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DRIVE NETWORK TO A DESIRED ORBIT BY PINNING
CONTROL

Quanjun Wu and Hua Zhang

The primary objective of the present paper is to develop an approach for analyzing pinning
synchronization stability in a complex delayed dynamical network with directed coupling. Some
simple yet generic criteria for pinning such coupled network are derived analytically. Compared
with some existing works, the primary contribution is that the synchronization manifold could
be chosen as a weighted average of all the nodes states in the network for the sake of practical
control tactics, which displays the different influences and contributions of the various nodes
in synchronization seeking processes of the dynamical network. Furthermore, it is shown that
in order to drive a complex network to a desired synchronization state, the coupling strength
should vary according to the controller. In addition, the theoretical results about the time-
invariant network is extended to the time-varying network, and the result on synchronization
problem can also be extended to the consensus problem of networked multi-agent systems.
Subsequently, the theoretic results are illustrated by a typical scale-free (SF) neuronal network.
Numerical simulations with three kinds of the homogenous solutions, including an equilibrium
point, a periodic orbit, and a chaotic attractor, are finally given to demonstrate the effectiveness
of the proposed control methodology.

Keywords: complex dynamical network, pinning control, directed coupling, time delay,
DCN oscillator
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1. INTRODUCTION

During the last few decades, the synchronization of complex dynamical networks has
been the subject of extensive research from various fields such as biology or ecology,
physics, and control engineering. Especially, special interest has been focused on syn-
chronization and control in large-scale complex dynamical networks composing of cou-
pled chaotic oscillators with variety networks topologies such as small-world, scale-free
features and random graph, etc., [1, 2, 18, 27, 28]. Meanwhile, a great many synchroniza-
tion criteria (conditions) have also been addressed for different networks coupling such as
time delays, time varying and impulsive characters, etc, (see [9, 11, 15, 16, 19, 20, 21, 38]
and relevant references therein).

As is well known now, the real-world complex networks generally have a large number
of nodes, which lead to the fact that it is usually difficult to control such complex network
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by adding the controllers to all nodes. To reduce the number of controlled nodes, some
feedback injections have been added to a fraction of network nodes, which is known
as pinning control. As a result, some researchers have focused on the investigations
different pinning control strategies for various complex dynamical networks [5, 8, 10,
14, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 39]. For example, Wang and Chen
[29] revealed that, it is much more effective to pin some most-highly connected nodes
than to pin randomly selected nodes since the extremely inhomogeneous connectivity
distribution of scale-free networks. Li et al. [10] proposed the concept of virtual control
to display that the control actions applied to the pinned nodes can be propagated to the
rest of network nodes through the couplings in the network, and eventually, result in the
synchronization of the whole network. While Chen et al. [5] proved that, if the coupling
strength is large enough, even one single pinning controller is able to control a large
network. Furthermore, Lu [14] introduced an adaptive dynamical network by integrating
the complex network model and adaptive technique, and discussed the synchronization
of such network. Sorrentino et al. [25] presented a scheme for the numerical exploration
of pinning-controllability by the master-stability function. In addition, Zhou et al. [39]
addressed an adaptive pinning control law with the property that a sufficient number
of controlled nodes are selected arbitrarily. And later on, Yu et al. [36] concerned
with pinning performance of complex dynamical network. Other research works about
pinning control of complex networks can be seen in [8, 12, 17, 22, 23, 24, 26, 30, 31, 32,
33, 34, 35, 40, 41] and many references cited therein.

However, among the above control approaches, the controlled synchronization man-
ifold is only taken into account to be a special solution of the homogenous systems
[1, 5, 8, 10, 18, 19, 20, 22, 23, 24, 27, 29, 31, 30, 34, 35, 33, 32, 36, 38, 39, 40, 41].
To solve these problems, recently we developed a new and effective control approach to
synchronize an arbitrary given complex delayed dynamical network with directionally
coupling to a desired synchronization orbit, which could be chosen as a weighted average
of all the nodes states in the network in the aim of practical control tactics [42]. In view
of the reality, here the proposed control tactics considers the different influences and
contributions of all the nodes in synchronization seeking processes of the complex de-
layed dynamical network. On the other hand, most previous studies focused mainly on
pinning synchronization for time-invariant dynamical networks, i. e., the coupling con-
figuration matrix is invariable. However, time-varying networks exist in a wide variety
of natural and synthetic system [20], such as telecom communication networks, inter-
personal relationship networks, and social economic networks. Hence, it is necessary to
study pinning synchronization issue in time-varying complex dynamical networks. In
addition, a topic closely related to synchronization is consensus [6, 7], and it is clear
that the consensus is a special case of synchronization. Thus, all the results concerning
synchronization can be applied to consensus problem. This paper is an attempt toward
these goals. Therefore, these studies are especially important to understand dynamical
behaviors and practical architectures of more realistic complex networks.

Motivated by the aforementioned comments, the main contribution of this work is
to propose an approach for analyzing pinning stability in a complex dynamical complex
delayed dynamical network comprised of linearly coupled identical oscillator systems. We
intend to design an appropriate feedback controller such that the states of the dynamical
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network exponentially synchronize to a desired synchronization orbit, which is presented
in terms of a weighted average of all the nodes states in the network. In addition, it
is found that in order to make all of the nodes in the dynamical network synchronize
to a desired synchronization orbit, the choice of the coupling strength changes with the
choice of the controller. And some sufficiency conditions for synchronization stability
of such directed network are presented. Furthermore, the theoretic results are extended
to the time-varying complex networks, as well as the consensus of complex networks.
Finally, simulations of a typical scale-free (SF) coupled neuronal network are given to
verify the correctness of the theoretical results.

