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BOUNDED-INPUT-BOUNDED-STATE STABILIZATION OF
SWITCHED PROCESSES AND PERIODIC ASYMPTOTIC
CONTROLLABILITY

Andrea Bacciotti

The main result of this paper is a sufficient condition for the existence of periodic switching
signals which render asymptotically stable at the origin a linear switched process defined by
a pair of 2× 2 real matrices. The interest of this result is motivated by the application to the
problem of bounded-input-bounded-state (with respect to an external input) stabilization of
linear switched processes.
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1. INTRODUCTION

In the recent, rapidly increased literature about switched systems, the fundamental no-
tions of classical control theory, such as controllability and stability, have been revisited
and extended ([8, 11, 14, 20]). In this paper, we deal with the extension to a linear
switched process of the bounded-input-bounded-state stability property, and its relation-
ship with asymptotic controllability of the associated unforced system.

Bounded-input-bounded-state stability is a natural requirement for systems whose
behavior is affected by an external input. Roughly speaking, it means that the state
variable (or, more generally, the output variable) remains bounded in the future for
each initial condition, provided that the input variable is bounded (see for instance
[4, 12, 19]). The nature of the external input depends on the application: it may be a
reference signal, as in the servomechanisms, or a disturbance.

When bounded-input-bounded-state stability does not hold, it is natural to ask
whether it can be achieved by exerting a suitable control action: this is the bounded-
input-bounded-state stabilization problem. Note that in general, the external input and
the control are injected into the system through separate input channels.

The class of switched processes considered in this paper is formally introduced in the
next section. For the moment we limit ourselves to say that a switched process is formed
by several components, and each component is represented by a finite-dimensional linear
time-invariant system
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ẋ = Aνx+Bνu , ν ∈ N (1)

where N is a set of indices. The switching policy is determined by a switching signal,
that is a piecewise constant function σ : [0,+∞)→ N . The role of the external input is
played by u, while the role of the control is played by the switching signal σ.

Our approach to the problem is inspired by the well known, classical result that, for
a single linear, time-invariant system, bounded-input-bounded-state stability is implied
by the asymptotic stability of the associated unforced system. In our case, the unforced
system is obtained by setting u = 0 in (1).

We are so led to study the following problem: find sufficient conditions guaranteeing
the existence of a switching signal σ(t) such that, when implemented, the state x(t) of the
associated unforced switched system converges to the origin for each initial condition,
when t → ∞. This is the switched version of the classical asymptotic controllability
problem. More precisely, in this paper we restrict the search to periodic switching
signals.

In the literature, the stabilization problem for (unforced) switched systems is usually
addressed by the (common or multiple) Lyapunov function method, which leads to
closed-loop discontinuous (with respect to the state variable) feedback laws (see for
instance [11, 18]). This implies in turn some mathematical problems about the existence
of solutions ([5]). The asymptotic controllability problem, making use of open-loop
controls, avoids this drawbacks, and the limitation to periodic signals seems to represent
a reasonable compromise from the point of view of applications.

A general result about asymptotic controllability of switched systems can be found
in [3], but the problem becomes more difficult when we restrict the search to periodic
switching signals. To this respect, the most significant result available in the literature
is a sufficient condition in [15] (however, as pointed out in [1], this condition is limited to
switching laws of sufficiently small period). Apart from this remarkable exception, the
problem is basically open: a summary with more technical details about this problem
will be found in Section 4 (see also [2] and the references therein).

The way the evolution of the state is affected by the input is more frequently studied
in terms of the input-to-state stability property (a notion introduced in [13]). Bounded-
input-bounded-state stability is indeed a weak version of input-to-state stability. Roughly
speaking, input-to-state stability can be thought of as the extension of global asymptotic
stability to systems with inputs, as long as bounded-input-bounded-state stability is an
analogous extension of simple Lyapunov stability. In the context of switched systems
theory, input-to-state stability has been extended and studied, essentially on the base
of the Lyapunov method, in several papers ([10, 16, 17, 21, 23, 24]).

