CONSTRUCTION OF UNINORMS ON BOUNDED LATTICES

Gül Deniz Çayli and Funda Karaçal

In this paper, we propose the general methods, yielding uninorms on the bounded lattice $(L, \leq, 0,1)$, with some additional constraints on $e \in L \backslash\{0,1\}$ for a fixed neutral element $e \in L \backslash\{0,1\}$ based on underlying an arbitrary triangular norm T_{e} on $[0, e]$ and an arbitrary triangular conorm S_{e} on $[e, 1]$. And, some illustrative examples are added for clarity.

Keywords: bounded lattice, triangular norm, triangular conorm, uninorms
Classification: 03B52, 06B20, 03E72

1. INTRODUCTION

Triangular norms (t-norms) and triangular conorms (t-conorms) on the unit interval were systematically investigated by Schweizer and Sklar in [19]. These operators have been extensively used in many application in fuzzy set theory, fuzzy logics, multicriteria decision support and several branches of information sciences. For more details on tnorms, we refer to [1,2, 17]. Uninorms were introduced in 22] and further investigated in 23 by Yager and Rybalov and in [14] by Fodor, Yager and Rybalov, which are also generalizations of t-norms and t-conorms. Uninorms on the real unit interval admit a neutral element e to be an arbitrary point from $[0,1]$ (if $e=1$, we are in t-norm case, while if $e=0$, we are in t-conorm case) and have to satisfy an additional condition. Such uninorms are interesting not only from a theoretical point of view (because of their structure, namely combination of a t-norm and a t-conorm), but also for their applications, since they have proved to be useful in several fields like expert systems, neural networks, fuzzy quantifiers. The uninorms were also studied by many authors in other papers $[5,6,7,9,10,11,12,13,18,20,21]$.

Karaçal and Mesiar have shown the existence of uninorms on an arbitrary bounded lattice L, leaving the freedom for the neutral element $e \in L \backslash\{0,1\}$ in [15. Their construction exploits the existence of a t-norm T and a t-conorm S for an arbitrary bounded lattice L, and as a by-product, existence of the smallest uninorm and of the greatest uninorm on L with a fixed neutral element $e \in L \backslash\{0,1\}$ was shown.

In this paper, we study and discuss uninorms on an arbitrary bounded lattice $(L, \leq, 0,1)$. We introduce the new methods of constructing uninorms on an arbitrary bounded lattice $(L, \leq, 0,1)$ where some additional constraints on $e \in L \backslash\{0,1\}$ that is
considered as neutral element are required by using the existence of t-norms on $[0, e]$ and t -conorms on $[e, 1]$. The construction methods to obtain uninorm on bounded lattices that is proposed in this study is different from the proposal of Karaçal and Mesiar in 15. If both x and y are incomparable with e, then the construction method in Theorem 3.1 puts $x \vee y$ and on the remain domains these constructions coincide with the construction of the uninorm U_{t} proposal in [13]. If both x and y are incomparable with e, then the construction method in Theorem 3.5 puts $x \wedge y$ and on the remain domains these construction coincide with the construction of the uninorm U_{s} proposal in [13]. If both x and y are incomparable with e or x is from $[e, 1]$ and y is incomparable with e or y is from $[e, 1]$ and x is incomparable with e, then the construction method in Theorem 3.9 puts $x \vee y$ and on the remain domains these construction coincide with the construction of the uninorm U_{t} proposal in [13]. If both x and y are incomparable with e or x is from $[0, e]$ and y is incomparable with e or y is from $[0, e]$ and x is incomparable with e, then the construction method in Theorem 3.12 puts $x \wedge y$ and on the remain domains these construction coincide with the construction of the uninorm U_{s} proposal in [13]. In case of $e=1$, we obtain already t-norms and in case of $e=0$, we already obtain t-conorms. And, some illustrative examples are given to clearly understand these methods of characterizing uninorms on bounded lattices.

2. PRELIMINARIES

In this section, some preliminaries concerning bounded lattices and uninorms (t-norms, t-conorms) on them are recalled.

Definition 2.1. (Birkhoff [4]) A lattice (L, \leq) is bounded lattice if L has the top and bottom elements, which are written as 1 and 0 , respectively, that is, there exist two elements $1,0 \in L$ such that $0 \leq x \leq 1$, for all $x \in L$.

Let L be a bounded lattice. An upper bound of the elements $x, y \in L$ is an element $a \in L$ containing the elements both x and y. The least upper bound of the elements $x, y \in L$ is an upper bound contained by every other upper bound, it is denoted sup $\{x, y\}$ or $x \vee y$. An lower bound of the elements $x, y \in L$ is an element $b \in L$ contained by the elements both x and y. The greatest lower bound of the elements $x, y \in L$ is an lower bound containing every other lower bound, it is denoted inf $\{x, y\}$ or $x \wedge y$.

Definition 2.2. (Birkhoff [4]) Given a bounded lattice ($L, \leq, 0,1$) and $a, b \in L$, if a and b are incomparable, in this case we use the notation $a \| b$.

