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CHARACTERIZATIONS OF ARCHIMEDEAN n-COPULAS

W lodzimierz Wysocki

We present three characterizations of n-dimensional Archimedean copulas: algebraic, dif-
ferential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more
general form, in terms of an n-variable operation derived from a binary operation. The second
characterization is in terms of first order partial derivatives of the copula. The last characteri-
zation uses diagonal generators, which are “regular” diagonal sections of copulas, enabling one
to recover the copulas by means of an asymptotic representation.
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1. INTRODUCTION

Copulas are of fundamental importance for statistics, probability theory and stochastic
processes.

In Encyclopedia of Statistical Sciences [5], Fischer gave two main reasons for the
interest in copulas. First, copulas may be used to present various models of stochas-
tic dependence in distributions of random vectors under reduced influence of marginal
distributions. Secondly, copulas can be a starting point for constructing families of
distributions. Important sources of information about copulas are the monographs by
Hutchinson and Lai [14], Joe [16] and Nelsen [22], as well as more recent publications
like Durante and Sempi [4] and Rüschendorf [24].

Let X = (X1, . . . , Xn) : (Ω,F , P ) → Rn be an n-dimensional random vector. Let
FXk

be the continuous distribution function of the coordinate Xk for k = 1, . . . , n. We
transform X into a random vector U = (U1, . . . , Un) by the formula Uk = FXk

(Xk) for
k = 1, . . . , n.

The distribution function C which corresponds to the distribution PU of the vector
U (concentrated on the box In = [0, 1]n) is called an n-dimensional copula (or n-copula).
The vector U is called the uniform representation of X.

DOI: 10.14736/kyb-2015-2-0212

http://doi.org/10.14736/kyb-2015-2-0212


Characterizations of Archimedean n-copulas 213

The copula C : In → I has the following properties:

C(1k) = uk for k = 1, . . . , n, (1a)

where 1k ∈ In has the kth coordinate uk, and the others 1;

C(u) = 0 if some uk is zero; (1b)

and ∑
w

σ(w)C(w) ≥ 0, (1c)

where w = (w1, . . . , wn) runs through the vertices of the parallelepiped [u,v] =
×n

k=1 [uk, vk], u = (u1, . . . , un), v = (v1, . . . , vn), uk ≤ vk for k = 1, . . . , n. Here σ(w) is
1 or −1 according to whether the number of equalities uk = vk is even or odd.

Condition (1a) means that the coordinates of the random vector U have uniform
distribution on I. Every function C : In → I satisfying (1a)–(1c) is an n-copula. For C
“sufficiently regular”, condition (1c) can be easily checked by using the following lemma
(see Joe [16], here reformulated):

Lemma 1. If a continuous function C : In → I satisfying (1a) and (1b) has all partial
derivatives of order n on (0, 1)n, then condition (1c) is equivalent to

∂nC(u)
∂u1 . . . ∂un

≥ 0 for all u ∈ (0, 1)n.

It turns out that some n-copulas can be determined by functions defined on I. Let
F be the family of all strictly increasing continuous bijections f : I → I (then f(0) = 0
and f(1) = 1). Let C be the copula corresponding to the uniform representation U.
Suppose that

f−1[P ({Uk ≤ uk, k = 1, . . . , n})] =
n∏

k=1

f−1[P ({Uk ≤ uk})] (2)

for some f ∈ F , where P denotes the probability on the probability space where X is
defined. Formula (2) can be written more simply as

C(u) = f
[ n∏

k=1

f−1(uk)
]

for all u ∈ In. (3)

If f̃ is another function in F , it may happen that the function C̃ given by (3) with
f replaced by f̃ is not an n-copula. In Theorem 1 we exhibit a class of functions f for
which (3) is an n-copula. For this, we need the following notion.

Let R+ = [0,∞) and let J ⊂ R+ = [0,∞] be some interval. For n ≥ 1, a continu-
ous function f : J → R+ is called n-absolutely monotone if it is n times continuously
differentiable on the interior Int(J) of J and satisfies the condition

dkf(u)
duk

≥ 0 for all u ∈ Int(J) and k = 1, . . . , n.
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Theorem 1. If f ∈ F is n-absolutely monotone, then the function (3) is an n-copula.

P r o o f . Clearly, the function (3) satisfies conditions (1a) and (1b). To check (1c), note
that if C is an n-copula, then its restrictions Ck = C|Ik for k = 2, . . . , n are its marginal
k-copulas. Hence by Lemma 1, (3) is an n-copula if and only if

∂kCk(u1, . . . , uk)
∂u1 . . . ∂uk

=
{ k∏

j=1

df
du

[f−1(uj)]
}−1

{ k∑
j=1

aj
djf

duj

[ k∏
j=1

f−1(uj)
][ k∏

j=1

f−1(uj)
]j−1

}
≥ 0 (4)

for all (u1, . . . , uk) ∈ (0, 1)k and all k = 2, . . . , n. Here the coefficients aj for j =
1, . . . , n are suitable positive integers. Since the function df/du is positive, the n-absolute
continuity of f entails (4). �

From (2) one can also obtain another form of an n-copula, which may be called
“additive”, as opposed to the “multiplicative” form (3). Taking the logarithm of both
sides of (2), one can express C in terms of the function g = − ln f−1. The value of g at
u = 0 is understood to be limu→0+ g(u). We obtain the representation

C(u) = g−1
[ n∑

k=1

g(uk)
]

for all u ∈ In. (5)

Clearly, the function (5) corresponding to g = ln f̃−1 for f̃ ∈ F need not be an n-copula.
If g(0) <∞, the function g in (5) should be replaced by its pseudoinverse.