The paper is organized as follows. In Section 2 we introduce the class of systems
under consideration. In Section 3 we show that if there exists a switching signal σ :
[0,+∞) → N (independent of the initial state) such that all the switched solutions
of the associated unforced system approach the origin for t → +∞, then the same
switching signal stabilizes the given process in the bounded-input-bounded-state sense.
This is not difficult to prove: it is actually a combination of some well know existing
results (especially Theorem 5.1 of [6]). However, it provides a strong motivation for
our main result presented in Section 4, where we give a new sufficient condition for the
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periodic asymptotic controllability of a pair of 2 × 2 matrices. Our approach is based
on linear algebra ideas and controllability notions, and does not make use of Lyapunov
functions. The proof of the main result is given in Section 5. Section 6 is devoted to
some useful examples, while Section 7 resumes the conclusions.

2. LINEAR SWITCHED PROCESSES WITH INPUTS

Now we introduce formally the class of systems of interest in this paper. Let N =
{1, . . . , N} be a set of indices, endowed with the discrete topology. A linear switched
process is a pair (F ,G) where

F = {A1, . . . , AN} , G = {B1, . . . , BN}

and, for each index ν ∈ N , Aν is a real square n × n matrix and Bν is a real n × m
matrix. As already mentioned, the time-invariant linear systems

ẋ = Aνx+Bνu , t ≥ 0 , x ∈ Rn , u ∈ Rm, ν ∈ N (2)

constitute the components of the process. The switching policy is determined by a
switching signal, that is a piecewise constant, right continuous function σ : [0,+∞)→ N .

For each fixed switched signal σ : [0,+∞) → N , we associate to (F ,G) the linear,
time-varying system

ẋ = A(t)x+B(t)u (3)

where A(t) = Aσ(t) and B(t) = Bσ(t). Note that the entries of A(t) and B(t) are
piecewise constant functions, for t ∈ [0,+∞). Hence, for each initial state x0 ∈ Rn

and each measurable, locally bounded function u : [0,+∞)→ Rm, (3) admits a unique
solution x(t) defined for t ∈ [0,+∞), such that x(0) = x0. It will be called the solution
of (F ,G) corresponding to x0, σ(t) and u(t).

The unforced switched system associated to (F ,G) is defined by the family of matrices
F = {A1, . . . , AN}, and corresponds to the family of linear (unforced) systems

ẋ = Aνx , ν ∈ N . (4)

For an introduction to the general properties and the formalism about unforced
switched systems we refer the reader to [3, 11, 14]; here, we limit ourselves to recall
that a switched solution of F is a continuous, piecewise differentiable curve obtained by
gluing together solutions of the linear systems (4). Hence, for a given switched signal
σ(t) and a given initial state x0, there is a unique switched solution of F , defined for
t ≥ 0. Moreover, such a switched solution can be represented on any compact interval
[0, t̄] (t̄ > 0) as a composition of exponentials

etNkAN · . . . · et1kA1 · . . . . . . · etN2AN · . . . · et12A1 · etN1AN · . . . · et11A1x0

where k ≥ 1 is any integer, tij ≥ 0 (i = 1, . . . , N, j = 1, . . . , k), and
∑
tij = t̄. The

numbers tij are called durations; they correspond to the length of the time intervals sep-
arating the switching times, that are the contiguous discontinuity points of the switching
signal σ. At a switching time, a switched solution of F could be not differentiable.



BIBS stabilization of switched processes 533

3. BIBS STABILITY

The following definition applies in general to linear time-varying systems of the form (3)
(not necessarily associated to a switched process). It differs from the definition given
in [6] for some details (basically, the addition of some more uniformity: see also [4,
19]). Recall that any square matrix A(t) with measurable and locally bounded entries
generates a transition matrix G(t, τ), defined for t, τ ≥ 0 (see [7]). The symbol || · ||
denotes any norm of (finite dimensional) vectors or matrices; the symbol ||u(·)||∞ denotes
the infinity norm of the function u(·), that is ||u(·)||∞ = ess sup t≥0||u(t)||.

Definition 3.1. The linear time-varying system (3) is (uniformly) bounded-input-boun-
ded-state (in short, BIBS) stable if:

1. there exists γ > 0 such that

t ≥ τ ≥ 0 =⇒ ||G(t, τ)|| < γ

2. there exists k > 0 such that

t ≥ 0 =⇒
∫ t

0

||G(t, s)B(s)||ds < k.