Definition 2.3. (Birkhoff [4]) Given a bounded lattice ($L, \leq, 0,1$) and $a, b \in L, a \leq b$, a subinterval $[a, b]$ of L defined as

$$
[a, b]=\{x \in L \mid a \leq x \leq b\}
$$

Similarly, we define $(a, b]=\{x \in L \mid a<x \leq b\},[a, b)=\{x \in L \mid a \leq x<b\}$ and $(a, b)=\{x \in L \mid a<x<b\}$.

Let $(L, \leq, 0,1)$ be a bounded lattice and $e \in L$. Let $A(e)=[0, e] \times[e, 1] \cup[e, 1] \times[0, e]$ and $I_{e}=\{x \in L \mid x \| e\}$.

Remark 2.4. (Birkhoff [4]) Given a bounded lattice ($L, \leq, 0,1$), and $a, b \in L, a \leq b$. Subinterval $[a, b]$ of L is a sublattice of L, but the rest of subinterval in Definition 2 is not necessary sublattice of L.

Definition 2.5. (Karaçal and Mesiar [15], Karaçal et al. [16]) Let ($L, \leq, 0,1$) be a bounded lattice. Operation $U: L^{2} \rightarrow L$ is called a uninorm on L (shortly a uninorm, if L is fixed) if it is commutative, associative, increasing with respect to both variables and has a neutral element $e \in L$.

Definition 2.6. (Aşıcı 3], Çaylı and Karaçal 8]) Operation $T: L^{2} \rightarrow L\left(S: L^{2} \rightarrow L\right)$ is called a t-norm (t-conorm) if it is commutative, associative, increasing with respect to both variables and has a neutral element $e=1(e=0)$.

Proposition 2.7. (Karaçal and Mesiar [15) Let $(L, \leq, 0,1)$ be a bounded lattice, $e \in$ $L \backslash\{0,1\}$ and U be a uninorm on L with the neutral element e.

Then
i) $T^{*}=U \mid[0, e]^{2}:[0, e]^{2} \rightarrow[0, e]$ is a t-norm on $[0, e]$,
ii) $S^{*}=U \mid[e, 1]^{2}:[e, 1]^{2} \rightarrow[e, 1]$ is a t-conorm on $[e, 1]$.

Proposition 2.8. (Karaçal and Mesiar [15]) Let $(L, \leq, 0,1)$ be a bounded lattice, $e \in$ $L \backslash\{0,1\}$ and U be a uninorm on L with the neutral element e. The following properties hold:
i) $x \wedge y \leq U(x, y) \leq x \vee y$ for all $(x, y) \in A(e)$,
ii) $U(x, y) \leq x$ for $(x, y) \in L \times[0, e]$,
iii) $U(x, y) \leq y$ for $(x, y) \in[0, e] \times L$,
iv) $x \leq U(x, y)$ for $(x, y) \in L \times[e, 1]$,
v) $y \leq U(x, y)$ for $(x, y) \in[e, 1] \times L$.

3. UNINORMS WITH FIXED UNDERLYING T-NORMS AND T-CONORMS

Theorem 3.1. Let $(L, \leqslant, 0,1)$ be a bounded lattice and fix $e \in L \backslash\{0,1\}$. Suppose that either $x \vee y>e$ for all $x \| e$ and $y \| e$ or $x \vee y \| e$ for all $x \| e$ and $y \| e$. If T_{e} is a t-norm on $[0, e]$, then the function $U_{t}: L \times L \rightarrow L$ defined as

$$
U_{t}(x, y)= \begin{cases}T_{e}(x, y) & \text { if }(x, y) \in[0, e]^{2} \tag{1}\\ x \vee y & \text { if }(x, y) \in A(e) \cup I_{e} \times I_{e} \\ y & \text { if }(x, y) \in[0, e] \times I_{e}, \\ x & \text { if }(x, y) \in I_{e} \times[0, e] \\ 1 & \text { otherwise }\end{cases}
$$

is a uninorm on L with the neutral element e.

Proof. i) Monotonicity: We prove that if $x \leq y$ then for all $z \in L, U_{t}(x, z) \leq U_{t}(y, z)$. The proof is split into all possible cases.

