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CONSENSUS-BASED IMPACT-TIME-CONTROL
GUIDANCE LAW FOR COOPERATIVE ATTACK
OF MULTIPLE MISSILES

Qing Zhu, Xiaoli Wang and Qianyu Lin

In this paper, a new guidance problem with the impact time constraint for cooperative
attack of multiple missiles is investigated, which can be applied to salvo attack of anti-ship
missiles. It can be used to guide multiple missiles to hit a stationary target simultaneously at
a desirable impact time. The considered impact time control problem can be transformed into
a range tracking problem. Then the range tracking problem can be viewed a consensus problem
of multi-missile systems. As the application of the distributed consensus controller of multi-
agent systems, three distributed protocols are given to solve the cooperative attack problem
for the advantages such as reducing cost, improving system efficiency, increasing flexibility and
reliability of distributed control. Simulation results demonstrate the performance and feasibility
of the given protocols.
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1. INTRODUCTION

As we know, Proportional Navigation Guidance (PNG) law is optimal for a constant-
velocity missile to attack the target, which can minimize the control efforts. If there
is no guidance system lag, the guidance command decreases to zero when the missile
approaches the target. For decades, since the PNG does not control the impact time
explicitly ([10, 11, 12]), many advanced guidance laws have been devised to improve the
guidance performance of the PNG law and achieve some specific objectives. Generally
the simultaneous attack requires an impact time which is not the same as the impact
time of PNG. In [10], the author designed an impact time control law.It is required to
carry out a salvo attack for anti-ship missiles against CIWS (close-in weapon system),
which is one of the self-defense measures of almost all modern warfare ships against
anti-ship missiles. CIWS usually consists of radars, fire-control-systems, and multiple
rapid-fire guns. It has a naval shipboard weapon system which can detect and destroy
incoming anti-ship missiles and enemy aircraft at short range. It is a great obstacle
for a single anti-ship missile to complete the mission. Salvo attack of anti-ship missiles
is devised as one of countermeasures in order to survive the threat of CIWS, in which
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several missiles can hit the target simultaneously. Clearly, it is difficult to defend a group
of attackers bursting into sight at the same time. Therefore simultaneously attacking
by multiple missiles is a cost-effective and efficient strategy.

The salvo attack problem only required multiple missiles to attack the target simul-
taneously ([11, 12, 22]). In this case, the target can be destroyed by the remaining ones
though several missiles are intercepted. A group of missiles simultaneously attacking
against a single common target can be achieved by two ways. The first one is individual
homing, in which a common impact time is commanded for all missiles in advance, and
then each missile home on the target on time independently ([22]). The second one is
cooperative homing, in which the missiles communicate with each other to synchronize
the arrival times ([11]). In [11], the authors considered the formulation of the homing
problem of multiple missiles against a single target, subject to constraints on the impact
time. Cooperative proportional navigation (CPN), which has the same structure as con-
ventional PN except that it has a time-varying navigation gain, was obtained. In [23],
the authors investigated the problem of robust cooperative formation tracking control of
multiple missile. In [18], the authors studied the cooperative control problem for multi-
missile systems and proposed a two-stage control strategy, aiming at simultaneous attack
from a group of missiles at a static target. In [16], the authors investigated the consensus
problem of multi-missile systems in directed networks with arbitrary finite-time varying
communication delays.

