-
duced in previous sections for the discounted criterion. However, due to the additional
difficulties in the asymptotic analysis of the average payoff, the following stronger con-
dition is needed.

Assumption 5.1. a) The disturbance space S is the k−dimensional Euclidean space <k.

b) Let m > max{2, k} be an arbitrary real number and m̄ := km/[(m − k)(m − 2)].
Then E |ξ0|m̄ <∞.

c) The family of functions (see (17) and (25))

V̄W :=
{
φθα (F (x, a, b, .))

W (x)
: (x, a, b) ∈ K, α ∈ (0, 1)

}
,

or equivalently (see (17))

V̂W :=
{
V θα (F (x, a, b, .))

W (x)
: (x, a, b) ∈ K, α ∈ (0, 1)

}
,

is equi-Lipschitzian on <k. That is, there exists a constant Lφ > 0 such that∣∣∣∣φθα (F (x, a, b, s))
W (x)

− φθα (F (x, a, b, s′))
W (x)

∣∣∣∣ ≤ Lφ |s− s′| , ∀s, s′ ∈ <k, (x, a, b) ∈ K,

where |·| is the Euclidean distance in <k.

Remark 5.2. (Equicontinuity and equi-Lipschitz conditions) Clearly, in the case S =
<k, equi-Lipschitz Assumption 5.1 (c) implies equicontinuity Assumption 4.3. Now, equi-
Lipschitz assumption is satisfied under several set of conditions, for instance (see [4])
when

s 7−→ φθα (F (x, a, b, s))
W (x)
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is a convex or concave function for all (x, a, b) ∈ K, α ∈ (0, 1). Another set of conditions
can be obtained from [8,9] by imposing Lipschitz-like conditions on the payoff functions
r and on the transition kernel (3).

Under Assumptions 3.1, 3.2, and 5.1 (c), from (20) and Theorem 3.6, the family
of functions V̄W is uniformly bounded. Furthermore, [2, Proposition 3.4] yields the
existence of a constant M̄ such that

E
[
∆̄t

]
≤ M̄t−1/m, (38)

where

∆̄t := sup
(x,a,b)∈K,α∈(0,1)

∣∣∣∣∫
<k

φα(F (x, a, b, s))
W (x)

θt(ds)−
∫
<k

φα(F (x, a, b, s))
W (x)

θ(ds)
∣∣∣∣ . (39)

The empirical vanishing discount factor approach consists in the following. Let ν ∈
(0, 1/2m) be an arbitrary real number where m is the constant introduced in Assumption
5.1(b). By borrowing the ideas in [7, 15], we fix an arbitrary nondecreasing sequence of
discount factors {ᾱt} such that

D.1 (1− ᾱt)−1 = O(tν) as t→∞;

D.2 lim
n→∞

κ(n)
n

= 0,

where κ(n) is the number of changes of value of {ᾱt} among the first n terms.
An example of a sequence {ᾱt} satisfying Conditions D.1 and D.2 is the following.

Let m = 3 (see Assumption 5.1), ν = 1/10 and {αt} be the sequence defined as

αt := 1− 1
tν
.

Now, define the sequence {ᾱt} by

ᾱt = αk if
(k − 1)k

2
≤ t < k(k + 1)

2
, t ∈ N, k = 2, 3, . . .

Then,
(1− ᾱt)−1 = (1− αk)−1 = kν = O(tν)

since k ≤ t. Moreover, for n ≥ 1, κ(n) = (k−2) if (k−1)k/2 ≤ n < k(k+1)/2, therefore
κ(n) <

√
2n and

κ(n)
n
→ 0.

