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and Selene Chávez-Rodŕıguez

This paper is related to Markov Decision Processes. The optimal control problem is to
minimize the expected total discounted cost, with a non-constant discount factor. The discount
factor is time-varying and it could depend on the state and the action. Furthermore, it is
considered that the horizon of the optimization problem is given by a discrete random variable,
that is, a random horizon is assumed. Under general conditions on Markov control model, using
the dynamic programming approach, an optimality equation for both cases is obtained, namely,
finite support and infinite support of the random horizon. The obtained results are illustrated
by two examples, one of them related to optimal replacement.
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1. INTRODUCTION

This paper deals with Markov Decision Processes (MDPs). MDPs are used to model
dynamic systems that change over time under the presence of uncertainty. The sys-
tems are observed by a controller at discrete time stages, thus a sequence of actions is
determined, which is known as a policy. To evaluate the quality of each policy a perfor-
mance criterion or objective function is considered. In this document the expected total
discounted cost is considered, where the discount factor is time-varying, which could
depend on the state and the action. Furthermore, it is assumed that the development
of the process can be interrupted by external factors to the system, that is, a horizon
with uncertainty is considered.

The motivation to study discounted criterion comes from financial and economic
aspects. The discount factor is applied to model depreciation of money with respect
to time, which depends on real circumstances of the interest rate. In these cases, it is
necessary to adjust the value of the discount factor according to the market situations.
Consequently, considering a fixed discount factor is not realistic. In fact, attention
has been paid to the discounted models with non-constant discount factor. In MDPs
literature there are several works in this direction which present generalizations of the
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discount factor and they are studied under different methodologies. To mention some
of them, with multiple discount factors: [1, 5] and [6]; dependent on the state: [13, 20,
21, 22, 23, 24, 25, 26] and [27]; dependent on the state and the action: [15, 17] and [19],
with a varying discount factor: [4, 7] and [13], and with a randomized discount factor:
[8, 9, 10, 11] and [12].

This document presents a study of the optimal control problem with factors varying
in time, which are dependent on the state and the action. As mentioned earlier in
the previous paragraph, there are several works with these considerations, however,
they do not consider a random horizon in the performance criteria. In this work, a
discrete random variable is used to model the horizon of the process. Furthermore, it is
assumed that the random horizon is independent of the sequence of state-action pairs
generated in each stage (see Assumption 3.1). Under this hypothesis in [3], we study
the optimal control problem with total expected cost as performance criterion, which
has been applied to optimal replacement problems ([16]). Considering an independent
random horizon of the control process can be used to represent various situations, for
example, in finance, where there may be a drastic change of the investor’s plan in the
future with certain probability (see [2]).

The objective of this work is to study the optimal control problem on Borel spaces
with a varying discount factor and a random planning horizon. Furthermore, one of the
objectives of this paper is to present examples with an explicit solution, which illustrate
the theory of this work. In the reviewed literature only two examples with an explicit
solution were found (see [20] and [24]). In short, under certain conditions in the control
model, the main objectives of this paper are:

a) Establish a functional equation that characterizes the optimal solution of the con-
trol problem using the dynamic programming approach.

b) Guarantee the existence of stationary optimal policies.

c) Provide examples in which a) and b) are illustrated.

The document is organized as follows: MDPs basic theory is presented in the second
section. Later, in the third section the problem with a varying discount factor and a
random horizon is described in detail. Afterward, in the fourth section, an analysis of
the control problem is presented via dynamic programming approach. Finally, in the
fifth section, the developed theory is illustrated by two examples, one of them relative
to optimal replacement.

Notation and Terminology : The following notation is used throughout this document.
Let Z be a Borel space, that is, a Borel subset of a complete and separable metric space,
its Borel σ-algebra is denoted by B(Z). The indicator function of a set C is denoted by
IC . The set of real numbers is indicated with the letter R.