The organization of the paper is as follows. In Section 2, some mathematical prelimi-
naries relevant to complex delayed dynamical network are first introduced, and then the
problem formulations for pinning synchronization seeking in a general mode of complex
dynamical network with directionally coupling are presented. In Section 3, some sim-
ple yet generic sufficient conditions for pinning synchronization are derived analytically
based on the stability theory of dynamical system. These criteria can be easily used to
synchronize an arbitrary given delayed dynamical network to a desired synchronization
orbit. In Section 4, a typical scale-free (SF) coupled network composing of delayed cel-
lular neuron (DCN) oscillators is used as an example to illustrate the developed pinning
control strategy, and numerical simulations are also done to demonstrate the effective-
ness of the proposed control techniques. Finally, some concluding remarks are given in
Section 5.

2. PRELIMINARIES AND FORMULATIONS

Throughout this paper, the following notations and definitions will be used.
Let R = (−∞,+∞) be the set of real numbers, R+ = [0,+∞) be the set of non-

negative real numbers, and Z+ = {1, 2, . . .} be the set of positive integer numbers. For
the vector u ∈ Rn, u> denotes its transpose. The norm of the vector u is defined as
‖u‖ = (u>u)1/2. Rn×n stands for the set of n×n real matrices. In ∈ Rn×n is the identity
matrix of order n. For the matrices A ∈ Rn×n, As = (A + A>)/2 is its symmetric part,
λmin(A) and λmax(A) denote its minimum and maximum eigenvalue, respectively. For
the symmetric matrices A ∈ Rn×n, A > 0 (A ≥ 0) means that A is positive definite
(semi-positive definite). The spectral norm of A is defined as ‖A‖ = [λmax(A>A)]1/2.
Matrix dimensions, if not explicitly stated, are assumed to be compatible for algebraic
operations. For A = (aij) ∈ Rn×m, B = (bij) ∈ Rp×q, the Kronecker product of A and
B is defined as

A⊗B =

 a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 .

For the later use, we need the following lemmas.

Lemma 2.1. (See Chen, Liu, and Lu [5]) If A = (aij) ∈ Rn×n is an irreducible matrix
with Rank(A) = n − 1 and satisfying aij = aji, if i 6= j, and

∑n
j=1 aij = 0, for
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i = 1, 2, . . . , n. Then, all eigenvalues of the matrix

Ã =


a11 − ε a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


are negative for any positive constant ε.

Lemma 2.2. (See Zhou and Chen [37]) Let v(t) > 0 for t ∈ R, τ ∈ [0,+∞) and t0 ∈ R.
Suppose that

v̇(t) ≤ −av(t) + b
(

sup
t−τ≤s≤t

v(s))
)
,

for t > t0. If a > b > 0, then there exist constants γ > 0 and k > 0, such that

v(t) ≤ ke−γ(t−t0), for t > t0.

Now we consider a general model of time-varying complex dynamical network con-
sisting of N linearly coupled identical nodes, where each node of the network is an
n-dimensional nonautonomous dynamical system with time-varying delays. The state
equations of the whole network are described by the following differential equations:

ẋi(t) = f(t, xi(t), xi(t− τ(t))) + c

N∑
j=1

bij(t)Γ(t)xj(t), i = 1, 2, . . . , N, (1)

in which xi(t) = (xi1(t), . . . , xin(t))> ∈ Rn are the state variables of the ith dynami-
cal node, f : R × Rn × Rn → Rn is continuously vector-valued function governing the
dynamics of isolated nodes, the time delay τ(t) may be unknown but is bounded by a
known constant, i. e., 0 ≤ τ(t) ≤ τ , the positive constant c is the coupling strength,
Γ(t) = (γkl(t))n×n ∈ Rn×n is the inner-connecting matrix of the network at time
t, B(t) = (bij(t))N×N is the coupling configuration matrix representing the coupling
strength and the topological structure of the network at time t, in which bij(t) is de-
fined as follows: If there is a connection from node i to node j (j 6= i) at time t, then
bij(t) 6= 0; otherwise, bij(t) = 0 (j 6= i). Without loss of generality, we further assume
that the coupling matrix B possesses the following properties [3, 4, 42]:

N∑
j=1

bij(t) = 0, bij(t) ≥ 0 (i 6= j, i = 1, 2 . . . , N). (2)

As stated in literature [5, 9, 15], the coupling matrix B(t) can be regarded as the
Laplacian matrix of a weighted graph with a directed spanning tree, it has an eigenvalue
0 with multiplicity 1, and all the other eigenvalues have negative real parts at any time
t. It should be noticed that, the coupling configuration matrix B(t) is not necessarily



154 Q.J. WU AND H. ZHANG

a symmetrical or irreducible matrix, and the inner connecting matrix Γ is not assumed
to be diagonal or positive definite. Obviously, the network (1) is a generalization of the
model discussed in [5, 10, 27, 28]. As usual, the model (1) is also called as the general
time-varying complex delayed dynamical network.

Next we consider an isolated dynamical node in the model (1), which is described by
the following form of n-dimensional differential equations with time-varying delays [3]:

ẋ(t) = f(t, x(t), x(t− τ(t))) = Ax(t) + g(t, x(t), x(t− τ(t))), (3)

in which x(t) = (x1(t), . . . , xn(t))> ∈ Rn, A ∈ Rn×n, and the vector-valued function
g(t, x(t), x(t− τ(t))) = [g1(t, x(t), x(t− τ(t))), . . ., gn(t, x(t), x(t− τ(t)))]> ∈ Rn satisfies
uniform Lipschitz condition with respect to the time t, i. e.,

(A1) For any x(t) = (x1(t), . . . , xn(t))> ∈ Rn, y(t) = (y1(t), . . . , yn(t))> ∈ Rn, there
exist constants kij > 0, and lij > 0 satisfying∣∣∣gi(t, x(t), x(t− τ(t)))− gi(t, y(t), y(t− τ(t)))

∣∣∣
≤

n∑
j=1

(
kij

∣∣xj(t)− yj(t)|+ lij |xj(t− τ(t))− yj(t− τ(t))
∣∣), i = 1, . . . , n. (4)

Remark 2.3. In general, we are mainly interested in control and synchronization of
complex networks composing of coupled dissipative dynamical systems, where the un-
coupled dissipative dynamical system may possess an equilibrium point, a periodic orbit,
or even a chaotic attractors [29]. Therefore, we always assume that all the solutions of
(3) are bounded. And it is not difficult to check that the class of systems in the form of
Eqs. (3) – (4) includes almost all the well-known chaotic systems without or with time
delays such as the Lorenz system, Chen system, Chua’s circuit, Rössler system as well
as the delayed Hopfied neural networks, delayed Mackey–Glass system or delayed Ikeda
equations and delayed cellular neural networks (CNNs), and so on (see [3, 42] and their
references).