Let G be the family of all strictly decreasing convex functions g : I → [0,∞] with
g(1) = 0. Clearly, g(0) = limu→0+ g(u). For g ∈ G we define its pseudoinverse by

g←(x) = inf{t ∈ I : g(t) ≥ x, x ∈ [0,∞]}.

The pseudoinverse g← coincides with the usual inverse g−1 if and only if g(0) = ∞.
We now introduce the notion of an n-monotone function. For n ≥ 1, a continuous

function ψ : J → R+ is called n-monotone if ψ is n times differentiable on Int(J) and
satisfies the condition

(−1)k dkψ(x)
dxk

≥ 0 for all x ∈ Int(J) and k = 1, . . . , n.

If ψ is C∞ and satisfies the last condition for all k = 1, . . . , n, then it is called completely
monotone.

Kimberling [18] showed that for each n ≥ 2, (5) is an n-copula if and only if g(0) = ∞
and g← is completely monotone. Nelsen [22] observed that for (5) to be an n-copula,
it suffices that g← be n-monotone. Recently, McNeil and Nešlehová [21] gave a general
solution of the problem of when (5) is an n-copula. We recall it below in a modified
form.
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Theorem 2. The function (5) is an n-copula if and only if:

(a) g ∈ G ,

(b) g← is (n− 2)-monotone,

(c) (−1)n−2 dn−2g←

dxn−2 is decreasing and convex on (0, g(0)).

A copula of the form (5) is called an n-dimensional Archimedean copula (or an Archi-
medean n-copula) with additive generator g. The generator g is strict (resp. nonstrict)
if g(0) = ∞ (resp. g(0) <∞).

If (3) is an n-copula, then f is called its multiplicative generator. The additive and
multiplicative generators of an Archimedean n-copula are related by the formula

g = − ln f−1. (6)

Remark 1. The additive generator is uniquely determined up to a positive multiplica-
tive constant.

The family of all functions g with properties (a) – (c) of Theorem 2 will be denoted
by Gn−2.

Let
∗
G n consist of all additive generators g whose pseudoinverse g← is n-monotone

and dng←

dxn is a continuous function. Denote by
∗
G−n (resp.

∗
G 0

n) the family of all g ∈
∗
G n

such that limu→1−
dg(u)
du equals −1 (resp. 0).

In the last few years the role of Archimedean copulas is systematically increasing,
especially as regards their applications in practical areas, including econometrics, in-
surance, finance, risk management and survival analysis. Nelsen [22] devoted to them
Chapter 4 of his monograph. In his opinion, an increasing role of Archimedean copulas
is mainly due to their simplicity, ease of constructing and several nice properties. A sys-
tematic investigation of Archimedean copulas was initiated by Genest and MacKay [8, 9].
Recently, substantial progress was obtained by McNeil and Nešlehová[21]. Among other
things, they pointeo.ut that the pseudoinverses of elements of Gn−2 are Williamson n-
functions (Williamson [27]), related to the notion of l1-norm symmetric distribution
introduced by Fang and Fang [6]. McNeil and Nešlehová [21] explained the unique role
of such distributions in the study of Archimedean n-copulas.

Alsina et al. [1] introduced the notion of quasicopula (in two dimensions) in an al-
gebraic way. This notion was later characterized by Genest et al. [10]. The definition
and the characterization were generalized to the multivariate case by Cuculescu and
Theodorescu [2]; we will use this characterization as an alternative definition.

Lemma 2. A function Q : In → I is an n-quasicopula if and only if it satisfies, apart
from (1a) and (1b), the following conditions:

• Q is nondecreasing in each variable separately,
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• Q satisfies the Lipschitz condition

|Q(u)−Q(v)| ≤
n∑

k=1

|uk − vk| for all u,v ∈ In.

Clearly, every n-copula is an n-quasicopula. A quasicopula that is not a copula is
called proper. We distinguish a certain subclass of n-quasicopulas, easy to characterize
(see Nelsen et al. [23]).

Theorem 3. A function Q : In → I of the form

Q(u) = g←
[ n∑

k=1

g(uk)
]

for all u,v ∈ In (7)

is a quasicopula if and only if g ∈ G . The quasicopula (7) is called the Archimedean
n-quasicopula with additive generator g.

Example 1. The function g(u) = 1− u belongs to G . For n > 2, to g corresponds the
proper Archimedean n-quasicopula

Q(u) = max
[ n∑

k=1

uk − (n− 1), 0
]

for all u ∈ In.

In the next three sections we give, among other things, characterizations of Archi-
medean n-copulas. Two of them are fully functional, in the sense that from the analytic
form of the n-copula (an n-variate function) we can obtain its additive generator. Both
those characterizations have analogues for Archimedean n-quasicopulas.

2. ALGEBRAIC STRUCTURE

In this section we give the first of the announced characterizations of Archimedean n-
copulas. It is mainly theoretical, although it does shed some light on their structure.
We will precede it by a discussion of the “algebraic nature” of Archimedean copulas.
We will also consider one of their properties, justifying the terminology used.