1 . Let $x \leq e$.
1.1. $y \leq e$,
1.1.1. $z \leq e$,

$$
U_{t}(x, z)=T_{e}(x, z) \leq T_{e}(y, z)=U_{t}(y, z)
$$

1.1.2. $z>e$ or $z \| e$,

$$
U_{t}(x, z)=z=U_{t}(y, z)
$$

1.2. $y>e$,
1.2.1. $z \leq e$,

$$
U_{t}(x, z)=T_{e}(x, z) \leq x \leq y=U_{t}(y, z)
$$

1.2.2. $z>e$ or $z \| e$,

$$
U_{t}(x, z)=z \leq 1=U_{t}(y, z)
$$

1.3. $y \| e$,
1.3.1. $z \leq e$,

$$
U_{t}(x, z)=T_{e}(x, z) \leq x \leq y=U_{t}(y, z)
$$

1.3.2. $z>e$,

$$
U_{t}(x, z)=z \leq 1=U_{t}(y, z)
$$

1.3.3. $z \| e$,

$$
U_{t}(x, z)=z \leq y \vee z=U_{t}(y, z)
$$

2. Let $x>e$. Then $y>e$.
2.1. $z \leq e$,

$$
U_{t}(x, z)=x \leq y=U_{t}(y, z)
$$

2.2. $z>e$ or $z \| e$,

$$
U_{t}(x, z)=1=U_{t}(y, z)
$$

3. Let $x \| e$.
3.1. $y>e$,
3.1.1. $z \leq e$,

$$
U_{t}(x, z)=x \leq y=U_{t}(y, z)
$$

3.1.2. $z>e$,

$$
U_{t}(x, z)=1=U_{t}(y, z)
$$

3.1.3. $z \| e$,

$$
U_{t}(x, z)=x \vee z \leq 1=U_{t}(y, z)
$$

3.2. $y \| e$,
3.2.1. $z \leq e$,

$$
U_{t}(x, z)=x \leq y=U_{t}(y, z)
$$

3.2.2. $z>e$,

$$
U_{t}(x, z)=1=U_{t}(y, z)
$$

3.2.3. $z \| e$,

$$
U_{t}(x, z)=x \vee z \leq y \vee z=U_{t}(y, z)
$$

ii) Associativity: We demonstrate that $U_{t}\left(x, U_{t}(y, z)\right)=U_{t}\left(U_{t}(x, y), z\right)$ for all $x, y, z \in L$. Again the proof is split into all possible cases considering the relationships of the elements x, y, z and e.

1. Let $x \leq e$.
1.1. $y \leq e$,
1.1.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}\left(x, T_{e}(y, z)\right)=T_{e}\left(x, T_{e}(y, z)\right) \\
& =T_{e}\left(T_{e}(x, y), z\right) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.1.2. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right. & =U_{t}(x, y \vee z)=U_{t}(x, z)=x \vee z=z \\
& =T_{e}(x, y) \vee z \\
& =U_{t}\left(T_{e}(x, y), z\right) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.1.3. $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, z)=z \\
& =U_{t}\left(T_{e}(x, y), z\right) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.2. $y>e$,
1.2.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=U_{t}(x, y)=x \vee y=y \\
& =y \vee z \\
& =U_{t}(y, z) \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.2.2. $z>e$ or $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, 1)=x \vee 1=1 \\
& =U_{t}(y, z) \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.3. $y \| e$,
1.3.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y)=y \\
& =U_{t}(y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.3.2. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, 1)=x \vee 1=1 \\
& =U_{t}(y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.3.3. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=y \vee z \\
& =U_{t}(y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2. Let $x>e$.
2.1. $y \leq e$,
2.1.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}\left(x, T_{e}(y, z)\right)=x \vee T_{e}(y, z)=x \\
& =x \vee z \\
& =U_{t}(x, z) \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2.1.2. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=U_{t}(x, z)=1 \\
& =U_{t}(x, z) \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2.1.3. $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, z)=1 \\
& =U_{t}(x, z) \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2.2. $y>e$,
2.2.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=U_{t}(x, y)=1 \\
& =1 \vee z \\
& =U_{t}(1, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2.2.2. $z>e$ or $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, 1)=1 \\
& =U_{t}(1, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2.3. $y \| e$,
2.3.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y)=1 \\
& =1 \vee z \\
& =U_{t}(1, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2.3.2. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, 1)=1 \\
& =U_{t}(1, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

2.3.2. $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=1 \\
& =U_{t}(1, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3. Let $x \| e$.
3.1. $y \leq e$,
3.1.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}\left(x, T_{e}(y, z)\right)=x \\
& =U_{t}(x, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.1.2. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=U_{t}(x, z)=1 \\
& =U_{t}(x, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.1.3. $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, z)=x \vee z \\
& =U_{t}(x, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.2. $y>e$,
3.2.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=U_{t}(x, y)=1 \\
& =1 \vee z \\
& =U_{t}(1, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.2.2. $z>e$ or $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, 1)=1 \\
& =U_{t}(1, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.3. $y \| e$,
3.3.1. $z \leq e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y)=x \vee y \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.3.2. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, 1)=1 \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.3.3. $z \| e$,

From hypotheses of Theorem 3.1. either $x \vee y>e$ for all $x \| e$ and $y \| e$ or $x \vee y \| e$ for all $x \| e$ and $y \| e$.
3.3.3.1. if $x \vee y>e$ for all $x \| e$ and $y \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=1 \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

3.3.3.2. if $x \vee y \| e$ for all $x \| e$ and $y \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=x \vee y \vee z \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right) .
\end{aligned}
$$

iii) Commutativity: We show that for all $x, y \in L, U_{t}(x, y)=U_{t}(y, x)$. The proof is split into all possible cases.

