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A class of multi-objective fuzzy matrix games is studied and it is shown that solving such
a game is equivalent to solving a pair of multi-objective linear programming problems. This
work generalizes an earlier study of Fernandez et al. [7] from crisp scenario to fuzzy scenario
on the lines of Bector et al. [4]. Further certain difficulties with similar studies reported in the
literature are also discussed.
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1. INTRODUCTION

A multi-objective zero-sum matrix game is an extension of the standard two person zero-
sum matrix game. In fact a competitive situation which can be modelled as a scalar
zero-sum game has its counter part as a multi-objective zero-sum game when more than
one scenario has to be compared simultaneously. As conflicting interests appear not
only between different decision makers, but also within each individual, the study of
multi-objective games becomes important.

Historically Blackwell’s [2] paper was the first paper which dealt with the theory of
multi-objective games as a generalization of the theory of scalar games. Shapely [14]
introduced the concept of equilibrium solution in two person zero-sum multi-objective
games by using the concept of Pareto-optimality. He further proved the existence of
equilibrium solution by finding the correspondence between the given multi-objective
game and a resulting single-objective game obtained by aggregating it with the weighting
coefficients.

Zeleny [16] analyzed the maxmin and minmax values of two person zero-sum multi-
objective games by aggregating multiple pay-offs in to a single payoff via weighting
coefficients. Cook [5] introduced a goal vector and formulated such games as goal pro-
gramming problems while Corley [6] presented the necessary and sufficient condition
for optimal mixed strategies for the same. Ghose et al. [8] introduced the concept of
Pareto-optimal Security Strategies for multi-objective two person zero-sum games and
solved the same by the weightage average approach. Fernandez et al. [7] studied the
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same game model as that of Ghose et al. [8] and established the equivalence between
POSS and efficient solutions of a pair of multi-objective programming problems.

Though single objective two person zero-sum fuzzy matrix games have been studied
extensively in the literature (see Sakawa and Nishizaki [12], Bector and Chandra [3]),
the results on multi-objective scenario are rather scarce. The main contribution in this
direction has been the work of Sakawa and Nishizaki [12]. Their approach has been to
associate a fuzzy goal with a respective payoff matrix and define the solution in terms
of maximizing the degree of minimal goal attainment for each player. Further it has
also been shown in [12] that such a maxmin solution for each player can be obtained by
solving a pair of primal-dual linear programming problems.

In this paper we attempt to follow a different approach. Taking motivation from
Ghose et al. [8] and Fernandez et al. [7], we extend the concepts of Pareto-optimal
security strategies and security levels for players to study fuzzy multi-objective matrix
games and prove that these can be obtained by solving a pair of fuzzy multi-objective
linear programming problems.

The paper is organized as follows. Section 2 introduces the basic definitions and
reviews results with regard to (crisp) two person zero-sum multi-objective matrix games.
Section 3 presents the main results of this paper where two person zero-sum fuzzy
multi-objective matrix games are studied. Here the concepts of Pareto-optimal security
strategies and security levels for such fuzzy games are introduced in terms of appropriate
membership functions of various pay-offs. An important result of this section states that
solving such a fuzzy game is equivalent to solve a pair of (crisp) multi-objective linear
programming problems. Section 4 takes a relook of Nishizaki and Sakawa’s model [12]
and compares the same with the present model. In Section 5, the results of this paper
are illustrated with a small numerical example. Some concluding remarks are furnished
in Section 6.

2. REVIEW OF THE EXISTING MODEL

In this section we shall be describing a crisp multi-objective two person zero-sum game
model studied by Fernandez et al. [7]. For various notations, terminology and basics
related to the solution of the game we shall refer to Fernandez et al. [7].

Let Rn be the n-dimensional Euclidean space and Rn
+ be its non negative orthant.

Let Ar ∈ Rm×n, (r = 1, 2, . . . , s, ) be m × n real matrices, eT = (1, 1, . . . , 1) be a
vector of ones whose dimension is specified as per the specific context and further
Sm = {x ∈ Rm

+ | eTx = 1} and Sn = {y ∈ Rn
+ | eT y = 1} are the convex poly-

topes.