The switched process (F ,G) is said to be BIBS stabilizable (with respect to the
external input u) if there exists a switching signal σ(t) such that the associated linear
time-varying system (3) is BIBS stable.

The first requirement of Definition 3.1 is equivalent to uniform stability at the origin
of the unforced time-varying system

ẋ = A(t)x (5)

associated to (3). The first and the second requirement together imply that for each
input u(t), bounded on [0,+∞), and each τ ≥ 0, the solution x(t) of (3) such that
x(τ) = χ ∈ Rn satisfies the inequality

||x(t)|| ≤ γ · ||χ||+ k · ||u(·)||∞

on [0,+∞) and it is so bounded.

Theorem 3.2. Assume that B(t) is bounded for t ≥ 0. Assume also that the unforced
time-varying system (5) is exponentially asymptotically stable at the origin. Then,
(F ,G) is BIBS stable.

This theorem is nothing else a restatement of Theorem 5.1 in [6]. By virtue of
Theorem 3.2, the BIBS stabilization problem for the switched process (F ,G) is reduced
to the problem of constructing, if possible, a switching signal (independent of the initial
state) such that all the switched solutions of the associated switched unforced process
F converge to the origin when t→ +∞.
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4. THE UPAC PROPERTY

If the problem mentioned at the end of the previous section (existence of a switching
signal independent of the initial state such that all the switched solutions of F converge
to the origin for t → +∞) has a solution, we say that F has the uniform asymptotic
controllability (in short, UAC) property. If the problem is solvable by means of a periodic
switching signal, we say that F has the uniform periodic asymptotic controllability (in
short, UPAC) property. It is well known that the UAC property and the UPAC property
are actually equivalent ([2, 14]). Hence, the BIBS stabilization problem for (F ,G) can
be further reduced to the search for a periodic switching signal.

A complete characterization of the UPAC property in arbitrary dimension is still an
open problem. In this section, we give a short description of the state of the art; then,
we present a new result for the two-dimensional case. To simplify the notation, from
now on we assume N = 2. We introduce the set Rk

+ = {t = (t1, . . . , tk) : tj ≥ 0}, and
the vectors t1 = (t11, . . . , t1k), t2 = (t21, . . . , t2k) ∈ Rk

+. Moreover, we write

E(t1, t2) = et2kA2 · et1kA1 · . . . · et21A2 · et11A1 . (6)

Recall that a matrix M is said to be Hurwitz when all its eigenvalues have negative
real part; Schur when all its eigenvalues lie in the unit open disc. The proof of the
following proposition can be found in [19] (see also [2]).

Proposition 4.1. The unforced switched process F = {A1, A2} has the UPAC property
if and only if there exist t1, t2 ∈ Rk

+ such that the matrix (6) is Schur.

A well known necessary condition for the UPAC property is that trAν < 0, for at
least one index ν ∈ {1, 2} ([2, 14]); however, this condition is not sufficient ([2]). It
is also well known that if there exist α1, α2 ≥ 0 such that1 the matrix α1A1 + α2A2 is
Hurwitz, then the unforced process F is UPAC ([11, 18]). In fact, under this assumption
the matrix

eTα2A2 · eTα1A1

is Schur provided that the period T is sufficiently small. We refer the reader to [1] for
a discussion about the converse statement; here, we limit ourselves to remark that in
general the condition is not necessary (see the examples of Section 6). In particular,
there exist pairs of 2× 2 matrices for which asymptotic controllability can be achieved
by periodic switching signals only if the period is sufficiently large. Next, we recall the
notion of radial controllability ([3]).

Definition 4.2. The pair of matrices F is radially controllable (in short, RC) if for each
pair x0, x1 ∈ R2 \ {0} there exists c > 0 such that the point cx1 is reachable from x0 in
finite time along a switched solution, that is

E(t1, t2)x0 = cx1

for some t1, t2 ∈ Rk
+.