1. $x \leq e$,
1.1. $y \leq e$,

$$
U_{t}(x, y)=T_{e}(x, y)=T_{e}(y, x)=U_{t}(y, x)
$$

1.2. $y>e$,

$$
U_{t}(x, y)=x \vee y=y \vee x=U_{t}(y, x)
$$

1.3. $y \| e$,

$$
U_{t}(x, y)=y=U_{t}(y, x)
$$

2. $x>e$,
2.1. $y \leq e$,

$$
U_{t}(x, y)=x \vee y=y \vee x=U_{t}(y, x)
$$

2.2. $y>e$ or $y \| e$,

$$
U_{t}(x, y)=1=U_{t}(y, x)
$$

3. $x \| e$,
1.1. $y \leq e$,

$$
U_{t}(x, y)=x=U_{t}(y, x)
$$

1.2. $y>e$,

$$
U_{t}(x, y)=1=U_{t}(y, x)
$$

1.3. $y \| e$,

$$
U_{t}(x, y)=x \vee y=y \vee x=U_{t}(y, x)
$$

iv) Neutral element: We prove that for all $x \in L, U_{t}(x, e)=x$. The proof is split into all possible cases.

1. $x \leq e$,

$$
U_{t}(x, e)=T_{e}(x, e)=x
$$

2. $x>e$,

$$
U_{t}(x, e)=x \vee e=x
$$

3. $x \| e$,

$$
U_{t}(x, e)=x
$$

Example 3.2. (i) The lattice L_{1} in Figure 1 is a positive example satisfying constraint of Theorem 3.1 since $x \vee y>e$ for all $x \| e$ and $y \| e$ for neutral element e.

Fig. 1. The lattice L_{1}.
(ii) The lattice L_{2} in Figure 2 satisfy constraint of Theorem 3.1 since $x \vee y \| e$ for all $x \| e$ and $y \| e$ for the indicated neutral element e.

Fig. 2. The lattice L_{2}.
(iii) The next lattice L_{3} is negative example, where, for a chosen neutral element e, constraints of Theorem 3.1 are violated. Because, $x \vee z=k>e$ for $x\|e, z\| e$ and $y \vee m=m \| e$ for $y\|e, m\| e$.

Fig. 3. The lattice L_{3}.

Example 3.3. Consider the lattice L_{2} depicted in Figure 2, By using the construction method in Theorem 3.1 and 15, Theorem 1], taking the t-norm $T_{e}=T_{\wedge}(\inf)$ on $[0, e]^{2}$, the uninorms U_{t} on L_{2} is defined, respectively, by Table 1 and Table 2

In the following example, we show that on any bounded lattice that does not satisfy constraints of Theorem 3.1. the operation U defined by using (1) can not be a uninorm.

Example 3.4. Consider the lattice L_{3} depicted in Figure 3. Define a mapping U : $L_{3} \times L_{3} \rightarrow L_{3}$ by Table 3. Then U is constructed using (1), but U is not a uninorm on L_{3}.

If we take elements $x, z \in L_{3}$, we have that $U(x, U(x, z))=U(x, k)=1$ and $U(U(x, x), z)=U(x, z)=k$. So, we obtain that U is not a uninorm on L_{3}.

U_{t}	0	e	m	y	z	k	t	x	1
0	0	0	m	y	z	k	t	x	1
e	0	e	m	y	z	k	t	x	1
m	m	m	1	1	1	1	1	1	1
y	y	y	1	1	1	1	1	1	1
z	z	z	1	1	1	1	1	1	1
k	k	k	1	1	1	1	1	1	1
t	t	t	1	1	1	1	1	1	1
x	x	x	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Tab. 1. The uninorm U_{t} on L_{2} constructed using 15, Theorem 1].

U_{t}	0	e	m	y	z	k	t	x	1
0	0	0	m	y	z	k	t	x	1
e	0	e	m	y	z	k	t	x	1
m	m	m	m	z	z	t	t	1	1
y	y	y	z	y	z	k	t	1	1
z	z	z	z	z	z	t	t	1	1
k	k	k	t	k	t	k	t	1	1
t	1	1							
x	x	x	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Tab. 2. The uninorm U_{t} on L_{2} constructed using Theorem 3.1

U	0	e	x	y	z	m	k	1
0	0	0	x	y	z	m	k	1
e	0	e	x	y	z	m	k	1
x	x	x	x	k	k	1	1	1
y	y	y	k	z	z	m	1	1
z	z	z	k	z	z	1	1	1
m	m	m	1	m	1	m	1	1
k	k	k	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1

Tab. 3. The operation U on L_{3}.

Theorem 3.5. Let $(L, \leqslant, 0,1)$ be a bounded lattice and fix $e \in L \backslash\{0,1\}$. Suppose that $x \wedge y<e$ for all $x \| e$ and $y \| e$ or $x \wedge y \| e$ for all $x \| e$ and $y \| e$. If S_{e} is a t-conorm on $[e, 1]$, then the function $U_{s}: L \times L \rightarrow L$ defined as

$$
U_{s}(x, y)= \begin{cases}S_{e}(x, y) & \text { if }(x, y) \in[e, 1]^{2}, \tag{2}\\ x \wedge y & \text { if }(x, y) \in A(e) \cup I_{e} \times I_{e} \\ y & \text { if }(x, y) \in[e, 1] \times I_{e} \\ x & \text { if }(x, y) \in I_{e} \times[e, 1] \\ 0 & \text { otherwise }\end{cases}
$$

is a uninorm on L with the neutral element e.
It can be proved as dual of Theorem 3.1.
Example 3.6. (i) The lattice L_{4} depicted in Figure 4 bring a positive example satisfying constraint of Theorem 3.5 since $x \wedge y \| e$ for all $x \| e$ and $y \| e$ for the indicated neutral element e. Note that the lattice L_{1} given in Figure 1 is also positive example satisfying constraint of Theorem 3.5 since $x \wedge y<e$ for all $x \| e$ and $y \| e$.