In this paper, we study cooperative attack strategies subject to constraints on the
impact time of multi-missile systems (MMS). As in [22], we also consider an alternative
way to cope with the drawback of the midcourse salvo strategy. The missiles from dif-
ferent platforms or from a single platform approach the expected target position, under
the control of a pre-programmed mid-course salvo strategy. However, unpredicted target
movement during the mid-course guidance of the missiles makes it difficult to achieve
simultaneous attack on the target. In this paper, several distributed feedback guidance
laws are researched to hit the target at the designated impact time, while the approach
given in [22] is individual homing approach. Distributed coordinated multi-missile sys-
tems has many advantages such as reducing cost, improving system efficiency, increasing
flexibility and reliability. Moreover, multi-missile systems with new cooperative fighting
manners can be progressed by following the steps of multi-agent systems. In recent
years, there are a lot of papers about the coordination of a group of agents, due to a
broad application of multi-agent systems (MAS) including consensus, swarming, flock-
ing and formation (e. g. [2, 4, 16, 17, 19, 20, 21]), among which consensus is one of the
important problem in the study of multi-agent systems ([1, 3, 6, 9, 14]). Distributed
controller has been widely developed in multi-agent systems. Suitable neighbor-based
rules for each agent are adopted based on the average of its own information and that of
its neighbors to achieve consensus. In this paper, as the application of the distributed
consensus controller of multi-agent systems, several distributed protocols are given to
solve the cooperative attack problem.

In this paper, we investigate an impact-time-control cooperative guidance law for
multi-missile systems. Firstly, the time-to-go for each missile is estimated based on
PNG and then the desired impact time is determined for each missile. After that, we
transform the impact time control problem into a range tracking problem. Secondly,
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using the tool of feedback linearization, we can transform a nonlinear model for homing
guidance into a linear model. Thirdly, a range tracking problem for a linear system can
be viewed as a consensus problem of multi-missile systems. Fourthly, several distributed
control laws are designed by using consensus protocol of multi-agent systems. Lastly, in
order to prove the validity of the algorithm, we get the simulation results. And they show
that all missiles can attack the target at the designated impact time very accurately.

The paper is organized as follows. The problem formulation is given in Section 2.
In Section 3, we give several distributed protocols of multi-missile-systems, containing
consensus with bounded control input and consensus without relative state derivative
measurements. Then a numerical simulation results are given in Section 4 to show the
effectiveness of our guidance law. The concluding remarks are given in Section 5.

2. PROBLEM FORMULATION

Suppose that n missiles participate in a salvo attack against a single target.Although
each missile has a different missile-to-target range and an initial heading angle, their
common aim is to reach the target simultaneously. The designated impact time Td for
salvo attack is determined as Td ≥ max{T̂i, i = 1, . . . , n}, where n is the number of
missiles involved in the salvo attack and T̂i is the estimated impact time of the ith
missile produced by PNG, T̂i can be computed using the method in [10], the formula is
as follows:

T̂i ≈ Rigo(1 + (σi − qi)2/10)/Vi, i = 1, . . . , n, (1)

where Vi is the ith missile speed, σi, qi, Rigo denote velocity vector angle, the LOS angle
in the inertial reference frame, and the range of the ith missile and the target.

Consider the homing guidance geometry of one of the missiles against the single
target.

As considered in [10, 11], the target is modeled as being stationary and the speed of
the missile Vi (i = 1, . . . , n) is constant.

In Figure 1, Xi, Yi and ηi denote missile positions and the heading angle in the inertial
reference frame. The subscript i0 and if (i = 1, . . . , n) represent the initial and the final
time of ith missile, respectively. Assuming that the terminal time Tif (i = 1, . . . , n) is
designated as Td. The guidance problem can be formulated as a tracking problem for
a time-varying nonlinear system.

The guidance relationship of the missile and the target is given as follows:
ṙi = Vt cos(ηt)− Vi cos(ηi)
riq̇i = Vi sin(ηi)− Vt sin(ηt)
qi = σi + ηi

σ̇i = ai

Vi

, i = 1, . . . , n, (2)

where Vt is the target velocity, and ri, ηi, ηt, σi, ai denote the range of the ith missile and
target, the altitude angle of missile, the altitude angle of target, polar angle of missile,
and acceleration command of missile. Then a second-order system can be obtained from
(2) as follows {

ṙi = Vt cos(ηt)− Vi cos(ηi)
η̇i = Vi sin(ηi)−Vt sin(ηt)

ri
− ai

Vi
, i = 1, . . . , n,

(3)
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Fig. 1. LOS figure: the relative motion of missile and target.

where ai is the input and ri is the output. In order to make the missile attack the target
at the designated time, Ri is designed as follows

Ri = Vi(Td − t), i = 1, . . . , n.