1Without loss of generality, one can also assume α1 + α2 = 1.
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The role of the RC property in the asymptotic controllability problem is widely
exploited in [1, 2, 3]. An obvious necessary condition for RC is the non-existence of
positively invariant sectors common to the linear systems ẋ = Aνx, (ν ∈ {1, 2}). The
main result of this note is the following sufficient condition, which applies also in certain
cases where the UPAC property cannot be realized by switching signals of small period.

Theorem 4.3. Assume that the pair of matrices F fulfils the following conditions:

(i) there exists ν ∈ {1, 2} such that trAν < 0;

(ii) F is radially controllable.

Then, F has the UPAC property.

5. PROOF OF THEOREM 4.3

Without loss of generality, assume that (i) holds for ν = 1, and let

α0 = max

{
trA2

−trA1
, 0

}
.

First we establish the following claim.

Claim 1. There exist a vector x0 6= 0, a real number c > 0, an integer k ≥ 1 and
vectors t1, t2 ∈ Rk

+ \ {0} such that

E(t1, t2)x0 = −cx0 (7)

and moreover
t11 + . . .+ t1k
t21 + . . .+ t2k

> α0 . (8)

P r o o f . By virtue of (i), the eigenvalues of A1 cannot be both on the imaginary axis.
Thus, the eigenvalues of A1 can be either complex conjugate with nonzero imaginary
part, or real. We give different proofs for these two cases.

Case 1. The eigenvalues of A1 are complex conjugate (with nonzero imaginary part).
In this case the nontrivial orbits of system ẋ = A1x rotate around the origin. Fix an
arbitrary x0 6= 0. Clearly, there exists t12 > 0 and c > 0 such that

et12A1x0 = −cx0 .

For any t21 > 0, we so have

et12A1 · et21A2 · e−t21A2x0 = −cx0 . (9)

Let v0 = v0(t21) = e−t21A2x0. Obviously, v0(t21) is a continuous function of t21, and

lim
t21→0+

v0(t21) = x0 .
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Consider the function

f(b, ε, v) = beεA1v : R×R×R2 → R2 .

Since f(1, 0, x0) = x0, by the Implicit function Theorem there exist functions ε =
ε(v), b = b(v) defined in a small neighborhood of v = x0 such that

b(v)eε(v)A1v = f(b(v), ε(v), v) = x0 , ε(x0) = 0 , b(x0) = 1 .

Replacing v = v0(t21), for small t21 we get

b(v0(t21))eε(v0(t21))A1v0(t21) = x0 (10)

for small t21, and

lim
t21→0+

ε(v0(t21)) = 0 , lim
t21→0+

b(v0(t21)) = 1 (11)

(see the picture in Figure 1). Taking into account of (10), (9) becomes

x0

v0

e
−t21A2x0

−cx0 = e
t12A1x0

e
A1v0

e
(t12−)A1e

t21A2v0

−cbv0

Fig. 1. The picture illustrates formulae (9) and (10) for the case

where the vectors A1x0 and A2x0 point in the same directions;

the other cases are similar.

et12A1 · et21A2v0(t21) = −cb(v0(t21))eε(v0(t21))A1v0(t21)

that is
e(t12−ε(v0(t21)))A1 · et21A2v0(t21) = −cb(v0(t21))v0(t21)

which is nothing else than (7), with k = 2, c, x0 and t12 respectively replaced by
cb(v0(t21)), v0(t21) and t12 − ε(v0(t21)), t11 = t22 = 0, and t21 any sufficiently small
positive number.
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Notice that by construction, t1 and t2 are both nonzero, as required. As far as
condition (8) is concerned, in our case it reduces to

t12 − ε(v0(t21))
t21

> α0

which is fulfilled for sufficiently small t21, because of the first limit in (11).

Case 2. The eigenvalues of A1 are real. Because of (i) at least one of them, say λ,
must be negative. Let x0 be a real eigenvector of A1 corresponding to λ. The curve
eλtx0 is a solution of system ẋ = A1x , lying on the positive half-line generated by x0.
Moreover, because of (ii), there exist t1, t2 ∈ Rk

+ such that

E(t1, t2)x0 = −cx0 . (12)

Let t10 > 0. We may write

E(t1, t2) · e0A2 · et10A1x0 = E(t1, t2) · et10λx0 = −cet10λx0 .