By a two person zero-sum multi-objective matrix game G we mean

G =
(
Sm, Sn, Ar, (r = 1, 2, . . . , s)

)
,

where Sm (respectively, Sn) is the strategy space for Player I (respectively, Player II),
and Ar = [ar

ij ], (i = 1, 2, . . . ,m, j = 1, 2, . . . , n), is the payoff matrix corresponding to
the rth criterion, (r=1,2,. . . , s). Also, it is a convention to assume that Player I is a max-
imizing player and Player II is a minimizing player. Further, for x ∈ Sm, y ∈ Sn, the ex-
pected payoff for Player I is a vector E(x, y) = xTAy = [E1(x, y), E2(x, y), . . . , Es(x, y)]



Solving multi-objective fuzzy matrix games via multi-objective linear programming approach 155

where Er(x, y) = xTAry, (r = 1, 2, . . . , s). As Player I is a maximizing player and
Player II is a minimizing player, the expected payoff for Player I is the expected loss for
Player II. Now we have the following definitions to define the solution of the game.

Definition 2.1. (Security level for Player I) For a strategy x ∈ Sm, the security level
of Player I corresponding to rth payoff matrix is given by

vr(x) = min
y∈Sn

Er(x, y)

= min
1≤j≤n

xTAr
j ,

where Ar
j is the jth column of the matrix Ar. Therefore the security level for Player I

is an s-tuple vector, given by

v(x) = [v1(x), v2(x), . . . , vs(x)].

Definition 2.2. (Security level for Player II) For a strategy y ∈ Sn, the security level
of Player II corresponding to rth payoff matrix is given by

wr(y) = max
x∈Sm

Er(x, y)

= max
1≤i≤m

Ar
i y.

where Ar
i is the ith row of the matrix Ar. Therefore the security level for Player II is

an s-tuple vector, given by

w(y) = [w1(y), w2(y), . . . , ws(y)].

Definition 2.3. (Pareto-optimal security strategy for Player I) A strategy x∗ ∈ Sm is
a Pareto-optimal security strategy (POSS) for Player I if there is no x ∈ Sm such that

v(x∗) ≤ v(x)

and
v(x∗) 6= v(x).

Definition 2.4. (Pareto-optimal security strategy for Player II) A strategy y∗ ∈ Sn is
a Pareto-optimal security strategy (POSS) for Player II if there is no y ∈ Sn such that

w(y) ≤ w(y∗)

and
w(y) 6= w(y∗).

If x∗ is a POSS for Player I, then his security level is given by v∗ = v(x∗). Similarly
if y∗ is a POSS for Player II, then his security level is given by w∗ = w(y∗).

Fernandez et al. [7] established the following two theorems which state that comput-
ing optimal security levels or Pareto-optimal security strategies for Player I and Player
II amount to solving a pair of multi-objective programming problems.
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Theorem 2.5. The strategy x∗ is a POSS and v∗ is the security level for Player I if
and only if (x∗, v∗) is an efficient solution to the following multi-objective programming
problem:

(V P )1 max (v1, v2, . . . , vs)
subject to,

xTAr
j ≥ vr, (j = 1, 2, . . . , n, r = 1, 2, . . . , s),

eTx = 1,
x ≥ 0.

Theorem 2.6. The strategy y∗ is a POSS and w∗ is the security level for Player II if
and only if (y∗, w∗) is an efficient solution to the following multi-objective programming
problem:

(V P )2 min (w1, w2, . . . , ws)
subject to,

(Ar
i )T y ≤ wr, (i = 1, 2, . . . ,m, r = 1, 2, . . . , s),
eT y = 1,
y ≥ 0.

In the context of scalar two person zero-sum matrix game, it is well known that such
a game can be solved by solving a pair of linear programming problems. Theorem 2.5
and Theorem 2.6 above essentially extend this classical result to multi-objective game
scenario.

In the section to follow, we propose to introduce an extension of the above described
crisp multi-objective two person zero sum game to the fuzzy frame work.