Ling [20] gave an elegant characterization of two-dimensional Archimedean copulas.
We recall it below in a slightly modified form.

Lemma 3. Let C be a two-dimensional copula. Then the following conditions are
equivalent:

(a1) C is Archimedean.

(a2) C satisfies the conditions

C(C(u1, u2), u3) = C(u1, C(u2, u3)) for all (u1, u2, u3) ∈ I3, (8a)
C(u, u) < u for all u ∈ (0, 1). (8b)
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The formula (8a) has a simple interpretation. The copula C can be thought of as
a binary operation in I. Then (8a) states that the operation is associative. Together
with the symmetry of C, this means that (I, C) is a commutative semigroup, with
neutral element 1. A hypothetical generalization of Lemma 3 to n dimensions requires
introducing a notion of associativity for n-ary operations; any such notion will be called
n-associativity. We recall the popular definition of n-associativity from Dudek and
Trokhimenko [3]:

C(u1, . . . , uk−1, C(uk, . . . , uk+n−1), uk+n, . . . , u2n−1)
= C(u1, . . . , uk, C(uk+1, . . . , uk+n), uk+n+1, . . . , u2n−1) (9a)

for all u1, . . . , u2n−1 ∈ I and k ∈ {2, . . . , n− 1}. For n = 2, formula (9a) reduces to (8a).
More complicated notions of n-associativity can be found in Gluskin [11, 12, 13]. Note
that an n-ary operation which is an Archimedean copula satisfies the n-associativity
condition (9a) and the following condition:

C(u1, . . . , uk−1, u̇, uk+1, . . . , un) = Cn−1(u1, . . . , uk−1, uk+1, . . . , un) (9b)

for all (u1, . . . , uk−1, uk+1, . . . , un) ∈ In−1, where u̇ = 1 and k ∈ {2, . . . , n − 1}. Here
Cn−1 is the marginal (n − 1)-copula of C. Formula (9b) suggests that u̇ can be re-
garded as the neutral element of the operation C. Hence (I, C) is a commutative semi-
group. A generalization of Lemma 3 to n dimensions for associativity (9a) was given by
Stupňanová and Kolesárová [25, Theorem 4.2].

Nelsen [22] showed that a two-dimensional Archimedean copula, restricted to (0, 1)2

and regarded as a binary operation, has the Archimedean property. We will extend
the latter notion to n-ary operations, and then give an analogue of the above fact for
Archimedean n-copulas. Let T be a binary operation on I. Then we define the powers
un

T of u ∈ I according to T by induction:

u1
T = u, uk+1

T = T (u, uk
T ) for k ≥ 1.

We say that T has the Archimedean property if for every pair (u1, u2) ∈ I2 there exists
a positive integer k such that (u1)k

T < u2. This notion is extended to n-ary operations
T on I as follows. We define uk

T by

u1
T = u, uk+1

T = T (u, u, . . . , u, uk
T ) for k ≥ 1.

If for every u ∈ In there exists a positive integer k such that

(uj)k
T < un for j = 1, . . . , n− 1, (9c)

then we say that T has the Archimedean property.

Lemma 4. Let C be an Archimedean n-copula with additive generator g. Then for
every u ∈ (0, 1)n there exists a positive integer k such that (9c) holds.
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P r o o f . Let u ∈ (0, 1). Then uk
C = g←[mkg(u)] where mk = (n− 1)k−n+ 2. We have

uk
C → 0 (pointwise convergence on (0, 1)) as k →∞. Hence for every ε > 0 there exists

a positive integer K(ε, u) such that uk
C < ε for all k > K(ε, u).

Let now u ∈ (0, 1)n. Setting ε = un, we get (uj)
1+K(un,uj)
C < un for j = 1, . . . , n− 1.

The integer k = 1 + max[K(un, u1),K(un, u2), . . . ,K(un, un−1)] satisfies (9c). �

Lemma 4 justifies calling copulas C of the form (5) Archimedean. The term “two-
dimensional Archimedean copula” is attributed to Ling [20].

We now give a characterization of Archimedean n-copulas which is due to Jouini
and Clemen [17]. We will formulate it in terms of a certain algebraic property of n-ary
operations. To this end, for a binary operation T : I2 → I we define, for any fixed integer
n ≥ 3, a finite sequence of iterations Tk : Ik → I of T as follows:

T2 = T,

Tk(u1, . . . , uk) = T (Tk−1(u1, . . . , uk−1), uk) for k = 3, . . . , n− 1.

We say that an n-ary operation C : In → I derives from the binary operation T if
Tn = C.

Theorem 4. Let C be an n-copula. Then the following conditions are equivalent:

(A1) C is Archimedean.

(A2) C restricted to I2 is a two-dimensional Archimedean copula T with additive gen-
erator in Gn−2. Moreover, the n-ary operation C derives from the (binary) opera-
tion T .

P r o o f . This follows from Theorem 2 and the definitions. �

3. DIFFERENTIAL CHARACTERIZATION

Here we will give a useful characterization of Archimedean n-copulas in terms of their
first order partial derivatives.