Fig. 4. The lattice L_{4}.
(ii) The next lattice L_{3} is negative example, where, for a chosen neutral element e, constraint of Theorem 3.5 are violated. Because, $x \wedge z=m<e$ for $x\|e, z\| e$ and $y \wedge k=k \| e$ for $y\|e, k\| e$.

Fig. 5. The lattice L_{5}.

In the following example, we show that on any bounded lattice that does not satisfy constraints of Theorem 3.5, the operation U constructed by using 22 can not be a uninorm.

Example 3.7. Consider the lattice L_{5} depicted in Figure 5. Define a mapping U : $L_{5} \times L_{5} \rightarrow L_{5}$ by Table 4. Then U is constructed using (2), but U is not a uninorm on L_{5}.

U	0	m	e	k	z	x	y	1
0	0	0	0	0	0	0	0	0
m	0	0	m	0	0	0	0	m
e	0	m	e	k	z	x	y	1
k	0	0	k	k	0	0	k	k
z	0	0	z	0	z	m	z	z
x	0	0	x	0	m	x	m	x
y	0	0	y	k	z	m	y	y
1	0	m	1	k	z	x	y	1

Tab. 4. The operation U on L_{5}.

If we take elements $x, z \in L_{5}$, we have that $U(x, U(x, z))=U(x, m)=0$ and $U(U(x, x), z)=U(x, z)=m$. So, we obtain that U is not a uninorm on L_{5}.

Example 3.8. Consider a bounded lattice $L_{1}=\{0, e, x, y, 1\}$ with given order in Figure 1 satisfying constraints of both Theorem 3.1 and Theorem 3.5 .
(i) Define a mapping $U: L_{1}^{2} \rightarrow L_{1}$ by Table 5 such that U is constructed using the equality (1). Then, by Theorem 3.1, U is a uninorm on L with a neutral element e.

U	0	e	x	y	1
0	0	0	x	y	1
e	0	e	x	y	1
x	x	x	x	1	1
y	y	y	1	y	1
1	1	1	1	1	1

Tab. 5. The uninorm U on L_{1}.
(ii) Define a mapping $U: L_{1}^{2} \rightarrow L_{1}$ by Table 6 such that U is constructed using the equality (22) Then, by Theorem 3.5, U is a uninorm on L with a neutral element e.

U	0	e	x	y	1
0	0	0	0	0	0
e	0	e	x	y	1
x	0	x	x	0	x
y	0	y	0	y	y
1	0	1	x	y	1

Tab. 6. The uninorm U on L_{1}.

Theorem 3.9. Let $(L, \leqslant, 0,1)$ be a bounded lattice and $e \in L \backslash\{0,1\}$. Suppose that $x \vee y \| e$ for all $x \| e$ and $y \| e$. If T_{e} is a t-norm on $[0, e]$, then the function $U_{T}: L \times L \rightarrow L$ defined as

$$
U_{T}(x, y)= \begin{cases}T_{e}(x, y) & \text { if }(x, y) \in[0, e]^{2} \tag{3}\\ 1 & \text { if }(x, y) \in(e, 1]^{2} \\ y & \text { if }(x, y) \in[0, e] \times I_{e} \\ x & \text { if }(x, y) \in I_{e} \times[0, e] \\ x \vee y & \text { otherwise }\end{cases}
$$

is a uninorm on L with the neutral element e.
Proof. i) Monotonicity: We prove that if $x \leq y$ then for all $z \in L, U_{T}(x, z) \leq U_{T}(y, z)$. The proof is split into all possible cases.