3. THE PROPOSED MODEL FOR A MULTI-OBJECTIVE FUZZY MATRIX GAME

Let Sm;Sn;Ar, (r = 1, 2, . . . , s) be as introduced in Section 2. Let V r
0 and W r

0 be
the scalars representing respectively the aspiration levels of Players I and Player II
corresponding to rth payoffs respectively. The multi-objective matrix game with fuzzy
goals, denoted by MOFG, is defined as

MOFG =
(
Sm, Sn, Ar, V r

0 ,&;W r
0 ,., (r = 1, 2, . . . , s)

)
,

where ‘.’ and ‘&’ are the fuzzified version of ‘≤’ and ‘≥’ respectively. Now Player I
problem is to find a x ∈ Sm such that xTAry & V r

0 , ∀y ∈ Sn, and Player II problem is
to find a y ∈ Sn such that xTAry . W r

0 , ∀x ∈ Sm, r = 1, 2, . . . , s. In other words, the
Player I problem, associated with the rth payoff matrix is

Find x ∈ Sm such that

xTAr
j & V

r
0 , (j = 1, 2, . . . , n).

Similarly, the Player II problem, associated with the rth payoff matrix is

Find y ∈ Sn such that

Ar
i y .W

r
0 , (i = 1, 2, . . . ,m).
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The game MOFG becomes well-defined only when a specific choice of membership
functions are made to define the fuzzy inequalities ‘.’ and ‘&’. Here we shall interpret
‘.’ and ‘&’ as ‘essentially less than or equal to’ and ‘essentially more than or equal to’
respectively in the sense of Zimmermann [17].

In order to define the membership functions associated with the fuzzy sets defined
by inequalities & and ., we have to associate appropriate tolerances with them. Let
pr
0 and qr

0 be the positive tolerances respectively for Player I and Player II in the fuzzy
inequalities, associated with the rth payoffs. Hence

MOFG =
(
Sm, Sn, Ar, V r

0 , p
r
0,&;W r

0 , q
r
0,., (r = 1, 2, . . . , s)

)
.

Now on following Bector et al. [3], we define the membership functions µr
j(xTAr

j),
gives the degree to which x ∈ Sm satisfies the fuzzy constraint xTAr

j &pr
0
V r

0 , (j =
1, 2, . . . , n) as follows

µr
j(xTAr

j) =


1, xTAr

j ≥ V r
0 ,

1−
V r

0 − xTAr
j

pr
0

, V r
0 − pr

0 ≤ xTAr
j ≤ V r

0 ,

0, xTAr
j ≤ V r

0 − pr
0.

Similarly, the membership functions µr
i (Ar

i y), gives the degree to which y ∈ Sn

satisfies the fuzzy constraint Ar
i y .qr

0
W r

0 ,∀(i = 1, 2, . . . ,m) as follows

µr
i (Ar

i y) =


1, Ar

i y ≤W r
0 ,

1 +
W r

0 −Ar
i y

qr
0

, W r
0 < Ar

i y ≤W r
0 + qr

0,

0, Ar
i > W r

0 + qr
0.

Definition 3.1. (Security level of satisfaction for Player I) For a strategy x ∈ Sm, the
security level of satisfaction for Player I corresponding to rth payoffs is

αr(x) = min
1≤j≤n

µr
j(xTAr

j).

Therefore the security level for Player I is an s-tuple vector, given by

α(x) = [ α1(x), α2(x), . . . , αs(x) ].

Definition 3.2. (Security level of satisfaction for Player II) For a strategy x ∈ Sm, the
security level of satisfaction for Player II corresponding to rth payoffs is

βr(y) = min
1≤i≤m

µr
i (Ar

i y).

Therefore the security level for Player II is an s-tuple vector, given by

β(y) = [β1(y), β2(y), . . . , βs(y)].
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Definition 3.3. (Pareto-optimal security strategy for Player I) A strategy x∗ ∈ Sm is
a Pareto-optimal security strategy (POSS) for Player I if there is no x ∈ Sm such that

α(x∗) ≤ α(x)

and
α(x∗) 6= α(x).

Definition 3.4. (Pareto-optimal security strategy for Player II) A strategy y∗ ∈ Sn is
a Pareto-optimal security strategy (POSS) for Player II if there is no y ∈ Sn such that

β(y∗) ≤ β(y)

and
β(y∗) 6= β(y).

If x∗ is a POSS for Player I, then his security level is given by α∗ = α(x∗). Similarly
if y∗ is a POSS for Player II, then his security level is given by β∗ = β(y∗). The pair
(x∗, α∗) is then understood as a solution of the given two person zero-sum fuzzy multi-
objective game for Player I. The pair (y∗, β∗) is interpreted in a similar manner as a
solution of the given game for Player II.