2. PRELIMINARIES

Consider a Markov Decision Model conformed by the following components:

M := (X,A, {A(x) | x ∈ X}, Q, {αt(·) | t ∈ {0, 1, . . .}}, c(·), τ).
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The first component, X, is called the state space. The second component, A, is deno-
minated the action space. In this document X and A are Borel spaces. {A(x) | x ∈ X}
is a family of nonempty subsets A(x) of A, A(x) denotes the set of feasible actions
(controls) in the state x ∈ X. Then, the set of feasible state-action pairs defined as
K := {(x, a) | x ∈ X, a ∈ A(x)}, is assumed to be a measurable subset of X × A. The
following component is the transition law Q, it is a stochastic kernel on X given K.
For each t ∈ {0, 1, . . .}, αt : K → (0, 1] is a measurable function, which represents a
discount factor applied at the cost c in the epoch t (α0 := 1). The measurable function
c : K→ R denotes the cost per stage (or one-stage cost) function. Finally, τ is a random
variable defined on the probability space (Ω′,G, P ), which represents a random horizon
of the problem. It is assumed that τ is a discrete random variable with probability mass
function given by

ρt := P (τ = t), t = 1, 2, 3, . . . , T,

where T is a positive integer or T =∞.
A Markov Decision Process (MDP) evolves as follows: at the initial decision epoch,

the system occupies state x0 = x ∈ X and a decision maker (or controller) chooses an
action a0 = a ∈ A(x). Then, a cost c(x0, a0) is incurred and the system jumps to a state
x1 according to the transition law Q(· | x, a). Immediately after the jump occurs, the
controller selects an action a1 ∈ A(x1) and incurs a discounted cost α0(x0, a0)α1(x1, a1)
c(x1, a1). Afterward, the system moves to a state x2 and the process is repeated. Thus,
for each n ≥ 1 an admissible history hn of a MDP up to the nth transition is obtained,
hn = (x0, a0, . . . , xn−1, an−1, xn), with (xk, ak) ∈ K for k = 0, 1, . . . , n− 1, and xn ∈ X.
Let Hn, n = 0, 1, . . . , denote the set of all admissible histories of the system up to the
nth transition. Thus, a control policy π = {πn} is a sequence of stochastic kernels πn on
A given Hn, satisfying the constraint: πn(A (xn) |hn) = 1, for each hn ∈ Hn, n = 0, 1 . . ..
The collection of all policies is denoted by Π. Define F as the set of all measurable
functions f : X → A such that f (x) ∈ A (x) for each x ∈ X. Then, a Markov policy is a
sequence {ft} such that ft ∈ F, for t = 0, 1, . . .. In particular, a Markov policy π = {ft}
is said to be stationary if ft is independent of t, i. e. ft = f ∈ F, for all t = 0, 1, . . ., in
this case, ft is denoted by f and refers to F as the set of stationary policies.

In many cases, the evolution of a Markov control process is specified by a discrete
time or difference equation of the form

xt+1 = F (xt, at, ξt), t = 0, 1, 2, . . . ,

with x0 ∈ X given, where {ξt} is a sequence of independent and identically distributed
random variables with values in a Borel space S and a common distribution µ, indepen-
dent of the initial state x0. In this case, the transition law Q is given by

Q(B|x, a) =
∫
S

IB(F (x, a, s))µ(ds), B ∈ B(X),

(x, a) ∈ K.
Let (Ω,F) be the measurable space consisting of the canonical sample space Ω :=

(X×A)∞ and the corresponding product σ-algebra F . The elements of Ω are sequences
of the form ω = (x0, a0, x1, a1, . . .) with xt ∈ X and at ∈ A for all t = 0, 1, 2, . . .. Let
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π = {πt} be an arbitrary policy and δ be an arbitrary probability measure on X called
the initial distribution. Then, by the theorem of Ionescu–Tulcea (see [14]), there is a
unique probability measure Pπδ on (Ω,F) which is supported on H∞, i. e., Pπδ (H∞) = 1.
The stochastic process (Ω,F , Pπδ , {xt}) is called a discrete-time Markov control process
or a Markov decision process.

The expectation operator with respect to Pπδ is denoted by Eπδ . If δ is concentrated
at the initial state x ∈ X, then Pπδ and Eπδ are written as Pπx and Eπx , respectively.