For a fixed t ∈ N0, let V θt
ᾱt

(·, ·, ·) be the ᾱt−discounted payoff function under the
empirical distribution θt (see (22)), and we denote by V θt

ᾱt
(·) the corresponding value

of the game GMᾱt
t (see (21), Theorems 3.6 and 4.1). The functions φθt

ᾱt
(·) and jθt

ᾱt
are
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defined accordingly (see (17)). Hence, from Theorem 3.6(b) (see (18)), there exists a
random pair (ϕ̄1

t , ϕ̄
2
t ) ∈ Φ1 × Φ2 such that, for every x ∈ X,

jθt
ᾱt

+ φθt
ᾱt

(x) = T ᾱt

θt
φθt
ᾱt

(x) = r(x, ϕ̄1
t , ϕ̄

2
t ) + ᾱt

∫
S

φθt
ᾱt

[F (x, ϕ̄1
t , ϕ̄

2
t , s)]θt(ds)

= max
ϕ1∈A(x)

[
r(x, ϕ1, ϕ̄2

t ) + ᾱt

∫
S

φθt
ᾱt

[F (x, ϕ1, ϕ̄2
t , s)]θt(ds)

]
= min

ϕ2∈B(x)

[
r(x, ϕ̄1

t , ϕ
2) + ᾱt

∫
S

φθt
ᾱt

[F (x, ϕ̄1
t , ϕ

2, s)]θt(ds)
]
. (40)

Let (π1
∗, π

2
∗) ∈ Π1 × Π2 be the pair of strategies determined by (ϕ̄1

t , ϕ̄
2
t ) ∈ Φ1 × Φ2.

That is, πi∗ =
{
ϕ̄it
}

=
{
ϕ̄it(·|x, ω)

}
for i = 1, 2. Then, our main result is stated as follows.

Theorem 5.3. Under Assumption 3.1, 3.2, and 5.1, (π1
∗, π

2
∗) ∈ Π1 × Π2 is a random

pair of average optimal strategies for the game GM, that is

j∗ = inf
π2∈Π2

J(x, π1
∗, π

2) = sup
π1∈Π1

J(x, π1, π2
∗), ∀x ∈ X. (41)

Furthermore, the strategies π̄i∗ =
{
ϕ̄it
}
, i = 1, 2, where

ϕit(·|x) =
∫

Ω

ϕ̄it(·|x, ω)P (dω),

form an average optimal (non random) pair of strategies.

The proof of Theorem 5.3 is based in the following facts. For each t ∈ N0 (see Remark
3.5), we define

γt ≡ γᾱt
:=

1 + ᾱt
2

∈ (ᾱt, 1),

et : = d

(
γt
ᾱt
− 1
)−1

= d

(
2ᾱt

1− ᾱt

)
,

and
lt ≡ lᾱt

:= 1 + et = 1 +
2dᾱt

1− ᾱt
.

It is easy to see that
lt

1− γt
≤ 2(1 + d)(1− ᾱt)−2,

which, from Condition D.1, yields

lt
1− γt

= O(t2ν), as t→∞. (42)

Moreover, applying similar arguments as the proof of Theorem 4.5 (see (29)) and from
definition of the function φθα (see (17)), we can obtain∥∥∥V θt

ᾱt
− V θᾱt

∥∥∥
W
≤ lt

1− γt
∆̄t.
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Hence, for all (π1, π2) ∈ Π1 ×Π2 and x ∈ X, from (38) and (42),

Eπ
1,π2

x

∥∥∥V θt
ᾱt
− V θᾱt

∥∥∥
W

= O(t2ν)O(t−1/m), as t→∞. (43)

Then, because 2ν < 1/m, we get

lim
t→∞

Eπ
1,π2

x

∥∥∥V θt
ᾱt
− V θᾱt

∥∥∥
W

= 0.

Again, from definition of the functions φθα(x) and jθα (see (17)), we have

lim
t→∞

Eπ
1,π2

x

∥∥∥φθt
ᾱt
− φθᾱt

∥∥∥
W

= 0 (44)

and
lim
t→∞

Eπ
1,π2

x

∥∥∥jθt
ᾱt
− jθᾱt

∥∥∥
W

= 0. (45)

On the other hand, following similar ideas as the proof of [11, relation (35)] and once
the necessary changes have been made, we obtain

lim
t→∞

Eπ
1,π2

x

∥∥∥φθt
ᾱt
− φθᾱt

∥∥∥
W
W (xt) = 0 (46)

and
lim
t→∞

Eπ
1,π2

x ∆̄tW (xt) = 0. (47)

5.1. Proof of the Theorem 5.3

We first prove the optimality of π2
∗ =

{
ϕ̄2
t (·|x, ω)

}
=
{
ϕ̄2
t

}
, for which we will show

j∗ = sup
π1∈Π1

J(x, π1, π2
∗), ∀x ∈ X.