Theorem 5. Suppose that n ≥ 2 and C is an n-copula all of whose first order partial
derivatives are continuous on Int(suppC). Then the following conditions are equivalent:

(B1) C is Archimedean.

(B2) There exists a continuous function ψ : (0, 1) → (0,∞) with a finite left limit at 1
such that

ψ(uk1)
∂C(u)
∂uk2

= ψ(uk2)
∂C(u)
∂uk1

(10)

for all u ∈ Int(suppC) and k1, k2 ∈ {1, . . . , n}.

Moreover, if both (B1) and (B2) are valid, then the function ψ determines the additive
generator g of C by

g(u) =
∫ 1

u

ψ(s) ds for all u ∈ I. (11)
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P r o o f . (B1)⇒(B2). Let g be the additive generator of C. By Theorem 2, for n ≥ 3
the functions dg/du and dg←/dx are continuous on (0, 1) and (0,∞) respectively. The
function ψ = −dg/du is positive, has a finite left limit at u = 1 and satisfies (10).

In the case of n = 2, note that since g is convex, it is differentiable on (0, 1) except
possibly at countably many points. For every u1 ∈ (0, 1) there exists u2 ∈ (0, 1) such
that g is differentiable at C(u1, u2). The derivative of the right-hand side of the equality
g(u1) + g(u2) = g(C(u1, u2)) equals dg

du (C(u1, u2))
∂C(u1,u2)

∂u1
. Hence dg

du (u1) exists. The
continuity of dg

du follows from convexity and differentiability of g (we have already used
that for n ≥ 3).

(B2)⇒(B1). We extend ψ by setting ψ(0) = lims→0+ ψ(s) and ψ(1) =
lims→1− ψ(s). Here ψ(0) may be infinite, but ψ(1) is finite. For every u ∈ (0, 1] the inte-
gral

∫ 1

u
ψ(s) ds exists. Hence the function g defined by (11) is positive on (0, 1), strictly

decreasing, C1 and such that g(1) = 0. Additionally we define g(0) = limu→0+ g(u).
Clearly, g has a pseudoinverse g← which is C1 on (0, g(0)).

We introduce new variables v = (v1, . . . , vn), where vk = g(uk) for k = 1, . . . , n.
Denote by C̃(v) the function obtained from the n-copula C after this change of variables.
Note that the system (10) is equivalent to

∂C̃(v)
∂vk1

=
∂C̃(v)
∂vk2

for k1, k2 ∈ {1, . . . , n}. (12)

The variable v in (12) runs through Int(supp C̃). Our proof amounts to showing that

C̃(v) = g←
( n∑

k=1

vk

)
for all v ∈ supp C̃. (13)

We have

C̃(v1, 0, . . . , 0) = g←(v1),

C̃(0, v2, 0, . . . , 0) = g←(v2), . . . ,

C̃(0, 0, . . . , 0, vn) = g←(vn).

Moreover, C̃(v) = 0 if at least one coordinate of v is equal to g(0).
We decompose Rn as X ⊕ Y where X = {(x, . . . , x) : x ∈ R} and Y = {(y1, . . . , yn) :∑n
i=1 yi = 0}. Let (e1, . . . , en) be the canonical basis of Rn. Then the vector a =∑n
k=1 ek spans X, and (b1, . . . ,bn−1), where bk = ek − ek+1 for k = 1, . . . , n − 1, is a

basis of Y . The vectors y = (y1, . . . , yn) ∈ Y have a representation y1 = t1, yk = tk−tk−1

for k = 2, . . . , n − 1, and yn = −tn−1, where the tk run through R. Every v ∈ supp C̃
decomposes as v = xv + yv, where xv ∈ X and yv ∈ Y . Then the right-hand side of
(13) takes the form

g←
( n∑

k=1

vk

)
= g←

[ n∑
k=1

(x+ yk)
]

= g←(nx).
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Hence g←(
∑n

k=1 vk) depends only on xv (hence on x). It turns out that so does C̃. To
see this, we have to check that the strong derivative DC̃ restricted to Y is the zero form.
Indeed,

[DC̃(v)]
( n−1∑

k=1

tkbk

)
=

n−1∑
k=1

tk[DC̃(v)](bk)

=
n−1∑
k=1

tk

[
∂C̃(v)
∂vk

− ∂C̃(v)
∂vk+1

]
= 0.

We have used (12) and the continuity of the partial derivatives ∂C̃(v)/∂vk. The equality
[DC̃(v)]|Y = 0 means that C̃ only depends on xv (hence on x). Therefore C̃(v) =
C̃(xv + yv) = C̃(xv). In particular this holds for

xv = (x, . . . , x) and yv = [(n− 1)x,−x, . . . ,−x].

Consequently, C̃(nx, 0, . . . , 0) = g←(nx), proving (13). �

Remark 2. The implication (B2)⇒(B1) extends the criterion of Genest and MacKay [8]
for a two-dimensional copula to be Archimedean with a nonstrict additive generator.

Remark 3. To ensure the continuity of the partial derivatives ∂C(u)/∂uk, it suffices
to assume the existence of all second order partial derivatives of C on Int(suppC).

Corollary 1. The function ψ of Theorem 5 is decreasing.

Corollary 2. Theorem 5 also holds for Archimedean n-quasicopulas with n > 2.