We now prove the following theorems characterizing the solutions of such fuzzy games
in terms of efficient solutions of appropriate multi-objective optimization problems. For
various definitions on multi-objective linear programming, including that of efficient
solution, we shall refer to Steuer [13].

Theorem 3.5. The strategy x∗ is a POSS and α∗ is the security level for Player I if
and only if (x∗, α∗) is an efficient solution to the following multi-objective programming
problem:

(FV PI) max (α1, α2, . . . , αs)
subject to

Ar
jx+ (1− αr)pr

0 ≥ V r
0 , (j = 1, 2, . . . , n, r = 1, 2, . . . , s),

0 ≤ αr ≤ 1, (r = 1, 2, . . . , s),
x ∈ Sm.

P r o o f . Let x∗ be a POSS for Player I. Then, there is no x ∈ Sm such that

α(x∗) ≤ α(x), α(x∗) 6= α(x).

Therefore, ∀ x ∈ Sm, either(
α1(x∗), α2(x∗), . . . , αs(x∗)) = (α1(x), α2(x), . . . , αs(x)

)
,

or there exists an index p, 1 ≤ p ≤ s, depending on x such that αp(x) < αp(x∗).
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In other words, for any x ∈ Sm, either

min
1≤j≤n

µr
j(xTAr

j) = min
1≤j≤n

µr
j(x∗TAr

j), (r = 1, 2, . . . , s),

or there exists an index p, 1 ≤ p ≤ s, such that

min
1≤j≤n

µp
j (xTAr

j) < min
1≤j≤n

µp
j (x∗TAr

j)

Hence from the definition of efficient solution (Steuer [13]), x∗ is an efficient solution
of the multi-objective programming problem

max
x∈Sm

( min
1≤j≤n

µj(xTA1
j ), min

1≤j≤n
µj(xTA2

j ) . . . min
1≤j≤n

µj(xTAs
j)).

Now using the representation of various membership functions µj(xTAr
j), (r = 1, 2, . . . , s),

we get i. e.,

(FV PI) max (α1, α2, . . . , αs)
subject to

Ar
jx+ (1− αr)pr

0 ≥ V r
0 , (j = 1, 2, . . . , n, r = 1, 2, . . . , s),

0 ≤ αr ≤ 1, (r = 1, 2, . . . , s),
x ∈ Sm,

where we have used the notation αr = αr(x), (r = 1, 2, . . . , s).
Conversely, suppose that an efficient solution (x∗, α∗ = α(x∗)) of (FV PI) is not a

POSS for Player I. Then, there exists x ∈ Sm, such that

α(x∗) ≤ α(x), α(x∗) 6= α(x). (1)

Notice that by definitions of αr(x) and µr
j(xTAr

j), (r = 1, 2, . . . , s; j = 1, 2, . . . , n), (x, α(x))
is feasible to (FV PI). Thus (1) contradicts the assumption that (x∗, α∗) is an efficient
solution of (FV PI). �

Theorem 3.6. The strategy y∗ is a POSS and β∗ is the security level for Player II if
and only if (y∗, β∗) is an efficient solution to the following multi-objective programming
problem

(FV PII) max (β1, β2, . . . , βs)
subject to

Ar
i y − (1− βr)qr

0 ≤ W r
0 , (i = 1, 2, . . . ,m, r = 1, 2, . . . , s),

0 ≤ βr ≤ 1, (r = 1, 2, . . . , s),
y ∈ Sn.

P r o o f . The proof follows on the lines of the proof of Theorem 3.6. �

From the above discussion we observe that solving MOFG is equivalent to solving
the crisp pair of multi-objective linear programming problems (FV PI) and (FV PII)
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for Player I and Player II, respectively. Also if (x∗, α∗ = (α∗1, α
∗
2, . . . , α

∗
s)) is an efficient

solution of (FV PI) then x∗ is POSS for Player I and α∗r(r = 1, 2, . . . , s) is the degree
to which the aspiration level V r

0 of Player I is met by choosing to play the strategy x∗.
Similar interpretation can also be given to an optimal solution (y∗, β∗ = (β∗1 , β

∗
2 , . . . , β

∗
s ))

of the problem (FV PII).