Let π1 =
{
π1
t

}
∈ Π1 be an arbitrary strategy for player 1. Then

Lt := r(xt, π1
t , ϕ̄

2
t ) + ᾱt

∫
<k

φθᾱt
[F (xt, π1

t , ϕ̄
2
t , s)]θ(ds)− jθᾱt

− φθᾱt
(xt)

= r(xt, π1
t , ϕ̄

2
t ) + ᾱtE

π1,π2
∗

x

[
φθᾱt

(xt+1) | ht
]
− jθᾱt

− φθᾱt
(xt), (48)

which implies

n−1E
π1,π2

∗
x

[
n−1∑
t=0

(
r(xt, at, bt)− jθᾱt

)]
= n−1E

π1,π2
∗

x

[
n−1∑
t=0

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]

+n−1E
π1,π2

∗
x

[
n−1∑
t=0

Lt

]
.
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Hence, from (7) and (19)

J(x, π1, π2
∗)− j∗ = lim inf

n→∞

{
n−1E

π1,π2
∗

x

[
n−1∑
t=0

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]

+n−1E
π1,π2

∗
x

[
n−1∑
t=0

Lt

]}
. (49)

Therefore, the remainder of the proof consists in to prove

lim inf
n→∞

{
n−1E

π1,π2
∗

x

[
n−1∑
t=0

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]
+ n−1E

π1,π2
∗

x

[
n−1∑
t=0

Lt

]}
≤ 0. (50)

Observe that Condition D.2 implies that {ᾱt} remains constant for long time periods.
Then, for n ≥ l ≥ 1,

n−1E
π1,π2

∗
x

[
n−1∑
t=0

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]

= n−1E
π1,π2

∗
x

[
l−1∑
t=0

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]

+ n−1E
π1,π2

∗
x

[
n−1∑
t=l

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]

≤ n−1E
π1,π2

∗
x

[
l−1∑
t=0

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]

+ (1− ᾱl)M0 + n−1M0

κ(n)∑
i=1

α∗i

≤ (1− ᾱl)M0 +M0κ(n)n−1, (51)

where α∗1, α
∗
2, . . . , α

∗
κ(n) are the different values of ᾱt for t ≤ n, and M0 is a constant

such that Eπ
1,π2

∗
x

∣∣φθα(xt+1)
∣∣ < M0 ∀α ∈ (0, 1) (see (20)). Then, because l is arbitrary

and ᾱt ↗ 1, from (51) and Condition D.2 we get

lim
n→∞

n−1E
π1,π2

∗
x

[
n−1∑
t=0

(
φθᾱt

(xt)− ᾱtφθᾱt
(xt+1)

)]
= 0. (52)

Now, we will proceed to prove

lim
n→∞

n−1E
π1,π2

∗
x

[
n−1∑
t=0

Lt

]
≤ 0. (53)

To this end, we will prove
lim sup
t→∞

E
π1,π2

∗
x [Lt] ≤ 0.
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Observe that from (39), for each t ∈ N0,∣∣∣∣∫
<k

φθᾱt
(F (x, a, b, s))θt(ds)−

∫
<k

φθᾱt
(F (x, a, b, s))θ(ds)

∣∣∣∣ ≤ ∆̄tW (x). (54)

Hence, adding and subtracting the terms

ᾱt

∫
<k

φθᾱt
[F (xt, π1

t , ϕ̄
2
t , s)]θt(ds) and ᾱt

∫
<k

φθt
ᾱt

[F (xt, π1
t , ϕ̄

2
t , s)]θt(ds)

we get
Lt ≤ ∆̄tW (xt) + L0

t + L1
t , (55)

where

L0
t : =

∣∣∣∣∫
<k

φθᾱt
[F (xt, π1

t , ϕ̄
2
t , s)]θt(ds)−

∫
<k

φθt
ᾱt

[F (xt, π1
t , ϕ̄

2
t , s)]θt(ds)

∣∣∣∣ ,
L1
t : = r(xt, π1

t , ϕ̄
2
t ) + ᾱt

∫
<k

φθt
ᾱt

[F (xt, π1
t , ϕ̄

2
t , s)]θt(ds)− jθᾱt

− φθᾱt
(xt).