Now we shall address pinning synchronization in complex delayed dynamical network
(1) by feedback controllers. The primary objective here is to design and implement an
appropriate pinning strategy on a small fraction ε (0 < ε � 1) of the nodes in network
(1) such that all the states of the controlled network will exponentially synchronize to a
desired synchronization state s(t), which is presented in terms of a weighted average of
all the states in the network. More concretely, this is to say,

lim
t→+∞

‖xi(t)− s(t)‖ = 0, s(t) =
N∑

k=1

ξkxk(t), i = 1, 2 . . . , N, (5)

where xi(t) (i = 1, 2, . . . , N) are the solutions of the delayed dynamical network (1), and
ξk (k = 1, 2, . . . , N) can be chosen such that

∑N
k=1 ξk = 1 and ξk > 0 for the purpose of

practical control strategy [3, 42]. In this case, the controlled network can be described
as

ẋi(t) = Axi(t) + g(t, xi(t), xi(t− τ(t))) + c

N∑
j=1

bij(t)Γ(t)xj(t) + Ui, i = 1, . . . , N. (6)
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Remark 2.4. Distinctly, it turns out that the developed control tactics consider both
the different influences and contributions of all nodes in synchronization seeking pro-
cesses. In general, among most previous studies, the controlled synchronization state
is only taken into account to be a special solution of the homogenous systems, that is,
ṡ(t) = f(s(t)) [1, 4, 5, 8, 10, 18, 19, 20, 22, 23, 24, 27, 29, 31, 30, 34, 35, 33, 32, 36,
38, 39, 40, 41]. Or consider an average of all the nodes states in the networks, namely,
s(t) = 1

N

∑N
k=1 xk(t) [9, 37]. However, it is well known that, the synchronization of

the networks not only depends on the topology of the entire networks, but also heavily
depends on the dynamic of each node [3, 42]. In this paper, we present an effective
control approach to synchronize an arbitrary given complex delayed dynamical network
with directed coupling to a desired synchronization orbit, which could be chosen as a
weighted average of all the nodes states in the network in the aim of practical control
tactics, that is to say, s(t) =

∑N
k=1 ξkxk(t) with

∑N
k=1 ξk = 1. In addition, the con-

trolled synchronization state s(t) here may be an equilibrium point, a periodic orbit, or
a chaotic attractor, among the others [3, 42].

3. PINNING SYNCHRONIZATION

3.1. Time-invariant dynamical network

When B(t), Γ(t) are constant matrices, network (1) becomes a time-invariant dynamical
network

ẋi(t) = f(t, xi(t), xi(t− τ(t))) + c

N∑
j=1

bijΓxj(t), i = 1, 2, . . . , N, (7)

Without loss of generality, let the nodes i1, i2, . . . , il be selected as the pinned nodes
and rearrange the order of the nodes in the network (7) such that the first l = [εN ]
nodes are pinned or controlled [29]. Let{

Ui = −di(xi(t)− s(t)), 1 ≤ i ≤ l,

Ui = 0, (l + 1) ≤ i ≤ N,
(8)

where di are constants called the control gains. Substituting (8) into (7), we have
ẋi(t) = Axi(t) + g(t, xi(t), xi(t− τ(t))) + c

∑N
j=1 bijΓxj(t)

−di(xi(t)− s(t)), 1 ≤ i ≤ l,

ẋi(t) = Axi(t) + g(t, xi(t), xi(t− τ(t))) + c
∑N

j=1 bijΓxj(t),
(l + 1) ≤ i ≤ N.

(9)

By introducing the synchronization error ei(t) = xi(t) − s(t) (i = 1, 2, . . . , N), then
the error dynamical system is governed as follows:

ėi(t) = Aei(t) +
(
g(t, xi(t), xi(t− τ(t)))− g(t, s(t), s(t− τ(t)))

)
+c

∑N
j=1 bijΓej(t)− diei(t) + J, 1 ≤ i ≤ l,

ėi(t) = Aei(t) +
(
g(t, xi(t), xi(t− τ(t)))− g(t, s(t), s(t− τ(t)))

)
+c

∑N
j=1 bijΓej(t) + J, (l + 1) ≤ i ≤ N,

(10)
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where

J = g
(
t, s(t), s(t− τ(t))

)
−

N∑
k=1

ξkg(t, xk(t), xk(t− τ(t)))− c

N∑
j=1

N∑
k=1

ξkbkjΓej(t).

We define

e(t) =


e1(t)
e2(t)

...
eN (t)

 , J̃ =


J
J
...
J

 ,

and

g̃(t) =


g(t, x1(t), x1(t− τ(t)))− g(t, s(t), s(t− τ(t)))
g(t, x2(t), x2(t− τ(t)))− g(t, s(t), s(t− τ(t)))

...
g(t, xN (t), xN (t− τ(t)))− g(t, s(t), s(t− τ(t)))

 .

Let

A = (IN ⊗A), B = (B ⊗ Γ), I = (IN ⊗ In), D = (D ⊗ In),

where the matrix D = diag(d1, . . . , dl, 0, . . . , 0︸ ︷︷ ︸
N−l

), and the notation ⊗ indicates the Kro-

necker product of both matrices. Thus, the error dynamical system (10) can be given
by

ė(t) = Ae(t) + g̃(t) + cBe(t) + J̃ . (11)

Suppose that λmin(Γs) 6= 0 and ‖Γ‖ ≥ 0. In this section, let the matrix B̃Λ be defined
as B̃Λ def= Λ

1
2 B̃Λ−

1
2 + Λ−

1
2 B̃>Λ

1
2 − ∆, where the weight matrix Λ = diag(ξ1, . . . , ξN ),

Λ
1
2 = diag(

√
ξ1, . . . ,

√
ξN ), Λ−

1
2 = (Λ

1
2 )−1, B̃ = (b̃ij)N×N , ∆ = diag(δ1, . . . , δN ) with

b̃ij =

{
bij‖Γ‖, i 6= j,

biiλmin(Γs), i = j,
δi =

N∑
j=1

[√ ξi

ξj
bij +

√
ξj

ξi
bji

]
.

