Kybernetika 52 no. 3, 379-402, 2016

OWA operator for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making

Zdenko TakáčDOI: 10.14736/kyb-2016-3-0379

Abstract:

A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual real numbers and OWA operator for discrete gradual intervals. Recall that gradual intervals also encompass fuzzy intervals, hence our results are applicable to the setting of fuzzy intervals. Our approach is illustrated on a multi-expert decision making problem.

Keywords:

OWA operator, ordered weighted averaging operator, gradual number, gradual interval, fuzzy interval, linear order, total order, multi-expert decision making, type-2 fuzzy set

Classification:

03E72, 68T37

References:

  1. G. Beliakov, A. Pradera and T. Calvo: Aggregation Functions: A guide for practitioners. Studies in Fuzziness and Soft Computing 221 (2007), 261-269.   DOI:10.1007/978-3-540-73721-6_5
  2. H. Bustince, E. Barrenechea, T. Calvo, S. James and G. Beliakov: Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices. Inform. Fusion 17 (2014), 56-64.   DOI:10.1016/j.inffus.2011.10.002
  3. H. Bustince, J. Fernandez, A. Kolesárová and R. Mesiar: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets and Systems 220 (2013), 69-77.   DOI:10.1016/j.fss.2012.07.015
  4. H. Bustince, M. Galar, B. Bedregal, A. Kolesárová and R. Mesiar: A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications. IEEE Trans. Fuzzy Systems 21 (2013), 1150-1162.   DOI:10.1109/tfuzz.2013.2265090
  5. O. Castillo and P. Melin: A review on interval type-2 fuzzy logic applications in intelligent control. Inform. Sciences 279 (2014), 615-631.   DOI:10.1016/j.ins.2014.04.015
  6. F. Chiclana, F. Herrera and E. Herrera-Viedma: Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets and Systems 97 (1998), 33-48.   DOI:10.1016/s0165-0114(96)00339-9
  7. D. Dubois, E. Kerre, R. Mesiar and H. Prade: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), The Handbooks of Fuzzy Sets Series, Vol. 7, Springer US 2000, pp. 483-581.   DOI:10.1007/978-1-4615-4429-6_11
  8. D. Dubois and H. Prade: A review of fuzzy set aggregation connectives. Inform. Sciences 36 (1985), 85-121.   DOI:10.1016/0020-0255(85)90027-1
  9. D. Dubois and H. Prade: Gradual elements in a fuzzy set. Soft Computing 12 (2008), 165-175.   DOI:10.1007/s00500-007-0187-6
  10. J. Fortin, D. Dubois and H. Fargier: Gradual numbers and their application to fuzzy interval analysis. IEEE Trans. Fuzzy Systems 16 (2008), 388-402.   DOI:10.1109/tfuzz.2006.890680
  11. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, Cambridge 2009.   DOI:10.1017/cbo9781139644150
  12. F. Herrera and L. Martínez: A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making. IEEE Trans. Systems Man and Cybernetics, Part B: Cybernetics 31 (2001), 227-234.   DOI:10.1109/3477.915345
  13. N. N. Karnik and J. M. Mendel: Operations on type-2 fuzzy sets. Fuzzy Sets and Systems 122 (2001), 327-348.   DOI:10.1016/s0165-0114(00)00079-8
  14. W. Kosiński, P. Prokopowicz and A. Rosa: Defuzzification functionals of ordered fuzzy numbers. IEEE Trans. Fuzzy Systems 21 (2013), 1163-1169.   DOI:10.1109/tfuzz.2013.2243456
  15. I. Lizasoain and C. Moreno: OWA operators defined on complete lattices. Fuzzy Sets and Systems 224 (2013), 36-52.   DOI:10.1016/j.fss.2012.10.012
  16. W. A. Lodwick and E. A. Untiedt: A comparison of interval analysis using constraint interval arithmetic and fuzzy interval analysis using gradual numbers. In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1-6.   DOI:10.1109/nafips.2008.4531302
  17. T. P. Martin and B. Azvine: The {X}-{mu} approach: Fuzzy quantities, fuzzy arithmetic and fuzzy association rules. In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), 2013, pp. 24-29.   DOI:10.1109/foci.2013.6602451
  18. P. Melin and O. Castillo: A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Applied Soft Computing J. 21 (2014), 568-577.   DOI:10.1016/j.asoc.2014.04.017
  19. R. Mesiar, A. Kolesárová, T. Calvo and M. Komorníková: A review of aggregation functions. In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models (H. Bustince et al., eds.), Springer, Berlin 2008, pp. 121-144.   DOI:10.1007/978-3-540-73723-0_7
  20. M. Mizumoto and K. Tanaka: Some properties of fuzzy sets of type 2. Information and Control 31 (1976), 312-340.   DOI:10.1016/s0019-9958(76)80011-3
  21. E. R. Moore: Methods and Applications of Interval Analysis. SIAM 1979.   DOI:10.1137/1.9781611970906
  22. E. R. Moore and W. A. Lodwick: Interval analysis and fuzzy set theory. Fuzzy Sets and Systems 135 (2003), 5-9.   DOI:10.1016/s0165-0114(02)00246-4
  23. G. Ochoa, I. Lizasoain, D. Paternain, H. Bustince and N. R. Pal: Some properties of lattice OWA operators and their importance in image processing. In: Proc. IFSA-EUSFLAT 2015, pp. 1261-1265.   DOI:10.2991/ifsa-eusflat-15.2015.178
  24. M. Roubens: Fuzzy sets and decision analysis. Fuzzy Sets and Systems 90 (1997), 199-206.   DOI:10.1016/s0165-0114(97)00087-0
  25. D. Sánchez, M. Delgado, M. A. Vila and J. Chamorro-Martínez: On a non-nested level-based representation of fuzziness. Fuzzy Sets and Systems 192 (2012), 159-175.   DOI:10.1016/j.fss.2011.07.002
  26. Z. Takáč: Aggregation of fuzzy truth values. Inform. Sciences 271 (2014), 1-13.   DOI:10.1016/j.ins.2014.02.116
  27. Z. Takáč: A linear order and OWA operator for discrete gradual real numbers. In: Proc. IFSA-EUSFLAT 2015, pp. 260-266.   DOI:10.2991/ifsa-eusflat-15.2015.39
  28. C. L. Walker and E. A. Walker: The algebra of fuzzy truth values. Fuzzy Sets and Systems 149 (2005), 309-347.   DOI:10.1016/j.fss.2003.12.003
  29. Z. S. Xu and Q. L. Da: The uncertain {OWA} operator. Int. J. Intelligent Systems 17 (2002), 569-575.   DOI:10.1002/int.10038
  30. R. R. Yager: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems Man and Cybernetics 18 (1988), 183-190.   DOI:10.1109/21.87068
  31. S. M. Zhou, F. Chiclana, R. I. John and J. M. Garibaldi: Type-1 {OWA} operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets and Systems 159 (2008), 3281-3296.   DOI:10.1016/j.fss.2008.06.018
  32. S. M. Zhou, F. Chiclana, R. I. John and J. M. Garibaldi: Alpha-level aggregation: A practical approach to type-1 {OWA} operation for aggregating uncertain information with applications to breast cancer treatments. IEEE Tran. Knowledge Data Engrg. 23 (2011), 1455-1468.   DOI:10.1109/tkde.2010.191