The key problem is to design a distributed controller making

lim
t→∞

ri −Ri = 0, i = 1, .., n.

Since Ri tends to zero at appointed time, the n missiles arrive at target at designated
time Td. Then the guidance law is completed.

In this paper, the n missiles are regarded as the nodes, and the relationships between
n missiles can be conveniently described by a directed graph. In the following, we first
introduce some basic concepts in graph theory ([5]). A directed graph (or digraph) is
denoted as G = (O, E), where O = {1, 2, . . . , n} is the set of nodes and E is the set
of edges, each element of the directed graph is an ordered pair of distinct nodes in O.
(i, j) ∈ E denotes an edge leaving from node i and entering into node j if node i can
get information from node j. In this case node j is said to be a neighbor of node i.
Undirected graph is a special case of directed graph, in which (i, j) ∈ E if and only if
(j, i) ∈ E . A path in digraph G is an alternating sequence i1e1i2e2 . . . ek−1ik of nodes
im and edges em = (im, im+1) ∈ E for m = 1, 2, . . . , k − 1. The directed graph has a
directed spanning tree if and only if the graph has a directed path to all other nodes.
In undirected graph, the existence of an undirected spanning tree is equivalent to being
connected. The weighted adjacency matrix of G is denoted as A = (aij)n×n ∈ Rn×n,
where aii = 0 and aij ≥ 0 (aij > 0 if there is an edge from agent i to agent j). Its degree
matrix ∆ = diag{β1, . . . , βn} ∈ Rn×n is a diagonal matrix, where diagonal elements
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βi =
∑n
j=1 aij for i = 1, . . . , n. Then the Laplacian of the weighted graph is defined as

L = ∆−A.

The following lemma is about the Laplacian matrix L ([15]).

Lemma 2.1. The Laplacian matrix L of a directed graph has a simple zero eigenvalue
with an associated eigenvector 1n and all of the other eigenvalues are in the open right
half plane if and only if the directed graph has a directed spanning tree.

3. DISTRIBUTED CONTROL PROTOCOL

As considered in [10, 11], the target is modeled as being stationary and the speed of ith
missile Vi (i = 1, . . . , n) is constant. Considering the system (3), let{

zi1 = Ri − ri
zi2 = żi1, i = 1, . . . , n.

(4)

Since Vi (i = 1, . . . , n) are constant, the new state equation is{
żi1 = zi2

żi2 = −Vi sin ηi(Vi sin ηi

ri
− ai

Vi
), i = 1, . . . , n.

(5)

Using the method of feedback linearization, let

ai =
1

sin ηi
(vi −

V 2
i sin2 ηi
ri

), i = 1, . . . , n, (6)

where vi (i = 1, . . . , n) is an equivalent input to be designed. Then we have{
żi1 = zi2

żi2 = vi, i = 1, . . . , n.
(7)

In the following part, we will give the description of consensus ([3, 9, 15]).

Definition 3.1. Consider the MMS (5), if we have limt→∞ ‖zi1(t) − zj1(t)‖ = 0 and
limt→∞ ‖zi2(t) − zj2(t)‖ = 0 for any initial state zi1(0), zi2(0), i = 1, . . . , n. Then
consensus is achieved.

It is easy and correct to consider the cooperative guidance of multiple missiles (5) as
the consensus problem of multiple missiles (7). In the following subsections, we will give
several distributed control protocols for MMS (5).