Thus, condition (7) is fulfilled for any t10 > 0, with c replaced by cet10λ, and

t̃1 = (t10, t11, . . . , t1k) ∈ Rk+1
+ , t̃2 = (t20, t21, . . . , t2k) ∈ Rk+1

+ .

Note that necessarily t̃1 6= 0, since t10 > 0. But also t̃2 6= 0; indeed, in the opposite
case

E(t1, t2)x0 = etA1x0 = etλx0

for some t > 0, a contradiction with (12).
To complete the proof, we remark that also condition (8) is fulfilled, for t10 sufficiently

large.
�

Next claim is another important step of our proof.

Claim 2. Let k, t1, t2 ∈ Rk
+, x0 and c be such that (8) holds. Let T > 0, and let us

denote by µ1(T ), µ2(T ) the eigenvalues (not necessarily distinct) of E(T t1, T t2). Then,

0 < µ1 · µ2 < 1 .

P r o o f . We have

µ1 · µ2 = detE(T t1, T t2) = det eTt2kA2 · det eTt1kA1 · · · det eTt21A2 · det eTt11A1

= eTt2ktrA2 · eTt1ktrA1 · · · eTt21trA2 · eTt11trA1

= eT ((t2k+...+t21)trA2+(t1k+...+t11)trA1) .

This immediately shows that µ1 · µ2 > 0. Moreover, µ1 · µ2 < 1 for each T > 0 by
virtue of (8). �
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Remark 5.1. Claim 2 implies that if µ1, µ2 are real for some T > 0, then they must
have the same sign.

Remark 5.2. Actually, by virtue of (7), for at least one index i = 1, 2 (and, hence, for
both) µi is real when T = 1. Moreover, again by (7), at least one (and, hence, both)
must be negative.

Remark 5.3. Formula (8) states that the time spent along the solutions of the com-
ponent defined by A1 should be large enough with respect to the time spent along the
solutions of the component defined by A2.

We are finally in a position to complete the proof. Let k, t1, t2 ∈ Rk
+, x0 and c

be such that (7), (8) hold. Let T > 0. As before, let us denote by µ1(T ), µ2(T ) the
eigenvalues (not necessarily distinct) of E(T t1, T t2). Since µ1 · µ2 < 1 (Claim 2) for at
least one index i = 1, 2 we necessarily have |µi| < 1 for each T > 0. Without loss of
generality, we assume that |µi(T )| < 1 when i = 1.

If for some T > 0 the eigenvalues µ1, µ2 are complex conjugate or real coincident, the
Theorem is proved, since in these cases |µ1| = |µ2|. Thus, it remains to discuss the case
where for each T > 0, µ1, µ2 are real and distinct.

Notice that the matrix E(T t1, T t2) approaches the identity for T → 0+, so that
µ1(0) = µ2(0) = 1. Notice also that µ1(T ), µ2(T ) are continuous functions of T . Assume
that for each T > 0, we have µ2(T ) ≥ 1. Since µ1, µ2 have the same sign (Remark 5.1),
we actually have 0 < µ1(T ) < 1 ≤ µ2(T ). This is a contradiction, since according to
Remark 5.2, µ1, µ2 must be negative for T = 1. In conclusion, for some T > 0, we have
|µi(T )| < 1 for both i = 1, 2. The proof is finished.

Remark 5.4. As a matter of fact, under the assumptions of Theorem 3.2, the eigen-
values of matrix E(T t1, T t2) cannot be real for all T > 0. Indeed, as noticed in the
proof of the Theorem, µ1, µ2 are surely real and positive for T small. In order to take
negative values (while remaining real) when T increases, they should cross zero, which
is impossible because of Claim 2.

6. EXAMPLES

Example 6.1. Consider the pair of matrices

A1 =
(

1 0
0 −2

)
A2 =

(
2/3 −2/3
2/3 7/3

)
.

The linear system defined by A1 has a saddle configuration at the origin, while the
linear system defined by A2 has a unstable node configuration at the origin (see Figure 2).