Then the matrix B̃Λ is a symmetrical irreducible matrix with zero-sum and nonnegative
off-diagonal elements. This implies that zero is an eigenvalue of B̃Λ with multiplicity 1,
and all the other eigenvalues of B̃Λ are strictly negative. Its eigenvalues can be ordered
as 0 = λ1 > λ2 ≥ · · · ≥ λN . Furthermore, the eigenvalues of the matrix (B̃Λ − 2

cD) can
be ordered as 0 > µ1 ≥ µ2 ≥ . . . ≥ µN .

Theorem 3.1. Consider the controlled complex delayed dynamical network (9). As-
sume that, the following condition is satisfied in addition to (A1),

(A2) There exists a number ε ∈ [0, 1], such that α + cµ1 + β < 0,
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where

α = λmax(2As + P ) + cλmax(∆),
β = max1≤r≤n

∑n
s=1 l

2(1−ε)
sr ,

P = diag(p1, p2, . . . , pn) with pr =
∑n

s=1(k
2ε
rs + l2ε

rs + k
2(1−ε)
sr ).

Then the controlled complex delayed dynamical network (9) is exponentially synchro-
nized to s(t) =

∑N
k=1 ξkxk(t) with

∑N
k=1 ξk = 1 (ξk > 0).

P r o o f . Let v(t) = (v>1 (t), v>2 (t), . . . , v>N (t))> = (
√

ξ1e
>
1 (t),

√
ξ2e
>
2 (t), . . . ,

√
ξNe>N (t))>,

construct a Lyapunov function as

V (t) =
1
2
e>(t)(Λ⊗ In)e(t) =

1
2

N∑
i=1

ξie
>
i (t)ei(t)

=
1
2

N∑
i=1

v>i (t)vi(t) =
1
2
v>(t)(IN ⊗ In)v(t). (12)

Differentiating V (t) with respect to time along the solution of Eqs. (10), we can get

V̇ (t) =
N∑

i=1

ξie
>
i (t)ėi(t)

=
N∑

i=1

ξie
>
i (t)

{
Aei(t) +

(
g(t, xi(t), xi(t− τ(t)))− g(t, s(t), s(t− τ(t)))

)
+c

N∑
j=1

bijΓej(t) + J
}
− e>(t)

(
(ΛD)⊗ In

)
e(t)

≤
N∑

i=1

ξie
>
i (t)

(A + A>

2

)
ei(t) +

N∑
i=1

n∑
r=1

ξi|eir(t)| · |gr(t, xi(t), xi(t− τ(t)))

−gr(t, s(t), s(t− τ(t)))|+ c

N∑
i=1

ξi

N∑
j=1,j 6=i

bije
>
i (t)Γej(t)

+c

N∑
i=1

ξibiie
>
i (t)

(Γ + Γ>

2

)
ei(t)− v>(t)(D ⊗ In)v(t).

By employing Condition (A1), we have

V̇ (t) ≤
N∑

i=1

ξie
>
i (t)Asei(t) +

N∑
i=1

n∑
r=1

ξi|eir(t)|
n∑

s=1

(
krs|eis(t)|+ lrs|eis(t− τ(t))|

)
+c

N∑
i=1

N∑
j=1,j 6=i

ξibij‖Γ‖ · ‖ei(t)‖ · ‖ej(t)‖+ c

N∑
i=1

ξibiiλmin(Γs)e>i (t)ei(t)

−v>(t)(D ⊗ In)v(t)
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≤
N∑

i=1

ξie
>
i (t)Asei(t) +

N∑
i=1

n∑
r=1

n∑
s=1

ξi

[
(kε

rs|eir(t)|) · (k1−ε
rs |eis(t)|)

+(lεrs|eir(t)|) · (l1−ε
rs |eis(t− τ(t))|)

]
+ c

N∑
i=1

ξi

N∑
j=1

b̃ij‖ei(t)‖ · ‖ej(t)‖

−v>(t)(D ⊗ In)v(t).

By using the inequality xy ≤ 1
2 (x2 + y2), we can obtain

V̇ (t) ≤
N∑

i=1

ξie
>
i (t)Asei(t) +

1
2

N∑
i=1

n∑
r=1

n∑
s=1

ξi

[(
k2ε

rse
2
ir(t) + k2(1−ε)

rs e2
is(t)

)
+

(
l2ε
rse

2
ir(t) + l2(1−ε)

rs e2
is(t− τ(t))

)]
+ c

N∑
i=1

N∑
j=1

ξib̃ij‖e>i (t)‖ · ‖ej(t)‖

−v>(t)(D ⊗ In)v(t)

≤
N∑

i=1

ξie
>
i (t)Asei(t) +

1
2

N∑
i=1

n∑
r=1

n∑
s=1

ξik
2ε
rse

2
ir(t) +

1
2

N∑
i=1

n∑
r=1

n∑
s=1

ξik
2(1−ε)
rs e2

is(t)

+
1
2

N∑
i=1

n∑
r=1

n∑
s=1

ξil
2ε
rse

2
ir(t) +

1
2

N∑
i=1

n∑
r=1

n∑
s=1

ξil
2(1−ε)
rs e2

is(t− τ(t))

+ce>(t)
(
(ΛB̃)⊗ In

)
e(t)− v>(t)(D ⊗ In)v(t)

≤
N∑

i=1

ξie
>
i (t)Asei(t) +

1
2

N∑
i=1

n∑
r=1

n∑
s=1

ξik
2ε
rse

2
ir(t) +

1
2

N∑
i=1

n∑
s=1

n∑
r=1

ξik
2(1−ε)
sr e2

ir(t)

+
1
2

N∑
i=1

n∑
r=1

n∑
s=1

ξil
2ε
rse

2
ir(t) +

1
2

N∑
i=1

n∑
s=1

n∑
r=1

ξil
2(1−ε)
sr e2

ir(t− τ(t))

+
1
2
ce>(t)

(
(ΛB̃ + B̃>Λ)⊗ In

)
e(t)− v>(t)(D ⊗ In)v(t).