Remark 3.7. Here in this game POSS is defined for each player as a best strategy,
within the strategy profile of that player without considering the strategy profile of
other player. Whereas in Pareto Nash Equilibrium (PNE) [9] a strategy s∗ = (x∗, y∗) ∈
Sm × Sn is called PNE if @s = (x, y) ∈ Sm × Sn such that

ui(s) ≥ ui(s∗),∀i = 1, 2

i.e.,
ui(x, y) ≥ ui(x∗, y∗),∀i = 1, 2,

where ui is the utility function of the ith player. Therefore

u1(x, y) = u2(x, y) = (E1(x, y), E2(x, y), . . . , Es(x, y)),

whereas in our case

v(x) = (min
y∈Sn

E1(x, y), min
y∈Sn

E2(x, y), . . . , min
y∈Sn

Es(x, y)),

and
w(y) = (max

x∈Sm
E1(x, y), max

x∈Sm
E2(x, y), . . . , max

x∈Sm
Es(x, y)).

Hence ∀x ∈ Sm, y ∈ Sn

v(x) ≤ u1(x, y) ≤ w(y)

and
v(x) ≤ u2(x, y) ≤ w(y)

where ≤ is taken in vectors as component wise. Now ∀x ∈ Sm, y ∈ Sn

v(x∗) ≤ u1(x∗, y), u1(x, y∗) ≤ w(y∗),

and
v(x∗) ≤ u2(x∗, y), u2(x, y∗) ≤ w(y∗).

Thus the two notations POSS and PNE are different.

The duality in classical multi-objective problems is not straightforward and can be
studied by converting both problems into their scalar counter parts using weighted sum
approach with same weights. In the same spirit, consider the weights λr ≥ 0,

∑s
r=1 λr =

1, (r = 1, 2, . . . , s), associated with the objective functions of (FV PI) and (FV PII) and
obtain their scalar counter parts as (FV PI)1 and (FV PII)2 respectively as follows
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(FV PI)1 max
s∑

r=1

λrαr

subject to
Ar

jx+ (1− αr)pr
0 ≥ V r

0 , (j = 1, 2, . . . , n, r = 1, 2, . . . , s),
0 ≤ αr, λr ≤ 1, (r = 1, 2, . . . , s),∑s

r=1 λr = 1, x ∈ Sm,

and

(FV PII)1 max
s∑

r=1

λrβr

subject to
Ar

i y − (1− βr)qr
0 ≤ W r

0 , (i = 1, 2, . . . ,m, r = 1, 2, . . . , s),
0 ≤ βr, λr ≤ 1, (r = 1, 2, . . . , s),∑s

r=1 λr = 1, y ∈ Sn.

The following modified weak duality theorem between (FV PI)1 and (FV PII)1 establish
the duality relation between (FV PI) and (FV PII), in fuzzy sense.

Theorem 3.8. (Modified weak duality theorem) Let (x, α = (α1, α2, . . . , αs), λ =
(λ1, λ2, . . . , λs)) and (y, β = (β1, β2, . . . , βs), λ = (λ1, λ2, . . . , λs)) be feasible for (FV PI)1
and (FV PII)1 respectively. Then,

s∑
r=1

λr(αr − 1)pr
0 +

s∑
r=1

λr(βr − 1)qr
0 ≤

s∑
r=1

λr(W r
0 − V r

0 ).

P r o o f . The proof follows on the lines of Theorem 5.3.1 of Bector et al. [4]. �

The MOFG has also been investigated by Nishazaki and Sakawa [11] with a different
approach than the one we have proposed above. While we have introduced the solution
for two players in the sense of POSS, Nishazaki and Sakawa [11] defined them in con-
ventional optimality. However, we notice an error in [11] which we propose to rectify in
the next section.

4. NISHIZAKI AND SAKAWA’S MODEL FOR MOFG

We now briefly describe Nishizaki and Sakawa’s [11] model for multi-objective two person
zero-sum fuzzy matrix game with fuzzy goals. We assume that each player has set a
goal for each of the expected payoff and the attainment of these goals is described by
fuzzy sets whose membership functions can be interpreted as the degree of attainment
of those goals. Let for each (r = 1, 2, . . . , s), ar and ar be the pay-offs giving the best
degree of satisfaction and the worst degree of satisfaction with respect to rth expected
payoff. We next explain the model of [11] for MOFG.