A result close to (B1)⇒(B2) for Archimedean n-quasicopulas was obtained by Nelson
et al. [23, Theorem 3.1(vi)].

In Theorem 5 we do not assume the symmetry of the n-copula C, although Archi-
medean copulas can only be found among symmetric copulas. The symmetry of C is
guaranteed by condition (10). The observation that C̃ in the proof of Theorem 5 only
depends on the x variables suggests that an Archimedean n-copula is uniquely deter-
mined by its values on some one-dimensional subset of In. This is indeed the case, as
will be shown in Section 4.

The examples below illustrate the usefulness of Theorem 5.

Example 2. We will show that the n-copula defined by

C(u) =
2n

∏n
k=1 uk

2
∏n

k=1(uk + 1)− 2n
∏n

k=1 uk
for all u ∈ In

is Archimedean. The corresponding formula (10) from Theorem 5 is

ψ(uk1)
1

uk2(uk2 + 1)
2n−1

∏n
k=1 uk(uk + 1)[∏n

k=1(uk + 1)− 2n−1
∏n

k=1 uk

]2
= ψ(uk2)

1
uk1(uk1 + 1)

2n−1
∏n

k=1 uk(uk + 1)[∏n
k=1(uk + 1)− 2n−1

∏n
k=1 uk

]2 .
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Consequently, the function ψ has the form ψ = 1
u(u+1) . The corresponding additive

generator (11) is g(u) = − ln
(

2u
u+1

)
. The 2-copula corresponding to this generator is a

member of the family of Ali-Mikhail-Haq copulas for θ = 0.5 (see Nelsen [22, Chapter 4]).
Invoking (6) and Theorem 1, it is easy to check that the function f̃(u) = u

2−u (inverse
to f(u) = 2u

u+1 ) is the multiplicative generator. Hence the n-copula C̃ corresponding to
g̃ = − ln f̃ is a member of the one-parameter family of Clayton copulas for θ = 1 (see
Nelsen [22, Chapter 4]).

We will now illustrate the application of Theorem 5 and Corollary 2 to Archimedean
n-quasicopulas.

Example 3.
• For the Archimedean n-quasicopula of Example 1, the function ψ of Theorem 5 is
constant, and the corresponding additive generator (11) indeed equals g(u) = 1− u.
• It is easy to check that for every n > 2 the function

Q(u) =


1−

[∑n
k=1

(
1−uk

1+uk

)2]1/2

1 +
[∑n

k=1

(
1−uk

1+uk

)2]1/2
for u ∈ H,

0 for u ∈ In \H,

where

H =
{
u ∈ In :

n∑
k=1

(
1− uk

1 + uk

)2

< 1
}
,

is an n-quasicopula. Using Theorem 5, Corollary 2 and simple calculations, we find the
additive generator of Q, equal to g(u) =

(
1−u
1+u

)2.

4. DIAGONAL GENERATORS

In this section we introduce two classes of generators: the diagonal generators and the
defective diagonal generators. They are “special” multiplicative generators of Archi-
medean n-copulas. To a diagonal generator f corresponds the Archimedean n-copula
Cf whose values on the main diagonal of In coincide with f , Cf (u, . . . , u) = f(u). The
copula Cf has an asymptotic representation in terms of the k-fold composition of f (or
the inverse function to f).

We will give a characterization of Archimedean n-copulas in terms of diagonal gen-
erators.

For a fixed β ∈ (1, n], we introduce the family Fn
β of all functions f : I → I satisfying:

(a) f is a strictly increasing and continuous bijection of I onto itself (then f(0) = 0
and f(1) = 1),

(b) f(u) < u for all u ∈ (0, 1),

(c) f is n-absolutely monotone on (0, 1],

(d) limu→1−
df(u)

du = β.
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The k-fold composition of f ∈ Fn
β (resp. of the inverse function of f) is denoted by fk

(resp. f−k).
In Theorem 6 below we will exhibit some interesting asymptotic properties of two

function sequences, gk : I → [0, βk] and g←k : [0, βk] → I, defined for k = 1, 2, . . . by

gk(u) = βk[1− f−k(u)] for u ∈ I, (14a)

g←k (x) = fk

(
1− x

βk

)
for x ∈ [0, βk]. (14b)

Remark 4. The functions (14a) and (14b) are mutually inverse.

In the proof of Theorem 6 we will make use of an important fact from the theory of
functional equations (Kuczma [19, Theorem 6.1]), which we recall in Lemma 5 below in
a modified form. Here J denotes any interval in R containing zero.

Lemma 5. Let f̆ : J → R be a Cn function (n ≥ 2) such that:

• u(f̆ (u)− u) < 0 for all u ∈ J \ {0},

• uf̆ (u) > 0 for all u ∈ J \ {0},

• df̆
du (0) = s for some s ∈ (0, 1).

Then for every a ∈ R there exists a unique Cn function E : J → R such that a = dE
du (0)

and E solves the Schröder equation E(f̆ (u)) = sE(u). The function E is given by

E(u) = a lim
k→∞

1
sk

f̆ k(u). (15)

If a > 0 (resp. a < 0), then E is strictly increasing (resp. strictly decreasing).

Before formulating and proving the announced results, we extend the functions g←k
of (14b) by setting it equal to zero on the whole half-line [0,∞].