3. STATEMENT OF THE PROBLEM WITH VARYING DISCOUNT FACTOR AND
RANDOM HORIZON

The objective in this section is to introduce the optimal control problem associated to
the Markov decision modelM. Consider for π ∈ Π and x ∈ X the following performance
criterion:

vτ (π, x) := E

[
c(x0, a0) +

τ∑
t=1

t−1∏
k=0

αk(xk, ak)c(xt, at)

]
, (1)

where E denotes the expected value with respect to the joint distribution of the process
{(xt, at) : t ≥ 0} and the random variable τ . In this document, the performance criterion
(1) will be called total expected discounted cost with time-varying discount factors and
random horizon, in short, DRH.

Assumption 3.1. Throughout the paper it is assumed that for each x ∈ X and π ∈ Π,
the induced process {(xt, at)} is independent of the random variable τ .

Consider the performance criterion (1), then the optimal control problem consists of
determining a policy π∗, such that

vτ (π∗, x) = inf
π∈Π

vτ (π, x),

x ∈ X, and π∗ will be called an optimal policy. The function V defined by

V (x) = inf
π∈Π

vτ (π, x),

x ∈ X, will be called the optimal value function.

Now, some changes will be applied in the objective function (1), in order to have a
suitable version that allows us to use the technique of dynamic programming. Then,
using basic properties of conditional expectation and independence (see Assumption 3.1),
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it yields

vτ (π, x) = E

[
E

[
c(x0, a0) +

τ∑
t=1

t−1∏
k=0

αk(xk, ak)c(xt, at)
∣∣∣∣τ
]]

=
T∑
n=1

Eπx

[
c(x0, a0) +

n∑
t=1

t−1∏
k=0

αk(xk, ak)c(xt, at)

]
ρn

= c(x0, a0) +
T∑
t=1

T∑
n=t

Eπx

[
t−1∏
k=0

αk(xk, ak)c(xt, at)

]
ρn

= Eπx

[
c(x0, a0) +

T∑
t=1

t−1∏
k=0

αk(xk, ak)c(xt, at)Pt

]
, (2)

where Pt := P (τ ≥ t), t = 1, . . . , T .

Remark 3.2. a) Note that if the distribution of the random horizon τ has a finite
or infinite support, the optimization problem with random horizon is considered
as a problem with a finite or infinite horizon, respectively.

b) If τ is concentrated on T , the objective function (2) is simplified to the following
expression:

vτ (π, x) = Eπx

[
c(x0, a0) +

T∑
t=1

t−1∏
k=0

αk(xk, ak)c(xt, at)

]
. (3)

Furthermore, if the discount factor αk(x, a) = α ∈ (0, 1), for each (x, a) ∈ K in (3),
then the objective function is the usual discounted cost criteria, see for instance
[14] and [18].

Let α̂0 := P0 = 1 and α̂k := Pk

Pk−1
, for k = 1, 2, . . . , T . The factors {α̂k} can be consi-

dered as the following conditional probability: α̂k = P (τ ≥ k+ 1 | τ ≥ k). Furthermore,
for each t ≥ 1, Pt can be written in the following way:

Pt =
t−1∏
k=0

α̂k. (4)

Then for each x ∈ X and π ∈ Π, by (4), it is verified that

vτ (π, x) = Eπx

[
c(x0, a0) +

T∑
t=1

t−1∏
k=0

α̂kαk(xk, ak)c(xt, at)

]

= Eπx

[
c(x0, a0) +

T∑
t=1

t−1∏
k=0

α̃k(xk, ak)c(xt, at)

]
, (5)

where α̃k(xk, ak) := α̂kαk(xk, ak), k = 0, 1, 2, . . ..
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The following assumptions will be applied in Section 4 to validate the dynamic pro-
gramming approach for DRH. The first block of assumptions will be used to ensure the
existence of minimizers of the dynamic programming equation.

Assumption 3.3. (a) The set-valued mapping x 7→ A(x) is upper semicontinuous.

(b) The one-stage cost c is lower semicontinuous (l.s.c.), non-negative and inf-compact
on K.

(c) Q is strongly continuous.

(d) The discount functions α̃t, t = 0, 1, 2, . . . are l.s.c.

The following assumption is necessary to guarantee the finiteness property of the
optimal value function when T = +∞.

Assumption 3.4. There exists a policy π ∈ Π such that vτ (π, x) <∞ for each x ∈ X.