3.1. Most general consensus protocol

We will give our first algorithm based on the consensus of multi-agent systems in [15].
Consider a MMS of n missiles with dynamics (5) steered by the following protocol:

vi =
n∑
j=1

aij [(zj1 − zi1) + (zj2 − zi2)], i = 1, . . . , n. (8)
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If the directed graph has a directed spanning tree, the MMS will achieve consensus.
Recalling (6), the control law for (5) is

ai =
1

sin ηi

n∑
j=1

aij(Vj(Td − t)− rj − Vi(Td − t) + ri)

+
1

sin ηi

n∑
j=1

aij(Vj cos ηj − Vi cos ηi)

− 1
sin ηi

V 2
i sin2 ηi
ri

, i = 1, . . . , n.

Consider the above control law, it will be singular when ri = 0 or ηi = 0. Then we have
the following theorem.

Theorem 3.2. (1) When ηi = 0, we can replace it with a small positive number ε:

ai =
1

sin ε

n∑
j=1

aij(Vj(Td − t)− rj − Vi(Td − t) + ri) (9)

+
1

sin ε

n∑
j=1

aij(Vj cos ηj − Vi cos ηi), i = 1, . . . , n.

(2) When ri = 0, it means missile attacking the target. But ri(t)→ 0 for large t, the
control will divergent, so when |Ri− ri| < 30, we switch the guidance law to PNG

ai = NViq̇i, i = 1, . . . , n. (10)

So the guidance law for MMS (5) is

ai =



1
sin ηi

∑n
j=1 aij(Vj(Td − t)− rj − Vi(Td − t) + ri)

+ 1
sin ηi

(
∑n
j=1 aij(Vj cos ηj − Vi cos ηi)− V 2

i sin2 ηi

ri
)

if |Ri − ri| ≥ 30 & ηi 6= 0

1
sin ε (

∑n
j=1 aij(Vj(Td − t)− rj − Vi(Td − t) + ri))

+ 1
sin ε

∑n
j=1 aij(Vj cos ηj − Vi cos ηi) if |Ri − ri| ≥ 30 & ηi = 0

NViq̇i if |Ri − ri| < 30.

(11)

3.2. Consensus with bounded control inputs

In the following, we take into account a bounded control for (7) with bounded control
inputs as

vi =
n∑
j=1

aij [tanh(zj1 − zi1) + tanh(zj2 − zi2)]. (12)

Note that with (12), vi is bounded because tanh(·) is bounded with ‖vi‖∞ ≤
∑n
j=1 2aij

independent of initial conditions of the information states and their derivatives.
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Theorem 3.3. Consider a MMS of n missiles with dynamics (5) steered by the protocol
(15). If the undirected graph is connected, the MMS will achieve consensus.

P r o o f . Note that with (12), (7) can be written as{
żi1 = zi2

żi2 =
∑n
j=1 aij [tanh(zj1 − zi1) + tanh(zj2 − zi2)].

(13)

Consider the following Lyapunov function for (13) as

V =
1
2

n∑
i=1

n∑
j=1

aij log[cosh(zi1 − zj1)] +
1
2

n∑
i=1

z2
i2, (14)

where cosh(·), log(·) are defined componentwise. Note that V is positive definite and
radially unbounded with respect to zi1− zj1, ∀i 6= j, zi2, i,j=1,. . . ,n. Differentiating V
gives

V̇ =
1
2

n∑
i=1

n∑
j=1

aij(zi2 − zj2)T tanh(zi1 − zj1)

+
n∑
i=1

zi2(
n∑
j=1

aij [tanh(zj1 − zi1)

+ tanh(zj2 − zi2)])

=
n∑
i=1

zi2

n∑
j=1

aij tanh(zj2 − zi2)

= −1
2

n∑
i=1

(zj2 − zi2)
n∑
j=1

aij tanh(zj2 − zi2)

≤ 0.

Let S = {(zi1− zj1, zi2)|V̇ = 0}. Note that V̇ ≡ 0 implies that zi2 ≡ zj2, ∀i 6= j, which
in turn implies that żi2 ≡ żj2, ∀i 6= j. Since the undirected graph is connected and
tanh(zi1−zj1) = − tanh(zj1−zi1),

∑n
i=1

∑n
j=1 aij tanh(zj1−zi1) = 0, i. e.,

∑n
i=1 żi2 = 0.