Theorem 6. Let f ∈
⋃

β∈(1,n] F
n
β . Then the function sequence (14a) converges almost

uniformly on (0, 1] to a function g ∈
∗
G−n , while the sequence (14b) converges uniformly

on [0,∞] to the inverse of g.

P r o o f . Let f ∈ Fn
β . Define f̃(u) = 1−f(1−u) and σ = 1

βx. Then (14b) can be written
as g←k (x) = 1−[f̃k◦σk](x) for x ∈ [0, βk]. Suppose that there exists a Cn diffeomorphism
D : [0, 1) → R+ with D(0) = 0 and dD

du (0) = 1 satisfying f̃ = D−1 ◦ σ−1 ◦ D. Then
f̃k ◦ σk = D−1 ◦ σ−k ◦D ◦ σk. Note that the composition σ−k ◦D ◦ σk maps x ∈ [0, βk)
to βkD(x/βk). Hence from the expansion D(y) = y +O(y2) it follows that

[σ−k ◦D ◦ σk](x) = βk

[
x

βk
+O

((
x

βk

)2)]
= x+O

(
x2

βk

)
.
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Thus

[f̃k ◦ σk](x) = D−1

[
x+O

(
x2

βk

)]
.

Passing to the limit we obtain limk→∞[f̃k ◦σk](x) = D−1(x), which implies the uniform
convergence

g←k (x) → 1−D−1(x) = g←(x). (16)

The function g← is Cn.
We will show that the diffeomorphism D indeed exists. It is easy to check that

the function f̆ = f̃−1 (with J = [0, 1)) satisfies the assumptions of Lemma 5. Clearly,
df̆
du (0) = 1/β.

For a = 1 Schröder’s equation has the form

E[f̆ (u)] =
1
β
E(u),

dE
du

(0) = 1, E(0) = 0.

The equation E[f̆ (u)] = 1
βE(u) is equivalent to f̆ = E−1 ◦ σ ◦ E. By Lemma 5, E is a

Cn diffeomorphism conjugating f̆ and σ.
We will check that E is the desired diffeomorphism D. We have

f̃ = [E−1 ◦ σ ◦ E]−1 = E−1 ◦ σ−1 ◦ E = D−1 ◦ σ ◦D.

The function E is strictly increasing, and hence so is E−1. From (15) it can be seen
that limu→1− D(u) = ∞, and so limx→∞D−1(x) = 1.

Now we return to (16). We have limx→∞ g←(x) = 0. Clearly, g←(0) = 1 and dg←

dx (0) =
−1. Moreover g← is strictly decreasing.

It remains to prove the n-monotonicity of g←. To do so, observe that for k = 1, 2, . . . ,
g←k is n-monotone on [0, βk), and these sets tend to [0,∞]. It is known that the
limit of an almost uniformly convergent sequence of n-monotone functions is (n − 2)-
monotone. Hence g← is (n − 2)-monotone. Moreover, by Theorem 2, the function
(−1)n−2dn−2g←k /dx

n−2 is also decreasing and convex. Therefore, since g← is Cn, it
follows that it is n-monotone and dng←/dxn is continuous. The almost uniform conver-
gence (14a) follows from (14b) and Remark 4. �

We will give an application of Theorem 6 to Archimedean n-copulas. The function
δC : I → I given by

δC(u) = C(u, . . . , u) for all u ∈ I (17a)

is called the diagonal section of the n-copula C. If C is Archimedean with additive
generator g, then

δC(u) = g←[ng(u)]. (17b)

Remark 5. For the case of an n-quasicopula, the same definition (17a) is used.
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The notion of diagonal section of a (two-dimensional) copula (or quasicopula) was
implicit in the expression (8b). The diagonal section of an Archimedean copula (or
quasicopula) with a strict differentiable additive generator satisfying limu→1−

dg(u)
du = −1

has a unique representation (Wysocki [28]; see also Section 5). This result extends to n
dimensions.

Let g be the strict additive generator. If g ∈
∗
G−n , then δC is n times differentiable

on (0, 1) and satisfies conditions (a), (b) and (d) in the definition of the family Fn
β for

β = n. If g ∈
∗
G 0

n, we have the analogous fact (for some β ∈ (1, n)). Condition (c) in
the definition of Fn

β is a kind of “regularity” of δC . By Theorem 6, the sequences (14a)
and (14b) converge to g and g← respectively. However, we do not know whether they
generate an Archimedean copula C whose diagonal section is f . This is discussed in
Theorem 7 below.

We define a function sequence (Ck) by

Ck(u) =

{
fk[f−k(u1) + f−k(u2) + · · ·+ f−k(un)− (n− 1)] for u ∈ Hk,

0 for u ∈ In \Hk,
(18)

where Hk = {u ∈ In :
∑n

j=1 f
−k(uj) > n− 1} for k = 1, 2, . . . . Moreover, set

α =
1
nk
, Bu =

n∑
j=1

g←(αg(uj))− (n− 1),

vC(u) =
g(u)
g(1)(u)

for all u ∈ (0, 1),

(19)

where g(1) is an alternative notation for dg/du.

Theorem 7. Let C be an n-copula whose diagonal section δC is in Fn
n . Then the

following conditions are equivalent:

(C1) C is Archimedean with additive generator whose left derivative at 1 is −1.