Remark 3.5. In the literature, there are several works using an analogous criterion to
(5), see for instance [17, 20, 22, 24] and [25]. However, in these references, it is assumed
that the discount factor is uniformly bounded in (0,1), i. e. there exists β ∈ (0, 1) such
that

sup
(x,a)∈K

α(x, a) ≤ β. (6)

Observe that in Assumption 3.3 and Assumption 3.4 this condition is not considered.
Then, it is possible to consider the undiscounted case. This case is important in real
situations, for example, suppose that the random horizon represents the working life of
a machine (or electric equipment) and the cost function is equal to one. In this case
the objective function consists in minimizing the cost function over all up-time of the
machine.

4. DYNAMIC PROGRAMMING APPROACH

In this section, it will be presented an analysis of the optimal control problem via the
dynamic programming approach. It is important to clarify that the procedure applied in
this section is motivated by the semicontinuous MDPs dynamic programming approach
(see, for instance, [14]). The novelty in this document is that the discount factor is time-
varying and it could depend on the state and the action (see (5)), then it is necessary
to present an adequate version of the dynamic programming equation and validate it.
Firstly, it will be presented the case T <∞.

Theorem 4.1. Suppose that Assumption 3.3 holds and T is a positive integer. Define
for each x ∈ X and t = T, T − 1, . . . , 0, the following measurable functions:

Jt(x) := min
a∈A(x)

[
c(x, a) + α̃t(x, a)

∫
X

Jt+1(y)Q(dy | x, a)
]
, (7)

and JT+1 (x) := 0, x ∈ X. Then for each t = 0, 1, . . . , T, there exists ft ∈ F such
that ft attains the minimum in (7) for all x ∈ X and π∗ = {ft} is the optimal policy.
Furthermore, the optimal value function is given by V (x) = vτ (π∗, x) = J0(x), x ∈ X.
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P r o o f . Firstly observe that, under Assumption 3.3, for each t = 0, 1, . . . , T, there
exists ft ∈ F such that ft attains the minimum in (7) due to Theorem 3.3.5 in [14].
Then, it is simply necessary to prove that the optimal value function is J0. To this end,
define the cost from time t onwards when the policy π is used and xt = x, as follows:

Ct(π, x) := Eπ

c(xt, at) +
T∑

j=t+1

j−1∏
k=t

α̃k(xk, ak)c(xj , aj)
∣∣∣∣xt = x

 ,
for t = 0, 1, . . . , T , and CT+1(π, x) := 0.

It will be proved that for each π ∈ Π and x ∈ X the following inequality holds:

Ct(π, x) ≥ Jt(x), (8)

for t = 0, 1, . . . , T . Observe that if π = π∗, (8) holds with equality. Furthermore, if
t = 0, the following identities are hold

J0(x) = C0(π∗, x)
= vτ (π∗, x).

The proof of (8) is for backward induction. Suppose that for some t = T, T − 1, . . . , 0,

Ct+1(π, x) ≥ Jt+1(x), x ∈ X. (9)

Then

Ct(π, x) = Eπ

c(xt, at) +
T∑

j=t+1

j−1∏
k=t

α̃k(xk, ak)c(xj , aj)
∣∣∣∣xt = x



= Eπ

c(xt, at) + α̃t(xt, at)

c(xt+1, at+1) +
T∑

j=t+2

j−1∏
k=t+1

α̃k(xk, ak)c(xj , aj)
∣∣∣∣xt = x


=

∫
A

[
c(x, a) + α̃t(x, a)

∫
X

Ct+1(π, y)Q(dy | x, a)
]
πt(da | x).

Now, using the induction hypothesis

Ct(π, x) ≥
∫
A

[
c(x, a) + α̃t(x, a)

∫
X

Jt+1(y)Q(dy | x, a)
]
πt(da | x)

≥ min
a∈A(x)

[
c(x, a) + α̃t(x, a)