Then żi2 = 0, i = 1, . . . , n. From żi2 =
∑n
j=1 aij tanh(zj1 − zi1) = 0, we can have

n∑
i=1

n∑
j=1

aijzi1 tanh(zj1 − zi1) = −1
2

n∑
i=1

n∑
j=1

aij(tanh(zj1 − zi1))2 = 0.

Therefore zi1 ≡ zj1, ∀i 6= j. It follows that limt→∞ zi1(t) = zj1(t), limt→∞ zi2(t) =
zj2(t), ∀i 6= j, i, j = 1, . . . , n, by Laselle Invariance Theorem. Thus the consensus is
achieved. �
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Similar to the discussion in Theorem 3.2, the guidance law for MMS (5) is:

ai =



1
sin ηi

∑n
j=1 aij tanh(Vj(Td − t)− rj)

− 1
sin ηi

∑n
j=1 aij tanh(Vi(Td − t) + ri)

+ 1
sin ηi

∑n
j=1 aij(tanh(Vj cos ηj)− tanh(Vi cos ηi))

− 1
sin ηi

V 2
i sin2 ηi

ri
if |Ri − ri| ≥ 30 & ηi 6= 0

1
sin ε

∑n
j=1 aij tanh(Vj(Td − t)− rj)

− 1
sin ε

∑n
j=1 aij tanh(Vi(Td − t) + ri)

+ 1
sin ε

∑n
j=1 aij(tanh(Vj cos ηj)− tanh(Vi cos ηi))

if |Ri − ri| ≥ 30 & ηi = 0

NViq̇i if |Ri − ri| < 30.

(15)

The following corollary is mainly based on Theorem 3.2 by which limt→∞ zi2(t) =
0, i = 1, . . . , n.

Corollary 3.4. Consider a MMS of n missiles with dynamics (7) steered by the protocol

vi =
n∑
j=1

aij [tanh(zj1 − zi1)− tanh(zi2)], i = 1, . . . , n. (16)

If the undirected graph is connected, the MMS will achieve consensus with limt→∞ zj1(t) =
zi1(t), ∀j 6= i, limt→∞ zi2(t) = 0, i, j = 1, . . . , n. Thus the guidance law for MMS
(5) is:

ai =



1
sin ηi

∑n
j=1 aij tanh(Vj(Td − t)− rj)

− 1
sin ηi

∑n
j=1 aij tanh(Vi(Td − t) + ri)

− 1
sin ηi

tanh(Vi cos ηi − V 2
i sin2 ηi

ri
) if |Ri − ri| ≥ 30 & ηi 6= 0

1
sin ε

∑n
j=1 aij tanh(Vj(Td − t)− rj)

− 1
sin ε

∑n
j=1 aij tanh(Vi(Td − t) + ri)

− 1
sin ε tanh(Vi cos ηi) if |Ri − ri| ≥ 30 & ηi = 0

NViq̇i if |Ri − ri| < 30.

(17)

P r o o f . Following the proof of Theorem 3.3, consider the Lyapunov function given by
(14). Differentiating V , gives

V̇ = −
n∑
i=1

zi2 tanh(zi2) ≤ 0.

Let S = {(zi1 − zj1, zi2)|V̇ = 0}. Note that V̇ ≡ 0 implies that zi2 = 0, żi2 = 0.
Then

∑n
j=1 aij [tanh(zj1 − zi1)] ≡ 0. Thus, an argument similar to that in the proof

of Theorem 3.3 shows that limt→∞ zj1(t) = zi1(t), ∀j 6= i, limt→∞ zi2(t) = 0, i, j =
1, . . . , n. �
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3.3. Consensus without relative state derivative measurements

Note that (8) requires measurements of relative information state derivatives between
neighboring vehicles. We propose a consensus algorithm without measurements of rela-
tive information state derivatives based on a passive approach as:

˙̂xi = −x̂i +
n∑
j=1

aij(zi1 − zj1) (18)

yi = −x̂i +
n∑
j=1

aij(zi1 − zj1) (19)

vi = −yi −
n∑
j=1

aij(zi1 − zj1). (20)

Theorem 3.5. Consider a MMS of n missiles with dynamics (5) achieves consensus if
undirected graph is connected.