Let Dr = {xTAry : (x, y) ∈ Sm × Sn} be the set of expected values corresponding
to the rth payoff matrix Ar. Then the fuzzy sets on Dr for Player I and Player II
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are characterized by the membership functions µr
1 : Dr → [0, 1] and µr

2 : Dr → [0, 1],
respectively.

Nishizaki and Sakawa [11] took the membership functions µr
1(xTAry) and µr

2(xTAry)
for all (r = 1, 2, . . . , s) as linear and aggregated the same by the ‘min’ operator. They
defined them as follows

µr
1(xTAry) =


0, xTAry ≤ ar,

1− ar − xTAry

ar − ar
, ar < xTAry ≤ ar,

1, xTAry ≥ ar,

and

µr
2(xTAry) =


1, xTAry ≤ ar,

1− xTAry − ar

ar − ar
, ar < xTAry ≤ ar,

0, xTAry ≥ ar,

where
ar = min

x∈Sm
min
y∈Sn

xTAry = min
1≤i≤m

min
1≤j≤n

ar
ij ,

ar = max
x∈Sm

max
y∈Sn

xTAry = max
1≤i≤m

max
1≤j≤n

ar
ij .

Therefore the membership functions for the aggregated fuzzy goals for Player I and
Player II are respectively

µ1(xTAy) = min
1≤r≤s

µr
1(xTAry)

and
µ2(xTAy) = min

1≤r≤s
µr

2(xTAry).

Now employing Bellman and Zadeh [1] decision making criterion, the maximin value
with respect to the degree of attainment of the aggregated fuzzy goals for Player I is

max
x∈Sm

min
y∈Sn

µ1(xTAy).

Similarly the maximin value with respect to the degree of attainment of the aggregated
fuzzy goals for Player II is

max
x∈Sm

min
y∈Sn

µ2(xTAry).

The following theorems from [11] provides the optimization model for the solution of
the game.

Theorem 4.1. The maximin solution of Player I with respect to a degree of attainment
of the aggregated fuzzy goal is equal to an optimal solution to the following linear
programming problem.
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(CPI) max λ
subject to

xTAr
j

ar − ar
− ar

ar − ar
≥ λ, (j = 1, 2. . . . n, r = 1, 2, . . . , s),

0 ≤ λ ≤ 1,
x ∈ Sm.

Theorem 4.2. The maximin solution of Player II with respect to the degree of attain-
ment of the aggregated fuzzy goal is equal to an optimal solution to the following linear
programming problem.

(CPII) min σ
subject to

Ar
i y

ar − ar
− ar

ar − ar
≤ σ, (i = 1, 2, . . . ,m, r = 1, 2, . . . , s),

0 ≤ σ ≤ 1,
y ∈ Sn .

Remark 4.3. The optimization problem (CPII) for Player II as obtained in Nishizaki
and Sakawa [11] is not fully correct. We can verify that the relevant objective function
should be ‘to maximize (1 − σ)’, i. e. ‘1 − minimize(σ)’. For the single payoff case
(i. e., when r=1), this point has been well explained in Bector et al. [3] and Bector
and Chandra [4]. Therefore problem (CPI) and ((CPII) with the corrected objective
function max(1− σ) can not be dual to each other in the crisp sense. In fact it can be
shown that these are dual to each other in the fuzzy sense (Bector and Chandra [3, 4])
only.

Remark 4.4. In this approach all pay-offs are aggregated together via the ‘min’ oper-
ator. Therefore the optimal solution (x∗, λ∗) of (CPI) gives only the maximum degree
of the aggregated fuzzy goal. But it does not provide any information about the perfor-
mance of individual goals. In our approach presented in Section 3, we obtain the best
possible compromised degree for each of the individual goals (in the sense of efficiency)
and hence have some freedom to redefine our aspiration levels so as to obtain the most
satisfying solution. Similar arguments hold for Player II as well.