Based on the definition of the matrix B̃Λ, we further have

V̇ (t) ≤
N∑

i=1

ξie
>
i (t)Asei(t) +

1
2

N∑
i=1

n∑
r=1

ξi

{[ n∑
s=1

(k2ε
rs + l2ε

rs + k2(1−ε)
sr )

]
e2
ir(t)

+
n∑

s=1

l2(1−ε)
sr e2

ir(t− τ(t))
}

+
1
2
ce>(t)(Λ

1
2 ⊗ In)>

(
(B̃Λ + ∆)⊗ In

)
·(Λ 1

2 ⊗ In)e(t)− v>(t)(D ⊗ In)v(t)
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≤
N∑

i=1

ξie
>
i (t)Asei(t) +

1
2

N∑
i=1

n∑
r=1

ξi

{
pre

2
ir(t) +

n∑
s=1

l2(1−ε)
sr e2

ir(t− τ(t))
}

+
1
2
cv>(t)(B̃Λ ⊗ In)v(t) +

1
2
cλmax(∆)v>(t)(IN ⊗ In)v(t)

−v>(t)(D ⊗ In)v(t)

≤ 1
2

N∑
i=1

ξie
>
i (t)(2As + P )ei(t) + βV (t− τ(t)) +

1
2
cv>(t)(B̃Λ ⊗ In)v(t)

+
1
2
cλmax(∆)v>(t)(IN ⊗ In)v(t)− v>(t)(D ⊗ In)v(t)

≤
[
λmax(2As + P ) + cλmax(∆)

]
V (t) + βV (t− τ(t))

+
1
2
cv>(t)(B̃Λ ⊗ In)v(t)− v>(t)(D ⊗ In)v(t).

Therefore, we can get

V̇ (t) ≤ αV (t) + βV (t− τ(t)) +
1
2
cv>(t)(B̃Λ ⊗ In)v(t)− v>(t)(D ⊗ In)v(t)

=
1
2
cv>(t)

[(α

c
IN + B̃Λ − 2

c
D

)
⊗ In

]
v(t) + βV (t− τ(t)). (13)

Based on Lemma 2.1, we obtain 0 > µ1 ≥ µ2 ≥ . . . ≥ µN . Since (B̃Λ − 2
cD) is a

symmetrical matrix, there exists a unitary matrix U = (u1, . . . , uN ) with UU> = IN

such that

(B̃Λ − 2
c
D) = Udiag(µ1, µ2, . . . , µN )U>. (14)

Let z(t) = (z>1 (t), z>2 (t), . . . , z>N (t))>, and introduce a transformation z(t) = (U> ⊗
In)v(t). Then

z>(t)z(t) = v>(t)(U> ⊗ In)>(U> ⊗ In)v(t) = v>(t)(UU> ⊗ In) =
1
2
V (t). (15)

According to Eqs. (14) – (15), and the property of the Kronecker product of the
matrices, we obtain

1
2
cv>(t)

[(α

c
IN + B̃Λ − 2

c
D

)
⊗ In

]
v(t)

=
1
2
cv>(t)(U ⊗ In)

{
diag

[α

c
+ µ1,

α

c
+ µ2, . . . ,

α

c
+ µN

]
⊗ In

}
(U> ⊗ In)v(t)

=
1
2
cz>(t)

{
diag

[α

c
+ µ1,

α

c
+ µ2, . . . ,

α

c
+ µN

]
⊗ In

}
z(t)

≤ 1
2
c(

α

c
+ µ1)z>(t)z(t)

= (α + cµ1)V (t). (16)
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Thus, by (13) and (16), we have

V̇ (t) ≤ (α + cµ1)V (t) + βV (t− τ(t)) ≤ (α + cµ1)V (t) + β sup
t−τ≤s≤t

V (s). (17)

It follows from Lemma 2.2 and Condition (A2) that the proof of Theorem 3.1 is complete.
�

Remark 3.2. Theorem 3.1 reveals that, for a given dynamical network (7) and the se-
lected weight matrix Λ, exponential synchronization of the controlled delayed dynamical
network (9) can be achieved by a suitable design of the control gain di such that the
condition of Theorem 3.1 is satisfied. It turns out that synchronization of the controlled
delayed dynamical network is heavily dependent on control gain. This point will be
further illustrated through the numerical simulations in the next section.

Finally, specify the weighted matrix Λ = diag( 1
N , . . . , 1

N ), the inner connecting matrix
Γ = In, and the coupling matrix B be a symmetrical matrix, then its eigenvalues can be
ordered as 0 = λ1 > λ2 ≥ · · · ≥ λN . It follows that B̃Λ = 2B, ∆ = diag(0, 0, . . . , 0), and
B̃Λ − 2

cD = 2(B − 1
cD). Furthermore, it is easy to know the eigenvalues of the matrix

2(B − 1
cD) satisfy 0 > µ1 ≥ µ2 ≥ . . . ≥ µN . Thus, we can obtain the following result

can be derived from Theorem 3.1 immediately:

Corollary 3.3. Let P and β be precisely the same as those of Theorem 3.1, and assume
that, Condition (A1) holds, we have the following condition:

(Ã2) λmax(2As + P ) + cµ1 + β < 0.

Then the controlled complex delayed dynamical network (9) is globally exponentially
synchronized to s(t) = 1

N

∑N
i=1 xi(t).