∫
X

Jt+1(y)Q(dy | x, a)
]
,

hence Ct(π, x) ≥ Jt(x), x ∈ X and t = 0, 1, . . . , T + 1.
On the other hand, if Ct+1(π, x) = Jt+1(x) for all x ∈ X with π = π∗, πt(· | ht)
is the measure of Dirac concentrated at ft(xt), then the equality holds throughout the
previous calculations obtaining Ct(π∗, x) = Jt(x). Then, if Ct(π, x) ≥ Jt(x), in particular
for t = 0, vτ (π, x) ≥ J0(x) and for π = π∗, vτ (π∗, x) = J0(x). �
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Now we show the case where T = +∞. First, define the expected total cost from
time n onwards applied to (5) given the initial condition xn = x and π ∈ Π, as follows:

vn(π, x) := Eπx

[
c(xn, an) +

∞∑
t=n+1

t−1∏
k=n

α̃k(xk, ak)c(xt, at)

]
, (10)

and for x ∈ X define
Vn(x) := inf

π∈Π
vn(π, x). (11)

Furthermore, for N > n ≥ 0, define

vn,N (π, x) := Eπx

[
c(xn, an) +

N∑
t=n+1

t−1∏
k=n

α̃k(xk, ak)c(xt, at)

]
, (12)

with π ∈ Π, x ∈ X, and
Vn,N (x) := inf

π∈Π
vn,N (π, x), (13)

x ∈ X.
Define for u ∈ L(X) := {u : X → R | u is non-negative and l.s.c.} and n = 0, 1, . . .,

the following operator defined on X as

Tnu(x) = min
a∈A(x)

[
c(x, a) + α̃n(x, a)

∫
X

u(y)Q(dy | x, a)
]
,

x ∈ X.

Remark 4.2. Under Assumption 3.3, it is straightforward to see that the following
statements are hold:

a) u ∈ L(X) =⇒ Tnu(x) ∈ L(X), n = 0, 1, . . . .

b) Let u ∈ L(X) and define

Gn(x, a) := c(x, a) + α̃n(x, a)
∫
X

u(y)Q(dy | x, a), (x, a) ∈ K.

Observe that for each n ∈ {0, 1, . . .}, Gn is a l.s.c. function on K, due to Assump-
tion 3.3. In consequence, since the multifunction x 7→ A(x) is l.s.c., for each n ≥ 0,
there exists fn ∈ F such that

Tnu(x) = Gn(x, fn(x)),

x ∈ X. This fact follows as an application of the measurable selection theorems,
see for instance [14].

c) Furthermore, observe that for each n = 0, 1, 2, . . ., λ ∈ R and x ∈ X, it holds that

M := {a ∈ A(x) | Gn(x, a) ≤ λ} ⊂ N := {a ∈ A(x) | cn(x, a) ≤ λ},

since the cost function is a non-negative function. In consequence, since M is a
closed set and N is a compact set, it follows that Gn is an inf-compact function
on K, for each n = 0, 1, 2, . . ..
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The following lemmas will be very useful in the proof of the main result of this section.

Lemma 4.3. Suppose that Assumption 3.3 holds and let {un} be a sequence in L(X).
If un ≥ Tnun+1, n = 0, 1, 2, . . ., then un ≥ Vn, n = 0, 1, 2, . . ..

P r o o f . Let {un} be a sequence in L(X) and suppose that

un ≥ Tnun+1 n = 0, 1, 2, . . . .

Then, by Remark 4.2 b), for each n ≥ 0 there exists fn ∈ F such that

un(x) ≥ c(x, fn(x)) + α̃n(x, fn(x))
∫
X

un+1(y)Q(dy | x, fn(x)),

x ∈ X. Iterating this inequality, it is obtained that

un(x) ≥ Eπx

c(xn, fn(xn)) +
N−1∑
t=n+1

t−1∏
j=n

α̃j(xj , fj(xj))c(xt, ft(xt))


+
N−1∏
j=n

α̃j(xj , fj(xj))Eπx
[
u(xN )

]
, (14)

x ∈ X, where

Eπx [u(xN )] =
∫
X

u(y)QN (dy | xn, fn(xn)),

and QN (· | xn, fn(xn)) denotes the N -step transition kernel of the Markov control
process {xt}, when the policy π = {fk} is used, beginning at a stage n.
Since u is non-negative and xn = x, (14) imply that

un(x) ≥ Eπx

c(xn, fn(xn)) +
N−1∑
t=n+1

t−1∏
j=n

α̃j(xj , fj(xj))c(xt, ft(xt))