Remark 4.5. Let V r
0 = ar, W r

0 = ar, pr = qr = ar−ar, α1 = α2 = . . . = αs = λ(say)
and β1 = β2 = . . . = βs = 1 − σ(say), then (FV PI) reduces to (CPI) and (FV PII)
reduces to (CPII). The assumption that both players have same tolerance level ar−ar,
(r = 1, 2, . . . , s), appears to be very restrictive.

Remark 4.6. In [11], for ar = max1≤i≤m max1≤j≤n a
r
ij and ar = min1≤i≤m min1≤j≤n a

r
ij

(r = 1, 2, . . . , s). But this does not seem to be correct. For (r = 1, 2, . . . , s), it has been
shown in [4], that it amounts to saying that Ar is a constant matrix.

5. EXAMPLE

Let us consider the numerical example as taken by Cook [5] and latter on cited by
Nishizaki and Sakawa [11]. Here we solve all numerical problems using GAMS [10].
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Example 5.1. Consider the multi-objective matrix game having payoff matrices

A1 =

 2 5 1
−1 −2 6
0 3 −1

 , A2 =

 −3 7 2
0 −2 0
3 −1 6

 , A3 =

 8 2 3
−5 6 0
−3 1 6

 ,

as the cost matrix, the time matrix and the productivity matrix respectively.

Solution by the proposed model. We now solve this problem with the same data
as taken by Nishizaki and Sakawa [11]. Thus V 1

0 = a1 = 6,W 1
0 = a1 = −2, p1

0 = q10 =
a1− a1 = 8; V 2

0 = a2 = 7,W 2
0 = a2 = −3, p2

0 = q20 = a2− a2 = 10; V 3
0 = a3 = 8,W 3

0 =
a3 = −5, p3

0 = q30 = a3 − a3 = 13. Hence the problem (FV PI) for Player I is

Max (α1, α2, α3)
subject to

2x1 − x2 − 8α1 ≥ −2,
5x1 − 2x2 + 3x3 − 8α1 ≥ −2,
x1 + 6x2 − x3 − 8α1 ≥ −2,
−3x1 + 3x3 − 10α2 ≥ −3,

7x1 − 2x2 − x3 − 10α2 ≥ −3,
2x1 − 6x3 − 10α2 ≥ −3,

8x1 − 5x2 − 3x3 − 13α3 ≥ −5,
2x1 + 6x2 + x3 − 13α3 ≥ −5,

3x1 + 6x3 − 13α3 ≥ −5,
0 ≤ α1, α2, α3 ≤ 1

x ∈ S3.

The Pareto-optimal security strategies with corresponding security levels for Player I
are depicted in Table 1.

# x∗1 x∗2 x∗3 α∗1 α∗2 α∗3
1 0.875 0.125 0.0 0.4531 0.0375 0.5769
2 0.8098 0.125 0.0651 0.4368 0.0766 0.5719
3 0.7446 0.125 0.1303 0.4205 0.1157 0.5668
4 0.6794 0.125 0.1955 0.4042 0.1548 0.5618
5 0.6142 0.125 0.2607 0.3879 0.1939 0.5568
6 0.5491 0.125 0.3258 0.3716 0.2330 0.5518

Tab. 1.

Similarly for the same choice of tolerance and aspiration levels, the problem (FV PII)



Solving multi-objective fuzzy matrix games via multi-objective linear programming approach 165

for Player II is

Max (β1, β2, β3)
subject to

2y1 + 5y2 + y3 + 8β1 ≤ 6,
−y1 − 2y2 + 6y3 + 8β1 ≤ 6,

3y2 − y3 + 8β1 ≤ 6,
−3y1 + 7y2 + 2y3 + 10β2 ≤ 7,

−2y2 + 10β2 ≤ 7,
3y1 − y2 + 6y3 + 10β2 ≤ 7,

8y1 + 2y2 + 3y3 + 13β3 ≤ 8,
−5y1 + 6y2 + 13β3 ≤ 8,

−3y1 + y2 + 6y3 + 13β3 ≤ 8,
0 ≤ β1, β2, β3 ≤ 1,

y ∈ S3.

The Pareto-optimal security strategies with corresponding security levels for Player II
are depicted in Table 2.