Remark 3.4. Theorem 3.1 and Corollary 3.3 have an advantage that simple and ef-
fective feedback controllers can be provided to synchronize a given delayed dynamical
network to a desired synchronization state. Furthermore the synchronization state con-
sidered here may be not a special solution of the homogenous systems. From condition
(Ã2) in Corollary 3.3, it is easy to verify that if

− cµ1 > λmax(2As + P ) + β (18)

then condition (Ã2) is satisfied with properly coupling strength c. It should be noted
that, here µ1 is determined by the topological structure of the network, the coupling
strength and the control gains. Therefore, it is clear from Corollary 3.3 that if the
coupling strength c is selected properly, then the coupled delayed network dynamical
network (9) is exponentially synchronized to a desired synchronization state.

Remark 3.5. If the controller is revise as [5, 36]:

Ui = −cdi(xi(t)− s(t)),
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then rewrite (18) as

c > −λmax(2As + P ) + β

µ1
, (19)

where µ1 is the maximum eigenvalue of the matrix B̃Λ − 2D, which is irrelevant to the
coupling strength c. Therefore, it is clear from (19) that if the coupling strength c is
sufficiently large, then the network (9) is synchronized to a desired orbit, which is in
accordance with the conclusion in [5]. It should be noted that the theoretical coupling
strength given in (19) is too conservative, usually much smaller than the needed values.
In general, it is desirable to make the coupling strength as small as possible in practice,
while it is quite large in theory. Furthermore, from (18) and (19), we can see that the
choice of the coupling strength c is related to the choice of the controller Ui.

Remark 3.6. In particular, if l = 1, it can provide a simple and effective strategy to
pin a given delayed dynamical network to a desired orbit by a single feedback controller.
In addition, the conditions of Theorem 3.1 and Corollary 3.3 are all sufficient conditions
but not necessary, i. e., error system may remain exponentially stable, although the
conditions of Theorem 3.1 and Corollary 3.3 may fail.

Consider the time-invariant dynamical network

ẋi(t) = f(t, xi(t), xi(t− τ(t))) + c

N∑
j=1

bijΓxj(t), i = 1, 2, . . . , N. (20)

A topic closely related to synchronization is consensus. The basic idea of consensus
is that each agent updates its state based on the states of its neighbors and its own
such that the states of all agents will converge to a common value. The interaction rule
that specifies the information exchange between an agent and its neighbors is called the
consensus protocol. Let (f = 0,Γ = In, n = 1), then network (20) can be reduced as

ẋi(t) = c

N∑
j=1

bijxj(t), i = 1, 2, . . . , N. (21)

It is clear that the consensus is a special case of synchronization. Therefore, all the
results concerning synchronization can apply to consensus. Choose the controllers as
(8), substituting (8) into (21), we have

ẋi(t) = c

N∑
j=1

bijxj(t)− di(xi(t)− s(t)), 1 ≤ i ≤ l,

ẋi(t) = c

N∑
j=1

bijxj(t), (l + 1) ≤ i ≤ N.

(22)

It was shown in [15] that under some assumptions, we can obtain

lim
t→∞

‖xi(t)−
N∑

k=1

ξkxk(t)‖ = 0, i = 1, 2, . . . , N, (23)
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where [ξ1, . . . , ξN ] is the left eigenvector of B corresponding to the eigenvalue 0 satisfying∑N
k=1 ξk = 1.
As in the consensus problem

N∑
k=1

ξkxk(t) =
N∑

k=1

ξkxk(0), (24)

for all t > 0, we get

lim
t→∞

|xi(t)−
N∑

k=1

ξkxk(0)| = 0, i = 1, 2, . . . , N. (25)

When ξ1 = ξ2 = · · · = ξN = 1
N ,

∑N
k=1 xk(0)/N = Ave(x) = s is an invariant quantity,

then in this case the consensus should be called as the average consensus problem.
Let the matrix B̃ be defined as B̃ = B + B> − ∆, where ∆ = diag(δ1, . . . , δN ) with
δi =

∑N
j=1[bij + bji]. Then the matrix B̃ is a symmetrical irreducible matrix with

zero-sum and nonnegative off-diagonal elements. This implies that zero is an eigenvalue
of B̃ with multiplicity 1, and all the other eigenvalues of B̃ are strictly negative. Its
eigenvalues can be ordered as 0 = λ1 > λ2 ≥ · · · ≥ λN . Furthermore, the eigenvalues
of the matrix (B̃ − 2

cD) can be ordered as 0 > µ1 ≥ µ2 ≥ . . . ≥ µN , where D =
diag(d1, . . . , dl, 0, . . . , 0︸ ︷︷ ︸

N−l

). Then we have the following results, which is an immediate

consequence of Theorem 3.1.

Theorem 3.7. Consider the controlled dynamical network (21). If the following con-
dition is satisfied

λmax(∆) + µ1 < 0

then the controlled complex delayed dynamical network (8) is exponentially synchronized
to s(t) =

∑N
k=1 ξkxk(t) with

∑N
k=1 ξk = 1 (ξk > 0).

Then the controlled network (21) achieve average consensus globally exponentially to
Ave(x) =

∑N
k=1 xk(0)/N .

P r o o f . The proof is omitted here since it can easily be deduced from Theorem 3.1.
�

3.2. Time-varying dynamical network

In this section, we consider a time-varying complex dynamical network without delays
for the sake of simplicity, which is described as

ẋi(t) = f(xi(t)) + c

N∑
j=1

bij(t)Γ(t)xj(t), i = 1, 2, . . . , N. (26)
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When the network achieve synchronization, the coupling term c
∑N

j=1 bij(t)Γ(t)xj(t)
in Eq. (26) will vanish, it then follows that the synchronization state can be translated
into

ṡ(t) =
N∑

k=1

ξkẋk(t) =
N∑

k=1

ξkf(xk(t)) = f(s(t)). (27)

Similar to the former section, choose the controllers as{
Ui = −di(xi(t)− s(t)), 1 ≤ i ≤ l,

Ui = 0, (l + 1) ≤ i ≤ N.
(28)

Substituting (28) into (26), we have
ẋi(t) = f(xi(t)) + c

N∑
j=1

bij(t)Γ(t)xj(t)− di(xi(t)− s(t)), 1 ≤ i ≤ l,

ẋi(t) = f(xi(t)) + c
N∑

j=1

bij(t)Γ(t)xj(t), (l + 1) ≤ i ≤ N.