(C2) C is the uniform limit of the sequence (18). More precisely,

C(u) =


limk→∞ δk

C [δ−k
C (u1) + δ−k

C (u2) + · · ·+ δ−k
C (un)− (n− 1)]

for u ∈ (0, 1]n,
0 for u ∈ In \ (0, 1]n.

(20a)

Moreover, if both (C1) and (C2) are valid, then the additive generator of C is given by

g(u) = lim
k→∞

nk[1− δ−k
C (u)] for all u ∈ I. (20b)

P r o o f . The convergence of (18) is well defined, since for each u ∈ (0, 1)n there exists
a positive integer Ku such that u ∈ Hk for all k > Ku.
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(C1)⇒(C2). Let g be the additive generator of C. By the uniqueness of representation
of the diagonal section δC , the terms of the sequence (18) have the form

Ck(u) = g←
{
g[g←(αg(u1)) + g←(αg(u2)) + · · ·+ g←(αg(un))− (n− 1)]

α

}
. (20c)

Here α is viewed as a “continuous” variable from (0, 1/n]. We want to let α→ 0+

in (20c). To apply the l’Hospital rule, we have to prove that g is C1. Indeed, by
Theorem 6 the sequence (14a) for f = δC converges almost uniformly to the additive

generator g ∈
∗
G−n . Applying the l’Hospital rule to (20c), we obtain

lim
k→∞

Ck(u)

= g←
{

lim
α→0+

g[g←(αg(u1)) + g←(αg(u2)) + · · ·+ g←(αg(un))− (n− 1)]
α

}
= g←

[ n∑
k=1

g(uk)
]
.

It follows that C is the pointwise limit of (Ck). We will prove that the convergence is
in fact uniform. To apply the Dini theorem, we need to prove that the sequence (Ck)
for f = δC is monotone on In. We will check that this sequence is indeed increasing.
Differentiating the right hand side of (20c) with respect to α for fixed u ∈ (0, 1)n yields

dg←

dx

[
g(Bu)
α

]
dg
du

(Bu)

{α
n∑

j=1

g(uj)
g(1)[δ−k

C (uj)]
− vC(Bu)

α2

}
. (20d)

Note that
n∑

j=1

g(uj)
g(1)[δ−k

C (uj)]
→ −

n∑
j=1

g(uj),
1
nk

→ 0

as k →∞. Hence for sufficiently large k we have

α

n∑
j=1

g(uj)
g(1)[δ−k

C (uj)]
− vC(Bu) > 0,

so (20d) is also positive, completing the proof of (C1)⇒(C2).

(C2)⇒(C1). The function (18) for f = δC is the composition g← ◦ψk, where ψk(u) =∑n
j=1 gk(uj), and the functions gk, g←k are given respectively by (14a) and (14b) for

β = n. Theorem 6 yields the convergences g←k → g← and ψk(u) → ψ(u) =
∑n

j=1 g(uj).

Clearly, g← is the inverse function of the generator g ∈
∗
G−n . The sequence (Ck) converges

uniformly to [g← ◦ ψ](u) = g←[
∑n

j=1 g(uj)]. �

Theorem 7 characterizes the Archimedean n-copulas whose diagonal sections belong
to Fn

n . A result similar to the implication (C1)⇒(C2) for n = 2 was given by Sungur
and Yang [26]. For Archimedean n-quasicopulas we have the following analogue of
Theorem 7:
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Theorem 8. Let C be an n-quasicopula whose diagonal section δC is in F 2
n . Then the

following conditions are equivalent:

(C′1) C is Archimedean with additive generator whose left derivative at 1 is −1.

(C′2) C has a representation (20a).

Moreover, if both (C′1) and (C′2) are valid, then the additive generator of C is given
by (20b).

P r o o f . Analogous to the proof of Theorem 7. �

For functions f ∈
⋃

β∈(1,n) Fn
β the conclusion of Theorem 7 does not hold. It is easy

to prove that in this case we have gk → g ≡ ∞ on [0, 1), g(1) = 0 and g←k → g← ≡ 1.
However, the following turns out to be true:

Theorem 9. If f ∈
⋃

β∈(1,n) Fn
β , then the function C : In → I given by (20a) is

an Archimedean n-copula with strict additive generator g ∈
∗
G−n given by g(u) =

limk→∞ βk[1− f−k(u)].

P r o o f . Just modify the proof of (C2)⇒(C1) in Theorem 7. �

Theorems 7 and 9 suggest introducing some terminology.
The elements of Fn

n (respectively
⋃

β∈(1,n) Fn
β ) will be called diagonal generators

(respectively defective diagonal generators) of Archimedean n-copulas. To a diagonal
generator f corresponds an Archimedean n-copula Cf with strict additive generator
from

∗
F−

n . Its diagonal section δCf
equals f . This means that the function δCf

“rep-
resents our knowledge” about Cf . For a defective diagonal generator f , the situation
is different. Although we have the corresponding Archimedean n-copula Cf with strict
additive generator from

∗
G−n , the diagonal section δCf

is not f . This justifies the term
“defective”. Diagonal generators of two-dimensional Archimedean copulas were intro-
duced by Wysocki [28].