 .
Hence, letting N →∞, it yields

un(x) ≥ vn(π, x) ≥ Vn(x),

x ∈ X. �

Lemma 4.4. Suppose that Assumption 3.3 holds. Then, for every n ≥ 0 and x ∈ X
the sequence {Vn,N | N ≥ 0} is non-decreasing and converges to Vn, that is,

Vn,N (x) ↑ Vn(x) as N →∞.
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P r o o f . Let x ∈ X be arbitrary but fixed. Observe that by Theorem 4.1 the functions
defined as

Ut(x) = min
a∈A(x)

[
c(x, a) + α̃t(x, a)

∫
X

Ut+1(y)Q(dy | x, a)
]
, (15)

for t = N − 1, N − 2 . . . , n, with UN (x) = 0, are l.s.c. (see Remark 4.2) and if t = n,

Vn,N (x) = min
a∈A(x)

[
c(x, a) + α̃n(x, a)

∫
X

Vn+1,N (y)Q(dy | x, a)
]
, (16)

due to Un is the optimal value of an optimal control problem of N − n stages, i. e.
Un(x) = Vn,N (x). In consequence, by the non-negativity of the cost function c, {Vn,N :
N} ⊂ L(x) is a non-decreasing sequence and

Vn,N (x) ≤ Vn(x), N > n.

Then, for each n ≥ 0 there exists an unique function un ∈ L(X), such that

Vn,N (x) ↑ un(x) := sup
N>n

Vn,N (x).

It will now be proved that un coincides with Vn, for all n ≥ 0. To this end, observe
that

Vn,N (x) ≤ vn,N (π, x) ≤ vn(π, x), π ∈ Π.

Hence, Vn,N (x) ≤ Vn(x), N > n, then

un(x) ≤ Vn(x), n ≥ 0. (17)

On the other hand, from (16), when N →∞, it is obtained that

un(x) = min
a∈A(x)

[
c(x, a) + α̃n(x, a)

∫
X

un+1(y)Q(dy | x, a)
]
, (18)

n = 0, 1, 2, . . ., the interchange between limit and minimum is guaranteed by Lemma
4.2.4 in [14] (see Remark 4.2). Then, using the previous lemma, it follows that,

un(x) ≥ Vn(x), n ≥ 0. (19)

Finally, since the state x ∈ X is arbitrary, from (17) and (19) the result follows. �

Theorem 4.5. Suppose that Assumptions 3.3 and 3.4 hold, then

(a) the optimal value function Vn, n = 0, 1, 2, . . ., satisfies the optimality equation

Vn(x) = min
a∈A(x)

[
c(x, a) + α̃n(x, a)

∫
X

Vn+1(y)Q(dy | x, a)
]
, (20)

x ∈ X, and if {un} is another sequence that satisfies the optimality equations in
(20), then un ≥ Vn.
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(b) There exists a policy π∗ = {fn ∈ F | n ≥ 0} such that, for each n = 0, 1, 2, . . . ,
the control fn(x) ∈ A(x) attains the minimum in (20), i. e.

Vn(x) = c(x, fn(x)) + α̃n(x, fn(x))
∫
X

Vn+1(y)Q(dy | x, fn(x)), (21)

x ∈ X, and the policy π∗ is optimal.

P r o o f .

a) The proof of Lemma 4.4 guarantees that the sequence {Vn} satisfies the optimality
equations in (20), and by Lemma 4.3, if {un} satisfies un = Tnun+1, it is concluded
that un ≥ Vn.

b) The existence of fn ∈ F that satisfies (21) is ensured by Remark 4.2. Now, iterating
(21) with xn = x ∈ X, it is obtained that

Vn(x) = Eπx

c(xn, fn(xn)) +
N−1∑
t=n+1

t−1∏
j=n

α̃j(xj , fj(xj))c(xt, ft(xt))


+
N−1∏
j=n

α̃j(xj , fj(xj))Eπx
[
u(xN )

]

≥ Eπx

c(xn, fn(xn)) +
N−1∑
t=n+1

t−1∏
j=n

α̃j(xj , fj(xj))c(xt, ft(xt))

 ,
n ≥ 0 and N > n. This implies, that, letting N → ∞, Vn(x) ≥ vn(π∗, x), x ∈ X
and π∗ = {fk} ⊆ F. Moreover, in particular for π∗, Vn(x) ≤ vn(π∗, x), x ∈ X.
Therefore, Vn(x) = vn(π∗, x), x ∈ X and π∗ = {fn} is optimal.