Notice that there are no values of α1, α2 for which the matrix α1A1+α2A2 is Hurwitz.
However, trA1 < 0, and by numerical experiments it is not difficult to select switched
solutions with a “rotational” behavior. One such solution can be obtained for instance
by iterating the matrix E(t1, t2) = et21A2 · et11A1 with t11 = 2 and t21 = 1.5 (the
corresponding orbit is shown in Figure 3, on the left), whose eigenvalues are complex
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Fig. 2. Trajectories of the single subsystems involved in Example

6.1 defined by A1 (on the left) and A2 (on the right).
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Fig. 3. A switched trajectory of Example 6.1 defined by a periodic

switching signal with k = 1, t11 = 2 and t21 = 1.5 on the left.

Switched trajectories generated with k = 1, t11 = 4, t21 = 1 and

T = 1.387 on the right (complex eigenvalues).

conjugate: this shows that the radial controllability assumption is met. Unfortunately,
the orbit displayed in Figure 3 is divergent: indeed, the modulus of the eigenvalues is
approximately 3.49. On the other hand, according to Theorem 4.3, we know that it is
possible to construct periodic switching signals for which all the solutions converge to
the origin. Since in this case α0 = 3, a natural attempt is to take k = 1, t11 = 4, t21 = 1,
that is

E(T t1, T t2) = eTA2 · e4TA1 . (13)

The eigenvalues of this matrix can be computed with the aid of symbolic and/or
numeric packages. Actually, the interval of the values of T for which both the eigenvalues
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lie in the open unit disc of the complex plane is very small. More precisely, it is possible
to identify four positive numbers a < c < d < b such that (13) is Schur with real
eigenvalues if a < T ≤ c and d ≤ T < b, and Schur with complex eigenvalues if c < T < d.
Approximately, 1.385374 < a < 1.385375, 1.385558 < c < 1.385559, 1.387023 < d <
1.387024, 1.387205 < b < 1.387206.

Figure 3 (on the right) shows a simulation for T = 1.387. An alternative way to
achieve these conclusions is the well known Schur criterion.

Example 6.2. Consider the pair of matrices

A1 =
(
−3 −2
2 2

)
A2 =

(
2 0
0 −1

)
.

The linear systems defined by A1 and A2 both have saddle configurations at the
origin, as shown in Figure 4. Notice that there are no positively invariant sectors, so
that the switched process is RC. The orbit of a divergent solution exhibiting rotational
behavior is drawn in Figure 5: it is obtained by iterating the matrix eA2eA1 whose
eigenvalues are real (approximately, µ1 = −3.7805 and µ2 = −0.2645).

In this case, there exist positive values of α1, α2 for which the matrix α1A1 +α2A2 is
Hurwitz, but this does not happen for instance if we chose α1 = 7, α2 = 1. We therefore
focus on the matrix

E(T t1, T t2) = eTA2 · e7TA1 . (14)

Note that this choice is compatible with (8), since α0 = 1. We find a situation similar
to that of Example 6.1. There are four positive numbers a < c < d < b such that (14) is
Schur with positive real eigenvalues if a < T ≤ c, Schur with negative real eigenvalues if
d ≤ T < b, and Schur with complex eigenvalues if c < T < d. This time, approximately,
a = 0.4428, c = 0.4536, d = 0.4694, b = 0.4766.

Some orbits are plotted, for the different cases, in Figure 6.
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Fig. 4. Trajectories of the single subsystems involved in Example

6.2 defined by A1 (on the left) and A2 (on the right).
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Fig. 5. A trajectory of Example 6.2 with t11 = t21 = 1.
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Fig. 6. From left to right, trajectories of the switched system of

Example 6.2 with T = 0.448 (real positive eigenvalues), with T = 0.46

(complex eigenvalues), with T = 0.473 (real negative eigenvalues).

Example 6.3. Consider finally the pair of matrices

A1 =
(

1 0
0 −2

)
A2 =

(
1/2 −1
1 1/2

)
.