Example 4. The asymptotic representation (20a) of the copula corresponding to the
defective diagonal generator f(u) = u

√
2 is

Cf (u1, u2) = lim
k→∞

[u(
√

2)−k

1 + u
(
√

2)−k

2 − 1](
√

2)k

= u1u2.

The function f is the diagonal section of the two-dimensional copula

C(u1, u2) = exp{−[ln2 u1 + ln2 u2]1/2}.

Remark 6. A diagonal generator (or a defective diagonal generator) is also a multi-
plicative generator. The Archimedean n-copulas corresponding to a diagonal generator
and a defective diagonal generator are different. The only exception is the function
f(u) = un, generating the independent n-copula C⊥(u) =

∏n
k=1 uk.
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To end this section, we give a method of constructing families of diagonal generators
(or defective diagonal generators). Let F̌n

β be the family of all functions f ∈ F with a
representation f(u) =

∑∞
k=1 aku

k, where the sequence (ak) satisfies

ak ≥ 0,
∞∑

k=1

ak = 1 and
∞∑

k=1

kak = β (21)

for some β ∈ (1, n). The analogous family of functions f ∈ F satisfying (21) with
β = n will be denoted by F̌n

n. By the Main Theorem on absolutely monotone functions
(Feller [7]), elements of both families are absolutely monotone. We have the inclusions
F̌n

β ⊂ Fn
β and F̌n

β ⊂ Fn
n .

Example 5. The functions

f1(u) =
u

n− (n− 1)u
=

1
n− 1

∞∑
k=1

[
(n− 1)u

n

]k

for n ≥ 2

and

f2(u) = (n− 1)
u

n− u
= (n− 1)

∞∑
k=1

(
u

n

)k

for n ≥ 3

belong respectively to F̌n
n and F̌n

n/(n−1).

It turns out that by using diagonal generators (or defective diagonal generators)
one can also construct non-Archimedean copulas. Let δ : I → I satisfy the following
conditions:

(1) δ(0) = 0, δ(1) = 1,

(2) δ(u) ≤ u for all u ∈ I,

(3) 0 ≤ δ(v)− δ(u) ≤ n(v − u) for all u, v ∈ I with u ≤ v.

The functions δ have all the properties of diagonal sections of n-copulas. Therefore, we
call them diagonal functions. Set

δ̃ =
nu− δ(u)
n− 1

and τ i(k) = k + i mod n for i, k ∈ {1, . . . , n}.

Jaworski [15] proved that the function C(δ;u) : In → I corresponding to the diagonal
function δ and given by

C(δ;u) =
1
n

n∑
i=1

min[δ̃(uτ i(1)), . . . , δ̃(uτ i(n))]

is an n-copula with diagonal section δ. He called such copulas diagonal. It is easy to
check that every diagonal generator (or defective diagonal generator) satisfies (1)–(3).
Hence, apart from the Archimedean copulas Cf and Cf , the generator f also generates
the copula C(f ;u).
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5. CONCLUDING REMARKS

In this section we briefly discuss the uniqueness of representation of diagonal sections of
Archimedean n-copulas, and we shed some light on the algebraic nature of such copulas.

Let g1, g2 ∈
∗
G−1 be strict additive generators of Archimedean n-copulas C1 and C2,

respectively. Suppose that δC1 = δC2 = f , but g1 6= g2. Differentiating the equality
g←1 (ng1(u)) = g←2 (ng2(u)) and setting ϕ(u) = g

(1)
1 (u)/g(1)

2 (u), we obtain

ϕ(u) = ϕ(f(u)) for all u ∈ (0, 1]. (22)

Fix x ∈ (0, 1). Setting in (22) consecutively u = f−k(x) for k = 1, 2, . . . , we obtain
ϕ(f−k(x)) = ϕ(x), and hence limk→∞ ϕ(f−k(x)) = ϕ(x) = ϕ(1) = 1. Thus, by the
definition of additive generator, g1 = g2, contrary to assumption. We have used the

obvious pointwise convergence f−k(x) = g←
(

1
nk g(x)

)
→ 1 on (0, 1]. For g ∈

∗
G 0

1 the
situation is completely different.

Example 6. There exists ε0 > 0 such that for every ε ∈ [0, ε0) the function gε : I →
[0,∞] given by

gε(u) = g̃(u)
(
1 + ε sin[K ln(− lnu)]

)
, K = 4π/ln 2,

is a strict additive generator from the family
∗
G 0

1; it is a sine-shaped perturbation of the
generator g̃(u) = (− lnu)2 of the Gumbel 2-copula. It can be shown that the copulas Cε

corresponding to gε have the same diagonal section. This example was communicated
to the author by the referee.

It is easy to check that every Archimedean n-copula C with additive generator g
induces a one-parameter group (or semigroup) of operators FC = {ft : t ∈ T} where
ft(u) = g←[etg(u)] for all u ∈ I and t ∈ T ,where T = R (resp. T = R+). In the group
(resp. semigroup) case the function (19) is limt→0

dft(u)
dt (resp. limt→0+

dft(u)
dt ). It turns

out that the solution of the differential equation

dy
dx

=
v(y)
x

(with an initial condition) for a “regular” function v : I → [−1, 0] which has the prop-
erties of (19) is the n-monotone pseudoinverse u = g← of the additive generator of an
Archimedean n-copula C. For n = 2 this was investigated in Wysocki [29].
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