# y∗1 y∗2 y∗3 β∗1 β∗2 β∗3
1 0.625 0.0 0.375 0.5468 0.2875 0.1442
2 0.6299 0.0249 0.3451 0.5337 0.3064 0.1442
3 0.6349 0.0498 0.3152 0.5207 0.3253 0.1442
4 0.6399 0.0747 0.2853 0.5076 0.3442 0.1442
5 0.6449 0.0996 0.2554 0.4945 0.3632 0.1442
6 0.6499 0.1245 0.2255 0.4814 0.3821 0.1442

Tab. 2.

Here for λ1 = 1/2, λ2 = 1/3, λ3 = 1/6 the modified weak duality theorem is satisfied
by first Pareto-optimal security strategies with corresponding security levels of Player I
and Player II. Now let us solve the above problem by Nishizaki and Sakawa’s [11] model.

Solution by Nishizaki and Sakawa’s model. On following their notations, as given
in Section 4, we have a1 = 6, a1 = −2, a1−a1 = 8; a2 = 7, a2 = −3, a2−a2 = 10; a3 =
8, a3 = −5, a3 − a3 = 13. Therefore the Player I problem is

Max λ

subject to

2x1 − x2 − 8λ ≥ −2,
5x1 − 2x2 + 3x3 − 8λ ≥ −2,
x1 + 6x2 − x3 − 8λ ≥ −2,
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−3x1 + 3x3 − 10λ ≥ −3,
7x1 − 2x2 − x3 − 10λ ≥ −3,

2x1 + 6x3 − 10λ ≥ −3,
8x1 − 5x2 − 3x3 − 13λ ≥ −5,
2x1 + 6x2 + x3 − 13λ ≥ −5,

3x1 + 6x3 − 13λ ≥ −5,
0 ≤ λ ≤ 1,

x ∈ S3.

The optimal solution is obtained as (x∗1 = 0.3860, x∗2 = 0.1250, x∗3 = 0.48897, λ∗ =
0.33088). Similarly Player II problem is

Min σ

subject to

2y1 + 5y2 + y3 − 8σ ≤ −2,
−y1 − 2y2 + 6y3 − 8σ ≤ −2,

3y2 − y3 − 8σ ≤ −2,
−3y1 + 7y2 + 2y3 − 10σ ≤ −3,

−2y2 − 10σ ≤ −3,
3y1 − y2 + 6y3 − 10σ ≤ −3,

8y1 − 2y2 + 3y3 − 13σ ≤ −5,
−5y1 + 6y2 +−13σ ≤ −5,

−3y1 + y2 + 6y3 − 13σ ≤ −5,
0 ≤ σ ≤ 1,

y ∈ S3.

The optimal solution is (y∗1 = 0.25595, y∗2 = 0.34685, y∗3 = 0.39720, σ∗ = 0.5804). But
as mentioned in Remark 1, the objective function value should be (1−σ∗) = 1−0.5804 =
0.4196.

Remark 5.2. Here it is to be noted that for strategy each POSS, max(α∗1, α
∗
2, α
∗
3) ≥ λ∗

and max(β∗1 , β
∗
2 , β
∗
3) ≥ 1−σ∗. Thus for the first POSS in Table 1, has max(α∗1, α

∗
2, α
∗
3) =

0.5769 > λ∗ = 0.3308. Also for the first POSS in Table 2, max(β∗1 , β
∗
2 , β
∗
3) = 0.5468 >

(1−σ∗) = 0.4196. Further under the same circumstances, the players have better confi-
dence corresponding to at least one payoff criterion in the proposed model as compared
to Nishizaki and Sakawa’s [11] model, and this payoff criterion can be identified by our
proposed model.

6. CONCLUSIONS

A new model is presented for studying multi-objective zero-sum fuzzy matrix games.
This model is in the sprit of Fernandez et al. [7] and it solves the given fuzzy game
by solving a pair of (crisp) multi-objective linear programming problems. Since the
model gives the best possible (i. e., most satisfying) degree for the individual players
payoff meeting the specified aspiration levels, it provides more flexibility to the decision
maker. Certain difficulties with the existing model of Nishizaki and Sakawa [11] are also
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pointed out. It should be of interest to extend these results to situations where elements
of matrices Ar, (r = 1, 2, . . . , s) are given in terms of fuzzy numbers. The scalar fuzzy
matrix games have been studied by [15] using fuzzy relational approach. It would be
interesting and challenging to explore this approach for study multi-objective matrix
games.
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