�

5. EXAMPLES

Example 5.1. In this example Theorem 4.1 is applied to the following machine (equip-
ment) replacement model. This class of models has been studied, for instance, in [18].
However, in the present case, we present a non-constant discount factor. The state of
the system x ∈ X = {1, 2, . . . , D}, D is a positive integer, represents the condition of
the machine at each decision epoch. The higher the value of x, the worse the condition
of the machine. Suppose that at the beginning of each period, the state of the ma-
chine is noted and an action upon whether or not to replace the machine is made. If
the decision to replace is made, then it is assumed that the machine is instantaneously
replaced by a new machine whose state is 1. Then the action space, which coincides
with the space of admissible actions, is given by A = {0, 1}, action 0 corresponds to
operating the machine for an additional period, while action 1 corresponds to replacing
it and pay a cost R > 0. Let P = (pi,j)D×D be the matrix of transition probabilities
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for going from level i to level j. Because no machine can move to a better level of
deterioration, pi,j = 0 if j < i. Let g : {1, 2, 3, . . . , D} → R be a known function, which
will measure the cost of operation of the machine. Suppose that g is non-decreasing,
i. e. g(1) ≤ g(2) ≤ . . . ≤ g(D).

The problem consists on determining an optimal replacement policy that minimizes
the expected total discounted cost of operation, considering a varying discount factor.
Furthermore, a random horizon τ with an uniform probability distribution is considered,
that is, P (τ = k) = 1/T .

Let q(y|x, a) be the probability that the machine moves from level x to level y given
the action a. Then

q(y|x, a = 0) = px,y

and

q(y|x, a = 1) =
{

1 if y = 1
0 otherwise.

The cost-per-stage function is given by:

c(x, a) =
{
g(x) if a = 0
g(1) +R if a = 1.

Hence, the dynamic programming equation (7) given in Theorem 4.1 for the replace-
ment problem is written in the following way:

JT+1(x) = 0,

Jt(x) = min{R+ g(0) + α̂tαt(x, 1)Jt+1(1), g(x) + α̂tαt(x, 0)
D∑
y=x

q(y|x, 0)Jt+1(y)},

t = T, T −1, T −2, . . . , 0, x ∈ X and α̂t = P (τ ≥ t+1)/P (τ ≥ t). Consider the following
discount factors: α0(x, a) = 1 and

αt(x, a) =

{
x(1−a)+βa
D(1+βt) , x = 0, 1, 2, . . . , D − 1,
β, x = D,

t = 1, 2, 3, . . . , T with β ∈ (0, 1).
Suppose that β = 0.8, T = 14, D = 6,

P =


0.20 0.25 0.20 0.15 0.15 0.05

0 0.10 0.25 0.15 0.10 0.40
0 0 0.10 0.30 0.40 0.20
0 0 0 0.20 0.30 0.50
0 0 0 0 0.30 0.70
0 0 0 0 0 1


g(1) = 5, g(2) = 7, g(3) = 29, g(4) = 34, g(5) = 42, g(6) = 55 and R = 45.

In Table 1 and Table 2, the optimal policy and the optimal value function are pre-
sented, respectively.
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Stage 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
State

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1. Optimal policies.

Initial State x 1 2 3 4 5 6
Optimal Value 7.29953 13.83538 40.12755 50.44435 50.44435 55.33231

Table 2. Optimal value.

Example 5.2. Consider a Markov decision model with state space X = [0,∞) and
action space A = A (x) = [1,∞) , x ∈ X. The dynamic of this system is given by the
following difference equation:

xt+1 = βxtat + ξt, (22)

t = 0, 1, 2, . . ., where β ∈ (0, 1) and with x0 = x known. Suppose than {ξt} is a
sequence of independent and identically distributed random variables, with E[ξt] = 0
and V ar[ξt] = E[ξ2

t ] = 1. The cost function is given by the following quadratic cost:

c(x, a) = x2 + a2,

(x, a) ∈ K. For this example consider that the varying discount factor is given by

αt(x, a) =
1
a2
,

(x, a) ∈ K. Finally, it will be assumed a random horizon τ , which is concentrated on T
with T = ∞, i. e. it will be considered as an objective function as (3) with an infinite
horizon.