P r o o f . Let z1 = [z11, . . . , zn1]T , z2 = [z12, . . . , zn2]T , y = [y1, . . . , yn]T , x̂ = [x̂1, . . . , x̂n]T

and v = [v1, . . . , vn]. Algorithm can be written as
˙̂x = −x̂+ Lz1 (21)

y = ˙̂x (22)
v = −y − Lz1. (23)

Thus (7) can be written as
żi1 − żj1 = zi2 − zj2 (24)

zi2 − zj2 = −
n∑
j=1

aij(zi1 − zj1)− ˙̂xi +
n∑
k=1

ajk(zj1 − zk1) + ˙̂xj (25)

¨̂xi = − ˙̂xi +
n∑
j=1

aij(zi2 − zj2). (26)

Consider the Lyapunov function as

V =
1
2
zT1 L

2z1 +
1
2
zT2 z2 +

1
2

˙̂xT ˙̂x.

Note that V is positive definite and radially unbounded with respect to zi1 − zj1, zi2 −
zj2, ∀i 6= j, ˙̂xi, i, j = 1, . . . , n. Differentiating V gives

V̇ = zT2 L
2z1 + zT2 Lu+

1
2

¨̂xT ˙̂x+
1
2

˙̂xT ¨̂x

= zT2 L
2z1 + zT2 Lu

−1
2

˙̂xT ˙̂x+
1
2
zT2 L

˙̂x− 1
2

˙̂xT ˙̂x+
1
2

˙̂xTLz2

= zT2 L
2z1 + zT2 Lu−

1
2

˙̂xT ˙̂x+ zT2 L
˙̂x

= −1
2

˙̂xT ˙̂x ≤ 0, i = 1, . . . , n.
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Let S = {(zi1 − zj1, zi2 − zj2, ˙̂x)|V̇ = 0}. Note that V̇ = 0 implies ˙̂x = 0, which
in turn implies that y = 0, ¨̂x = 0. With the same analysis as in Theorem 3.2, we
have żi1 = żj1, ∀i 6= j. Using Laselle Invariant Theorem, we obtain limt→∞ zi1(t) =
zj1(t), limt→∞ zi2(t) = zj2(t), ∀i 6= j, i, j = 1, . . . , n. Then the consensus is achieved.

�

Following the same discussion as in Remark, the guidance law for MMS (5) is

ai =



1
sin ηi

x̂i + 2 1
sin ηi

∑n
j=1 aij(Vj(Td − t)− rj)

−2 1
sin ηi

∑n
j=1 aij(Vi(Td − t) + ri)

− 1
sin ηi

V 2
i sin2 ηi

ri
if |Ri − ri| ≥ 30 & ηi 6= 0

1
sin ε x̂i + 2 1

sin ε

∑n
j=1 aij(Vj(Td − t)− rj)

−2 1
sin ε

∑n
j=1 aij(Vi(Td − t) + ri) if |Ri − ri| ≥ 30 & ηi = 0

NViq̇i if |Ri − ri| < 30.

(27)

In the following corollary, we will give a protocol which is a simpler case than that
in Theorem 3.5 making limt→∞ zi2(t) = 0, i = 1, . . . , n.