(29)

By introducing the synchronization error ei(t) = xi(t) − s(t) (i = 1, 2, . . . , N), then
the error dynamical system is governed as follows:

ėi(t) = f(ei(t) + s(t))− f(s(t)) + c
N∑

j=1

bij(t)Γ(t)ej(t)− diei(t), 1 ≤ i ≤ l,

ėi(t) = f(ei(t) + s(t))− f(s(t)) + c
N∑

j=1

bij(t)Γ(t)ej(t), (l + 1) ≤ i ≤ N.

(30)

We define

x(t) =


x1(t)
x2(t)

...
xN (t)

 , e(t) =


e1(t)
e2(t)

...
eN (t)

 , S(t) =


s1(t)
s2(t)

...
sN (t)

 .

Then, (30) can be rewritten as

ė(t) = Σ(t, e(t)), (31)

and the Jacobian of Σ(t, e) at e = 0 is shown as

DΣ(t, 0)

=


Df(s(t)) + b11(t)Γ(t) b12(t)Γ(t) · · · b1N (t)Γ(t)

b21(t)Γ(t) Df(s(t)) + b22(t)Γ(t) · · · b2N (t)Γ(t)
...

...
. . .

...
bN1(t)Γ(t) Df(s(t)) + bN2(t)Γ(t) · · · Df(s(t)) + bNN (t)Γ(t)


−diag{d1, d2, . . . , dl, 0, . . . , 0}.

Then we have the following result.
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Theorem 3.8. Suppose that Σ : Φ → RnN is continuously differentiable on Φ = {e ∈
RnN |‖e‖ < ρ}. The controlled time-varying complex dynamical network (29) is expo-
nentially synchronized to S(t) if there exist two symmetric positive definite matrices, F ,
P ∈ RnN×nN , such that

P
(
DΣ(t, 0)

)
+

(
DΣ(t, 0)

)>
P ≤ −F ≤ −l1InN ,

and

diag{df(y1(t)− df(s(t))), . . . , df(yN (t)− df(s(t)))}>P

+ Pdiag{df(y1(t)− df(s(t))), . . . , df(yN (t)− df(s(t)))} ≤ l2InN < l1InN ,

where l1 > 0, y(t)− S(t) ∈ Φ.

P r o o f . The proof of Theorem 3.8 is similar to the proof of Theorem 2 in [20] and is
omitted from this paper due to the limitation of space. �

4. ILLUSTRATIVE EXAMPLE

Recently, the collective dynamics analysis of complex networks has led to a host of
interesting effects. In particular, the study on controlling the dynamics of a network
and guiding it to a desired state, such as, an equilibrium point, a periodic orbit, or a
chaotic attractor of the network has become an interesting and important direction in
this research field.

In order to verify the effectiveness of the theoretical results, some feedback controllers
designed in Section 4 are applied to dealing with the problem of pinning synchronization
in a prototype composed of the representative neuronal models with scale-free (SF)
character [1, 2], where numerical examples are given to verify and also visualize the
theoretical results.

For convenience of explicit statement on the theoretical results, we consider a scale-
free (SF) network with 30 delayed cellular neuron oscillators. It is well known that the
connectively degree distribution in the scale-free networks obeys the power law form
[10, 29]. We here take the parameters N = 30, m = m0 = 3 and γBA = 3, then the
coupling matrix A = Asf of the network can be randomly generated by the SF model.

As is well known, the delayed neural network model has become a classic and popular
model for analysis of neuronal activity and has also been intensively investigated in the
last decade due to its intrinsic and complex dynamical behavior such as the period-
doubling bifurcation and chaos [13]. The delayed neural network with two neurons are
described by the following differential equations:

ẋ(t) = Ax(t) + g(t, x(t), x(t− τ(t))), (32)

where x(t) = (x1(t), x2(t))>, g(t, x(t), x(t − τ(t))) = Mg̃(x(t)) + Ng̃(x(t − τ(t))) with
g̃(x(t)) = (tanh(x1(t), tanh(x2(t)))>, τ(t) = 1, and

A =
(
−1.0 0

0 −1.0

)
, M =

(
2.0 −0.1
−5.0 m22

)
, N =

(
−1.5 −0.1
−0.2 n22

)
.
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For simplicity, we always consider the weighted matrix Λ = diag( 1
N , . . . , 1

N ), the inner
connecting matrix Γ = I2, and the coupling matrix B be a symmetrical matrix. Three
pinning cases will be given below:

Example 4.1. Pinning a network to its equilibrium point. It is easy to know that
with the parameters m22 = 0.2 and n22 = 0.3, Eq. (32) has three equilibrium points
[13]: x−1 = (−0.37614, 2.35978), x0 = (0, 0), x1 = (0.37614,−2.35978). Without
loss of generality, the simulation is pinning the network to its equilibrium state s =
(−0.37614, 2.35978)>. Here g satisfies condition (A1) with k11 = 2, k12 = 0.1, k21 =
−5.0, k22 = 0.2, l11 = 1.5, l12 = 0.1, l21 = 0.2, l22 = 0.3, and hence we can get
P = diag(10.7, 6), β = 1.7, λmax(2As +P ) = 8.7. It is easy to verify that if the following
condition hold,

10.4 + cµ1 < 0, (33)

then the condition of Corollary 3.3 is satisfied, which means the controlled delayed
dynamical network (9) is exponentially synchronized to s(t).

We select feedback controllers to pin three nodes chosen randomly, and we can get
µ1 = −2.132. Here take the coupling strength c = 5.0, the pinned nodes’ control
gains di = d = 0.5. Figure 1 visualizes the change process of the state variables of the
controlled delayed dynamical network (9), which satisfies the conditions of Corollary 3.3.
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Fig. 1. Pin 30 delayed cellular neuron oscillators to its equilibrium.