Note that L0
t ≤

∥∥∥φθt
ᾱt
− φθᾱt

∥∥∥
W

, and therefore, from (44),

lim
t→∞

E
π1,π2

∗
x L0

t = 0. (56)

For L1
t , adding and subtracting jθt

ᾱt
and φθt

ᾱt
(xt), from the definition of ϕ̄2

t (see (40))

L1
t ≤ max

ϕ1∈A(x)

[
r(xt, ϕ1, ϕ̄2

t ) + ᾱt

∫
S

φθt
ᾱt

[F (xt, ϕ1, ϕ̄2
t , s)]θt(ds)

]
− jθt

ᾱt
− φθt

ᾱt
(xt)

+jθt
ᾱt
− jθᾱt

+ φθt
ᾱt

(xt)− φθᾱt
(xt)

≤
∣∣∣jθt
ᾱt
− jθᾱt

∣∣∣+
∥∥∥φθt

ᾱt
− φθᾱt

∥∥∥
W
W (xt). (57)

Thus, (45) and (46) implies

lim sup
t→∞

E
π1,π2

∗
x L1

t ≤ 0. (58)

Combining (47), (55), (56), and (58) we get (53), which, together with (52), yields (50).
Thus, from (49)

J(x, π1, π2
∗) ≤ j∗, x ∈ X.

Finally, since π1 ∈ Π1 is arbitrary, from Theorem 3.7,

j∗ = sup
π1∈Π1

J(x, π1, π2
∗), ∀x ∈ X.

The optimality of π1
∗ is proved similarly.

Finally, the average optimality of the pair (π̄1
∗, π̄

2
∗) ∈ Π1 × Π2 is proved following

similar arguments as part (c) of Theorem 4.5. �
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6. CONCLUDING REMARKS

Our results are based on two class of conditions. The first one, composed by Assumptions
3.1 and 3.2, contains standard mild requirements ensuring the existence of values as well
as optimal pairs of strategies for the discounted and average games. These assumptions
are an adaptation from those widely used to study Markov control processes (MCPs)
with possibly unbounded costs (see, e. g., [8, 9, 11, 15]). In particular, observe that the
continuity of the function F required in Assumption 3.1(c) implies that the stochastic
kernel defined in (3) is weakly continuous.

The another class of conditions is the related with the empirical procedures. Indeed,
the empirical approximation-estimation processes introduced in this paper are strongly
based on the equicontinuity and equi-Lipschitz conditions for the discounted and average
criteria respectively. Such conditions have been used in several contexts within the field
of MCPs. For instance (see [10] and references therein), under equicontinuity conditions
it is possible to show the existence of solutions of optimality equations, as limit of a
sequence of functions, by using Ascoli’s theorem. In our case, equicontinuity is applied
in order to obtain the convergence of empirical procedures given in Remark 4.4 (see
Assumption 4.3). Clearly, if the disturbance space S is countable, i. e., if the disturbance
process {ξt} is formed by discrete random variables, the equicontinuity with respect to
the discrete topology is trivially satisfied .

On the other hand, taking into account that function V θα /W is uniformly bounded
(see Theorem 3.6(a)), ask for the convexity of function s 7−→ φθα(F (x, a, b, s))/W (x) is a
sufficient condition for the equi-Lipschitz Assumption 5.1(c), which in turn implies the
equicontinuity Assumption 4.3. Thus, in the case of dealing with real random variables,
that is by taking S = <, the convexity could be more easily handled, namely, by means
of its derivative. Moreover, by imposing convexity on components of game model is
possible to obtain convexity properties of the value of the game. This issue is part of a
future work of the authors.
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[12] A. Jaśkiewicz and A. Nowak: Zero-sum ergodic stochastic games with
Feller transition probabilities. SIAM J. Control Optim. 45 (2006), 773–789.
DOI:10.1137/s0363012904443257
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