The linear system defined by A1 has again a saddle configuration, while the system
defined by A2 has an unstable focus configuration at the origin. There are no Hurwitz
convex combinations of A1 and A2. The process is trivially RC. Since α0 = 1, in order
to construct converging trajectories we can try

E(T t1, T t2) = eTA2 · e2TA1 . (15)

The orbit of a solution exhibiting a rotational behavior is drawn in Figure 7, on
the left. It corresponds to the choice T = 1.6. Such solution is divergent. Indeed,
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Fig. 7. A divergent trajectory of Example 6.3 for T = 1.6 on the

left; a convergent trajectory for T = π/2 on the right.

for T = 1.6 the eigenvalues of the matrix E(T t1, T t2) = eTA2e2TA1 are −0.1387 and
−1.4556, approximately. An eigenvector corresponding to the unstable eigenvalue is
(−0.0267, 0.9996).

It can be seen that the matrix (15) is Schur, for instance, when T = π
2 +mπ, for each

integer m (see Figure 7, on the right).

7. CONCLUSION

When a periodic switching signal σ is applied to (2), the matrix B(t) appearing in (3)
is clearly bounded. Theorems 3.2 and 4.3 together lead to the following conclusion.

Theorem 7.1. If n = 2 and the pair of matrices A1, A2 satisfies conditions (i), (ii) of
Theorem 4.3, then the switched process (F ,G) is BIBS stabilizable.

Example 7.2. Let us consider a process (F ,G) with n = 2,m = 1, where F is the same
pair of matrices studied in Example 6.1, and G is formed by(

1
0

)
,

(
0
1

)
.

Let us apply the external input u(t) = sin t and the periodic switched signal corre-
sponding to (13) with T = 1.387 which, as we know, provides asymptotic stability for
the unforced associated system. The orbit plotted in Figure 8 does not converge to the
origin, but it is bounded, as predicted by Theorem 7.1.

The extension of Theorem 7.1 to switched process with N > 2 is straightforward.
The problem is open for n > 2. As far as the case n = 2 is concerned, we conjecture
that if a pair of matrices has the UPAC property, then either the conditions of Theorem
4.3 are satisfied, or there exists a Hurwitz convex combination α1A1 + α2A2. In other
words, the conditions known so far should cover all the possible cases.



BIBS stabilization of switched processes 543

−15 −10 −5 0 5 10 15
−80

−60

−40

−20

0

20

40

60

80

Fig. 8. A trajectory of Example 6.1, with sinusoidal external input.

(Received August 25, 2016)

R E F E R E N C E S

[1] A. Bacciotti: Periodic open-loop stabilization of planar switched systems. Europ. J.
Control 21 (2015), 22–27. DOI:10.1016/j.ejcon.2015.09.002

[2] A. Bacciotti: Periodic asymptotic controllability of switched systems. Libertas Mathe-
matica (new series) 34 (2014), 23–46.

[3] A. Bacciotti and L. Mazzi: Asymptotic controllability by means of eventually periodic
switching rules. SIAM J. Control Optim. 49 (2011), 476–497. DOI:10.1137/100798260

[4] R. W. Brockett: Finite Dimensional Linear Systems. Wiley, New York 1970.
DOI:10.1137/1.9781611973884

[5] F. Ceragioli: Finite valued feedback laws and piecewise classical solutions. Nonlinear
Analysis 65 (2006), 984–998. DOI:10.1016/j.na.2005.10.030

[6] R. Conti: Asymptotic control. In: Control Theory and Topics in Functional Analysis,
International Atomic Energy Agency, Vienna 1976, pp. 329–360.

[7] R. Conti: Linear Differential Equations and Control. Academic Press, London 1976.

[8] H. Lin and P. J. Antsaklis: Stability and stabilization of switched linear systems:
a survey of recent results. IEEE Trans. Automat. Control 54 (2009), 308–322.
DOI:10.1109/tac.2008.2012009

[9] Z. Huang, C. Xiang, H. Lin, and T. Lee: Necessary and sufficient conditions for regional
stabilisability of generic switched linear systems with a pair of planar subsystems. Int. J.
Control 83 (2010), 694–715. DOI:10.1080/00207170903384321

[10] A. Kundu, D. Chatterjee, and D. Liberzon: Generalized switching signals for
input-to-state stability of switched systems. Automatica 64 (2016), 270–277.
DOI:10.1016/j.automatica.2015.11.027

[11] D. Liberzon: Switching in Systems and Control. Birkhäuser, Boston 2003.
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