Corollary 3.6. Consider a MMS of n missiles with dynamics (7) steered by the protocol

˙̂xi = −x̂i + zi1 (28)

yi = −x̂i + zi1 (29)

vi = −yi −
n∑
j=1

aij(zi1 − zj1). (30)

If the undirected graph is connected, the MMS will achieve consensus, limt→∞ zj1(t) =
zi1(t), ∀j 6= i, limt→∞ zi2(t) = 0, i,j=1,. . . ,n. Thus the guidance law for MMS (5)
is

ai =



1
sin ηi

(x̂i + ri − Vi(Td − t))
+ 1

sin ηi

∑n
j=1 aij(Vj(Td − t)− rj)

− 1
sin ηi

∑n
j=1 aij(Vi(Td − t) + ri)

− 1
sin ηi

V 2
i sin2 ηi

ri
if |Ri − ri| ≥ 30 & ηi 6= 0

1
sin ε (x̂i + ri − Vi(Td − t))
+ 1

sin ε

∑n
j=1 aij(Vj(Td − t)− rj)

− 1
sin ε

∑n
j=1 aij(Vi(Td − t) + ri) if |Ri − ri| ≥ 30 & ηi = 0

NViq̇i if |Ri − ri| < 30.
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4. SIMULATION

In order to investigate the characteristics of the proposed guidance law, simulations un-
der three cases are performed. The initial conditions are randomly selected as follows:

Missile Position(km) Velocity vector angle(◦)
1 (-6,-6) 60
2 (-8,-2) 60
3 (4,-7) 120
T (0,0) 0

−8 −6 −4 −2 0 2 4
−8

−7

−6

−5

−4

−3

−2

−1

0

1

X/km

Y
/k

m

 

 
M1
M2
M3
T

Fig. 2. Trajectories of three missiles.

The simulation results are shown from Figure 1 to Figure 4. They are presented in
three cases: (1) a salvo attack with the designed impact time in simple situation; (2)
a salvo attack with bounded inputs; (3) a salvo attack without relative state derivative
measurement. Figure 1 shows the missiles trajectories based on the consensus guidance
law. It illustrates that the three missiles can attack the target, which proves the accuracy
of the guidance law. Figure 2 shows the distance variation between the missiles and the
target. From Figure 2, we can see that the distance between the three missiles and
the target close to zero at the same time. Also in this scenario, it is observed that the
dispersion of impact time is about 0.18 seconds, and the longest impact time is 27.64
sec of missile 1, the shortest impact time is 27.46 sec of missile 3. Compare with the
designed time 27 sec, we can find it demonstrates that the three missiles can hit the
target at the designed time simultaneously.

Figure 3 shows trajectories of the missiles based on the consensus with bounded
control input guidance law. The impact time is 27.41 sec of missile 1, 27.39 sec of missile
2, 27.21 sec of missile 3. The dispersion of impact time is about 0.20 sec. Figure 4 shows
trajectories based on the consensus guidance law without the relative state derivative
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Fig. 4. Trajectories of three missiles.

measures. Their impact time is 27.69 sec of missile 1, 27.68 sec of missile 2, and 27.28
sec of missile 3. The dispersion of impact time is about 0.41 sec. Both of them are
similar with Figure 1, though their impact time has a little difference. Figure 3 and
Figure 4 illustrate the designed guidance law can make three missiles hit the target at
the same time, so the guidance law is effective. All the simulation results prove that
the proposed multiple missiles guidance law can drive the missiles hit the target at the
designed time.
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5. CONCLUSIONS

In this paper, a new cooperative guidance with the impact time constraint was investi-
gated, which can be applied to salvo attack of anti-ship missiles. The missiles estimated
the arriving times which can be computed by PNG. We designed the distributed guid-
ance law which can force the range of missile and the target to trace the nominal range.
When the time-to-go tends to zero, the nominal range tends to zero too, which means
the multiple missiles can arrive the object at the appointed time. In this paper, the
simultaneous attack problem can be viewed as a range tracking problem problem for
multi-missile systems which can be solved by consensus protocol based on multi-agent
systems. Moreover, simulation results showed that all missiles could impact the target
at the designated impact time very accurately.
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