1. Let $x \leq e$.
1.1. $y \leq e$,

$$
\text { 1.1.1. } z \leq e,
$$

$$
U_{T}(x, z)=T_{e}(x, z) \leq T_{e}(y, z)=U_{T}(y, z)
$$

1.1.2. $z>e$ or $z \| e$,

$$
U_{T}(x, z)=z=U_{T}(y, z)
$$

1.2. $y>e$,
1.2.1. $z \leq e$,

$$
U_{T}(x, z)=T_{e}(x, z) \leq x \leq y=U_{T}(y, z)
$$

1.2.2. $z>e$,

$$
U_{T}(x, z)=z \leq 1=U_{T}(y, z)
$$

1.2.3. $z \| e$,

$$
U_{T}(x, z)=z \leq y \vee z=U_{T}(y, z)
$$

1.3. $y \| e$,
1.3.1. $z \leq e$,

$$
U_{T}(x, z)=T_{e}(x, z) \leq x \leq y=U_{T}(y, z)
$$

1.3.2. $z>e$ or $z \| e$,

$$
U_{T}(x, z)=z \leq y \vee z=U_{T}(y, z)
$$

2. Let $x>e$. Then $y>e$.
2.1. $z \leq e$,

$$
U_{T}(x, z)=x \leq y=U_{T}(y, z)
$$

2.2. $z>e$,

$$
U_{T}(x, z)=1=U_{T}(y, z)
$$

2.3. $z \| e$,

$$
U_{T}(x, z)=x \vee z \leq y \vee z=U_{T}(y, z)
$$

3. Let $x \| e$.
3.1. $y>e$,
3.1.1. $z \leq e$,

$$
U_{T}(x, z)=x \leq y=U_{T}(y, z)
$$

3.1.2. $z>e$,

$$
U_{T}(x, z)=x \vee z \leq 1=U_{T}(y, z)
$$

3.1.3. $z \| e$,

$$
U_{T}(x, z)=x \vee z \leq y \vee z=U_{T}(y, z)
$$

3.2. $y \| e$,
3.2.1. $z \leq e$,

$$
U_{T}(x, z)=x \leq y=U_{T}(y, z)
$$

3.2.2. $z>e$ or $z \| e$,

$$
U_{T}(x, z)=x \vee z \leq y \vee z=U_{T}(y, z)
$$

ii) Associativity: We demonstrate that $U_{T}\left(x, U_{T}(y, z)\right)=U_{T}\left(U_{T}(x, y), z\right)$ for all $x, y, z \in$ L. Again the proof is split into all possible cases considering the relationships of the elements x, y, z and e.

1. Let $x \leq e$.
1.1. $y \leq e$,
1.1.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}\left(x, T_{e}(y, z)\right)=T_{e}\left(x, T_{e}(y, z)\right) \\
& =T_{e}\left(T_{e}(x, y), z\right) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

1.1.2. $z>e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=U_{T}(x, z)=x \vee z=z \\
& =T_{e}(x, y) \vee z \\
& =U_{T}\left(T_{e}(x, y), z\right) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

1.1.3. $z \| e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{t}(x, z)=z \\
& =U_{t}\left(T_{e}(x, y), z\right) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

1.2. $y>e$,
1.2.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=U_{T}(x, y)=x \vee y=y \\
& =y \vee z \\
& =U_{T}(y, z) \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

1.2.2. $z>e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, 1)=x \vee 1=1 \\
& =U_{t}(y, z) \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.2.3. $z \| e$,

$$
\begin{aligned}
U_{t}\left(x, U_{t}(y, z)\right) & =U_{t}(x, y \vee z)=x \vee(y \vee z)=y \vee z \\
& =U_{t}(y, z) \\
& =U_{t}(x \vee y, z) \\
& =U_{t}\left(U_{t}(x, y), z\right)
\end{aligned}
$$

1.3. $y \| e$,
1.3.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y)=y \\
& =U_{T}(y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

1.3.2. $z>e$ or $z \| e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{t}(x, y \vee z)=y \vee z \\
& =U_{T}(y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2. Let $x>e$.
2.1. $y \leq e$,
2.1.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{t}\left(x, T_{e}(y, z)\right)=x \vee T_{e}(y, z)=x \\
& =x \vee z \\
& =U_{T}(x, z) \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.1.2. $z>e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=U_{T}(x, z)=1 \\
& =U_{T}(x, z) \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.1.3. $z \| e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, z)=x \vee z \\
& =U_{T}(x, z) \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.2. $y>e$,
2.2.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{t}(x, y \vee z)=U_{t}(x, y)=1 \\
& =1 \vee z \\
& =U_{t}(1, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.2.2. $z>e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, 1)=1 \\
& =U_{T}(1, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.2.3. $z \| e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=1 \\
& =1 \vee z \\
& =U_{T}(1, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.3. $y \| e$,
2.3.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y)=x \vee y \\
& =(x \vee y) \vee z \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.3.2. $z>e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=1 \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

2.3.2. $z \| e$, then $y \vee z \| e$ from hypotheses of Theorem 3.9.

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=x \vee y \vee z \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3. Let $x \| e$.
3.1. $y \leq e$,
3.1.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}\left(x, T_{e}(y, z)\right)=x \\
& =U_{T}(x, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.1.2. $z>e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=U_{T}(x, z)=x \vee z \\
& =U_{T}(x, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.1.3. $z \| e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, z)=x \vee z \\
& =U_{T}(x, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.2. $y>e$,
3.2.1. $z \leq e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=U_{T}(x, y)=x \vee y \\
& =(x \vee y) \vee z \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.2.2. $z>e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, 1)=x \vee 1=1 \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.2.3. $z \| e$,

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=x \vee y \vee z \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.3. $y \| e$,
3.3.1. $z \leq e$, then $x \vee y \| e$ from hypotheses of Theorem 3.9.

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y)=x \vee y \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.3.2. $z>e$, then $x \vee y \| e$ from hypotheses of Theorem 3.9.