Firstly, observe that Assumption 3.3, trivially holds. Then it simply necessary to
verify Assumption 3.4. To this end, consider the stationary policy f(x) = 1/β, x ∈ X.
Then, using (22), it is obtained that

xn = x+
n−1∑
k=0

ξk, (23)
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for n ≥ 1. In consequence,

vτ (f, x) = Efx

[
c (x0, a0) +

∞∑
t=1

t−1∏
k=0

αk (xk, ak) c (xt, at)

]

= Efx

x2 +
1
β2

+
∞∑
t=1

β2t

(x+
t−1∑
k=0

ξk

)2

+
1
β2


= Efx

x2 +
1
β2

+
∞∑
t=1

β2t

x2 + 2x
t−1∑
k=0

ξk +
t−1∑
k=0

ξ2
k +

t−1∑
k,j=0,k 6=j

ξkξj +
1
β2



=
1
β2

+ x2
∞∑
t=1

β2t +
∞∑
t=1

tβ2t +
∞∑
t=1

β2(t−1)

=
1
β2

+
x2 + 1
1− β2

+
β2

(1− β2)
<∞.

In this problem, the value iteration functions are given by

V0,0(x) = 0

V0,N (x) = min
a∈[1,∞)

[
x2 + a2 +

1
a2
E [V0,N−1(βxa+ ξ)]

]
, N = 1, 2, 3 . . .

and x ∈ X, where ξ is a generic element of {ξt}.
Iterating, it is obtained that

V0,1(x) = min
a∈A(x)

[
x2 + a2

]
= C1x

2 +D1

where C1 = D1 = 1 and f1 (x) = 1.
Next,

V0,2 (x) = min
a∈[1,∞)

[
x2 + a2 +

1
a2
E
[
C1 (βxa+ ξ)2 +D1

]]
= min

a∈[1,∞)

[
x2 + a2 + C1β

2x2 +
C1 +D1

a2

]
= min

a∈[1,∞)

[
a4 + C1 +D1

a2
+ (1 + C1β

2)x2

]
= (1 + C1β

2)x2 + 2
√
C1 +D1

= C2x
2 +D2,

where C2 = (1 + C1β
2) and D2 = 2

√
C1 +D1 with f2 (x) = 4

√
C1 +D1.
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Then,

V0,3 (x) = min
a∈[1,∞)

[
x2 + a2 +

1
a2
E
[
C2 (βxa+ ξ)2 +D2

]]
= min

a∈[1,∞)

[
a4 + C2 +D2

a2
+ (1 + C2β

2)x2

]
= (1 + C2β

2)x2 + 2
√
C2 +D2

= C3x
2 +D3,

where C3 = (1 + C2β
2) and D3 = 2

√
C2 +D2 with f3 (x) = 4

√
C2 +D2.

By induction, it is obtained that

V0,N (x) = CNx
2 +DN

and
fN (x) = 2 4

√
DN−1 + CN−1,

where the constants CN and DN satisfies the following recurrence equations:

D1 = 1
DN = 1 +Dn−1β

2, N = 2, 3, 4, . . .

and

C1 = 1
CN = 2

√
CN−1 +DN−1 N = 2, 3, 4, . . . .

Now, taking limit when N goes to ∞, it follows that

lim
N→∞

Dn = lim
N→∞

N−1∑
t=0

β2t =
1

1− β2
,

and

lim
N→∞

Cn = 2

(
1 +

√
2− β2

1− β2

)
.

Then, by Lemma 4.4, the optimal value function is given by

V (x) = lim
N→∞

V0,N (x)

=
x2

1− β2
+ 2

(
1 +

√
2− β2

1− β2

)
,

x ∈ X, and the optimal policy is

f(x) = 4

√√√√2

(
1 +

√
2− β2

1− β2

)
+

1
1− β2

x ∈ X.

(Received March 26, 2016)
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Ciencias F́ısico Matemáticas, Av. San Claudio y 18 Sur, Puebla. México.
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