Example 4.2. Pinning a network to a periodic orbit. As is well known, for
m22 = 4.5 and n22 = −2.5, the numerical integration of Eqs. (32) shows that the
neuron oscillator exhibits a periodic behavior, as shown in Figure 2. Figure 3 shows the
phase portrait, accordingly. In this simulation, we select randomly three nodes to be
pinned, the rest parameters are chosen as the the same as that in Figure 1. Figure 4 is
the simulation result corresponding to this situation, which shows that the network can
be pinned to periodic orbit s(t) by some feedback controllers.
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Fig. 2. A periodic orbit of the delayed cellular neuron oscillator.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

s(t)

Fig. 3. The phase portrait of the periodic orbit.

Example 4.3. Pinning a network to a chaotic attractor. It is known that with
the parameters m22 = 4.5 and n22 = −4.45, the solution trajectory s(t) = (s1(t), s2(t))>

of the system (32) approaches a chaotic attractor, as shown in Figure 5, where the initial
value is taken as (x1(0), x2(0))> = (−0.4, 2.2)>. Here choose three nodes randomly to
be controlled, and let the control parameters are the same as that in Figure 1. Figure 6
indicates that the network can be pinned to chaotic orbit s(t) via a few controllers.
Figure 7 shows the phase portrait, accordingly.
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Fig. 4. The phase portrait of pin 30 oscillators to a periodic orbit.

Stars denote the snapshots on the periodic orbit.
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Fig. 5. A chaotic attractor of the isolated delayed neuron oscillator.

5. CONCLUSIONS

In this paper, we have investigated the issue of pinning synchronization in a complex
dynamical network comprised of linearly coupled identical dynamical systems with di-
rectionally coupling. We established some explicit and conclusive results of pinning
synchronization for such a directed network. These results can be used as an effec-
tive control scheme to synchronize an arbitrary given dynamical network to a desired
synchronization orbit, which is particularly meaningful for some practical applications.
More importantly, here the synchronization orbit could be chosen as a weighted average
of all the nodes states in the network in the aim of practical control tactics. It should
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Fig. 6. Pin 30 oscillators to a chaotic attractor.
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Fig. 7. The phase portrait of pin 30 oscillators to a chaotic attractor.

be noted that in order to make all the states of the nodes in a network synchronize
to a desired synchronization state, the coupling strength changes with the controller.
Furthermore, the theoretical result on the time-invariant network is extended to the
time-varying network, and the result on synchronization problem can be extended to
the consensus problem of networked multi-agent systems. Both theoretical analysis and
numerical simulations indicate the effectiveness of the proposed methodology. It is be-
lieved that the idea and approach developed in this paper could be further generalized
to deal with some other problems on chaos control and synchronization for more general
complex dynamical networks. In addition, it should be noticed that there exist unknown
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factors of the real-world complex networks in the mathematical models, which are called
uncertainty. Possible uncertainties include unknown parameters, unknown functions,
unmodeled dynamics, and disturbances. For uncertain systems, the problem is to devise
a control that uses the dynamic equation to govern the trajectory of the system with
acceptable performance. The main approach for designing the controller is the adaptive
technique, which can deal with structured uncertainties. These are the problems that
will be investigated in the future.
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[39] J. Zhou, J. A. Lu, and J. H. Lü: Pinning adaptive synchronization of
a general complex dynamical network. Automatica 44 (2008), 996–1003.
DOI:10.1016/j.automatica.2007.08.016

[40] J. Zhou, Q. J. Wu, and L. Xiang: Pinning complex delayed dynamical networks by a
single impulsive controller. IEEE Trans. Circuits Syst. I. Reg. Pap. 58 (2011), 2882–2893.
DOI:10.1109/tcsi.2011.2161363

[41] J. Zhou, Q. J. Wu, and L. Xiang: Impulsive pinning complex dynamical networks and
applications fo firing neuronal synchronization. Nonlin. Dynam. 69 (2012), 1393–1403.
DOI:10.1007/s11071-012-0355-9

[42] J. Zhou, Q. J. Wu, L. Xiang, S. M. Cai, and Z. R. Liu: Impulsive synchronization seeking
in complex delayed dynamical networks. Nonlin. Anal.: Hybrid Syst. 5 (2011), 513–524.
DOI:10.1016/j.nahs.2010.10.013

http://dx.doi.org/10.1109/81.974874
http://dx.doi.org/10.1142/s0218127402004292
http://dx.doi.org/10.1016/s0378-4371(02)00772-0
http://dx.doi.org/10.1109/tcsii.2009.2015350
http://dx.doi.org/10.1109/tcsi.2008.2003373
http://dx.doi.org/10.1063/1.3071933
http://dx.doi.org/10.1109/tac.2009.2020668
http://dx.doi.org/10.1016/j.physa.2006.12.037
http://dx.doi.org/10.1007/s11071-010-9865-5
http://dx.doi.org/10.1016/j.automatica.2008.07.016
http://dx.doi.org/10.1109/tcsi.2005.859050
http://dx.doi.org/10.1109/tac.2006.872760
http://dx.doi.org/10.1016/j.automatica.2007.08.016
http://dx.doi.org/10.1109/tcsi.2011.2161363
http://dx.doi.org/10.1007/s11071-012-0355-9
http://dx.doi.org/10.1016/j.nahs.2010.10.013


172 Q.J. WU AND H. ZHANG

Quanjun Wu, Corresponding author. School of Mathematics and Physics, Shanghai
University of Electric Power, Shanghai, 200090. China.

e-mail: wuquanjun2008@163.com

Hua Zhang, School of Mathematics and Statistics, Chongqing University of Technol-
ogy, Chongqing, 400054. China. School of Mathematical Sciences, Tongren University,
Tongren, 554300. China.

e-mail: zhanghwua@163.com


	Introduction
	Preliminaries and formulations
	Pinning synchronization
	Time-invariant dynamical network
	Time-varying dynamical network

	Illustrative example
	Conclusions