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=x \vee y \vee z \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

3.3.3. $z \| e$, then $x \vee y \| e$ and $y \vee z \| e$ from hypotheses of Theorem 3.9.

$$
\begin{aligned}
U_{T}\left(x, U_{T}(y, z)\right) & =U_{T}(x, y \vee z)=x \vee y \vee z \\
& =U_{T}(x \vee y, z) \\
& =U_{T}\left(U_{T}(x, y), z\right)
\end{aligned}
$$

iii) Commutativity: We prove that for all $x, y \in L, U_{T}(x, y)=U_{T}(y, x)$. The proof is split into all possible cases.

1. $x \leq e$,
1.1. $y \leq e$,

$$
U_{T}(x, y)=T_{e}(x, y)=T_{e}(y, x)=U_{T}(y, x)
$$

1.2. $y>e$,

$$
U_{T}(x, y)=x \vee y=y \vee x=U_{T}(y, x)
$$

1.3. $y \| e$,

$$
U_{T}(x, y)=y=U_{T}(y, x)
$$

2. $x>e$,
2.1. $y \leq e$ or $y \| e$,

$$
U_{T}(x, y)=x \vee y=y \vee x=U_{T}(y, x)
$$

2.2. $y>e$,

$$
U_{T}(x, y)=1=U_{T}(y, x)
$$

3. $x \| e$,
3.1. $y \leq e$,

$$
U_{T}(x, y)=x=U_{T}(y, x)
$$

3.2. $y>e$ or $y \| e$,

$$
U_{T}(x, y)=x \vee y=y \vee x=U_{T}(y, x)
$$

iv) Neutral element: We show that for all $x \in L, U_{T}(x, e)=x$. The proof is split into all possible cases.

1. $x \leq e$,

$$
U_{T}(x, e)=T_{e}(x, e)=x
$$

2. $x>e$,

$$
U_{T}(x, e)=x \vee e=x
$$

2. $x \| e$,

$$
U_{T}(x, e)=x
$$

Example 3.10. (i) The lattice L_{6} with given order in Figure 6 is a positive example providing restriction of Theorem 3.9. since $x \vee y \| e$ for all $x \| e$ and $y \| e$ for neutral element e.

Fig. 6. The lattice L_{6}.
(ii) The next lattice L_{7} give a negative examples that does not enable constraint of Theorem 3.9 for a chosen neutral element e. Because, $x \vee y=k>e$ for $x \| e$ and $y \| e$ for neutral element e.

Fig. 7. The lattice L_{7}.

In the following example, we show that on any bounded lattice that does not satisfy constraint of Theorem 3.9 the operation U defined by using (3) can not be a uninorm.

Example 3.11. Consider the lattice L_{7} depicted in Figure 7 Define a mapping U : $L_{7} \times L_{7} \rightarrow L_{7}$ by Table 7. Then U is constructed using (3), but U is not a uninorm on L_{7}.

U	0	e	x	y	k	1
0	0	0	0	0	0	1
e	0	e	x	y	k	1
x	0	x	x	k	k	1
y	0	y	k	y	k	1
k	0	k	k	k	1	1
1	1	1	1	1	1	1

Tab. 7. The operation U on L_{7}.

If we take elements $x, y, k \in L_{7}$, we have that $U(k, U(x, y))=U(k, k)=1$ and $U(U(k, x), y)=U(k, y)=k$. So, we obtain that U is not a uninorm on L_{7}.

Theorem 3.12. Let $(L, \leqslant, 0,1)$ be a bounded lattice and $e \in L \backslash\{0,1\}$. Suppose that $x \wedge y \| e$ for all $x \| e$ and $y \| e$. If S_{e} is a t-conorm on $[e, 1]$, then the function $U_{S}: L \times L \rightarrow L$ defined as

$$
U_{S}(x, y)= \begin{cases}0 & \text { if }(x, y) \in[0, e)^{2} \tag{4}\\ S_{e}(x, y) & \text { if }(x, y) \in[e, 1]^{2} \\ y & \text { if }(x, y) \in[0, e] \times I_{e} \\ x & \text { if }(x, y) \in I_{e} \times[0, e] \\ x \wedge y & \text { otherwise }\end{cases}
$$

is a uninorm on L with the neutral element e.
It can be proved as dual of Theorem 3.9.
Example 3.13. (i) The lattice L_{8} given in Figure 8 give a positive example providing for restraint of Theorem 3.12 since $x \wedge y \| e$ for all $x \| e$ and $y \| e$ for neutral element e.

Fig. 8. The lattice L_{8}.
(ii) The next lattice L_{9} bring negative examples that does not satisfying restraint of Theorem 3.12 for a chosen neutral element e. Because, $x \wedge y=s<e$ for $x \| e$ and $y \| e$ for neutral element e.

Fig. 9. The lattice L_{9}.

In the following example, we show that on any bounded lattice that does not satisfy constraint of Theorem 3.12, the operation U defined by using (4) can not be a uninorm.

Example 3.14. Consider the lattice L_{9} depicted in Figure 9 Define a mapping U : $L_{9} \times L_{9} \rightarrow L_{9}$ by Table 8. Then U is constructed using (4), but U is not a uninorm on L_{9}.

U	0	s	e	x	y	1
0	0	0	0	0	0	0
s	0	0	s	s	s	1
e	0	s	e	x	y	1
x	0	s	x	x	s	1
y	0	s	y	1	y	1
1	0	1	1	1	1	1

Tab. 8. The operation U on L_{9}.

If we take elements $x, y, s \in L_{9}$, we have that $U(s, U(x, y))=U(s, s)=0$ and $U(U(s, x), y)=U(s, y)=s$. So, we obtain that U is not a uninorm on L_{9}.

4. CONCLUDING REMARKS

In this study, we have introduced and investigated characterization uninorms on bounded lattices. We give the new construction methods for building uninorms on an arbitrary bounded lattice ($L, \leq, 0,1$) with arbitrary zero element $e \in L \backslash\{0,1\}$ with some additional constraints on $e \in L \backslash\{0,1\}$ based on the knowledge of the existence of t-norms on and t-conorms on an arbitrary given bounded lattice L. If L is a chain, then all elements
in L are comparable with e indicated as neutral element. In this case, we consider only domains $[0, e]^{2},[e, 1]^{2},[0, e] \times[e, 1]$ and $[e, 1] \times[0, e]$. So, by taking only these domains in our characterization methods to obtain uninorms on bounded lattices, these methods can be applied on chains without additional assumptions on $e \in L \backslash\{0,1\}$.

5. ACKNOWLEDGMENTS

The authors are very grateful to the anonymous reviewers and editors for their helpful comments and valuable suggestions.
(Received May 11, 2016)

REFERENCES

[1] E. Aşıcı and F. Karaçal: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333. DOI:10.1016/j.ins.2014.01.032
[2] E. Aşıcı and F. Karaçal: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. DOI:10.14736/kyb-2016-1-0015
[3] E. Aşıcı: An order induced by nullnorms and its properties. Fuzzy Sets Syst. In press 2017. DOI:10.1016/j.fss.2016.12.004
[4] G. Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publ., Providence 1967. DOI:10.1090/coll/025
[5] B. De Baets: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642. DOI:10.1016/s0377-2217(98)00325-7
[6] S. Bodjanova and M. Kalina: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica. DOI:10.1109/sisy.2014.6923558
[7] G. D. Çaylı, F. Karaçal, and R. Mesiar: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. DOI:10.1016/j.ins.2016.05.036
[8] G. D. Çaylı and F. Karaçal: Some remarks on idempotent nullnorms on bounded lattices. In: Torra V., Mesiar R., Baets B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, Springer, Cham, 581 (2017), 31-39. DOI:10.1007/978-3-319-59306-7_4
[9] J. Drewniak and P. Drygaś: On a class of uninorms. Int. J. Uncertainly Fuzziness Knowl.Based Syst. 10 (2002), 5-10. DOI:10.1142/s021848850200179x
[10] P. Drygaś: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157. DOI:10.1016/j.fss.2009.09.017
[11] P. Drygaś, D. Ruiz-Aguilera, and J. Torrens: Acharacterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153. DOI:10.1016/j.fss.2015.07.015
[12] P. Drygaś and E. Rak: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2016), 82-97. DOI:10.1016/j.fss.2015.02.014
[13] Ü. Ertuğrul, M. N. Kesicioğlu, and F. Karaçal: Ordering based on uninorms. Inf. Sci. 330 (2016), 315-327. DOI:10.1016/j.ins.2015.10.019
[14] J. Fodor, R. R. Yager, and A. Rybalov: Structure of uninorms. Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI:10.1142/s0218488597000312
[15] F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI:10.1016/j.fss.2014.05.001
[16] F. Karaçal, Ü. Ertuğrul, and R. Mesiar: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. DOI:10.1016/j.fss.2016.05.014
[17] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Acad. Publ., Dordrecht 2000. DOI:10.1007/978-94-015-9540-7
[18] M. Mas, M. Monserrat, and J. Torrens: On left and right uninorms. Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 9 (2001), 491-507. DOI:10.1142/s0218488501000909
[19] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983.
[20] M. Takács: Lattice Ordered Monoids and Left Continuous Uninorms and t-norms. Book Chapter from: Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Book Series: Advances in Soft Computing, Publisher: Springer Berlin/ Heidelberg, 42 (2007), 565-572. DOI:10.1007/978-3-540-72434-6_57
[21] Z. D. Wang and J. X. Fang: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Syst. 160 (2009), 22-31. DOI:10.1016/j.fss.2008.03.001
[22] R. R. Yager: Misrepresentations and challenges: a response to Elkan. IEEE Expert 1994.
[23] R. R. Yager and A. Rybalov: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI:10.1016/0165-0114(95)00133-6

Gül Deniz Çaylı, Corresponding author. Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon. Turkey.
e-mail: guldeniz.cayli@ktu.edu.tr
Funda Karaçal, Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon. Turkey.
e-mail: fkaracal@yahoo.com

