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APPROXIMATED MAXIMUM LIKELIHOOD ESTIMATION
OF PARAMETERS OF DISCRETE STABLE FAMILY

Lenka Slámová and Lev B. Klebanov

In this article we propose a method of parameters estimation for the class of discrete stable
laws. Discrete stable distributions form a discrete analogy to classical stable distributions and
share many interesting properties with them such as heavy tails and skewness. Similarly as
stable laws discrete stable distributions are defined through characteristic function and do not
posses a probability mass function in closed form. This inhibits the use of classical estimation
methods such as maximum likelihood and other approach has to be applied. We depart from
the H-method of maximum likelihood suggested by Kagan (1976) where the likelihood function
is replaced by a function called informant which is an approximation of the likelihood function
in some Hilbert space. For this method only some functionals of the distribution are required,
such as probability generating function or characteristic function. We adopt this method for
the case of discrete stable distributions and in a simulation study show the performance of this
method.
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1. INTRODUCTION

Stable laws form a very rich class of statistical distributions that have a wide range of
practical applications. By modelling the stability property of random variables instead
of specifying directly the density function one comes to a rich class of distributions that
contains Gaussian and Cauchy distributions as special cases. It is a well known fact that
all stable distributions are absolutely continuous and have a density, however in most
cases not in a closed form. The absence of a closed form density makes estimation of
parameters more difficult and requires numerical algorithms to approximate the density
function.

Discrete stable distributions, introduced in [8] for random variables on N and extended
in [6] for random variables on Z, form a discrete generalization of stable distributions
and as such have similar properties as their continuous counterparts. They are expressed
through a probability generating function and the probability mass function does not
generally have a closed form formula and no moments exist. This fact inhibits the use
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1066 L. SLÁMOVÁ AND L.B. KLEBANOV

of classical statistical methods of estimation such as maximum likelihood or method of
moments.

[4] introduced an analogue of the maximum likelihood method by studying an “ap-
proximation” of the likelihood function on a finite-dimensional Hilbert space H. Instead
of the likelihood function a function called “informant” as an operator in the Hilbert
space H is introduced. [4] showed that the behaviour of the resulting estimator is anal-
ogous to that of classical maximum likelihood estimator and many properties such as
consistency and asymptotic normality are conserved.

In this paper we adapt and optimize this method for the case of discrete stable
distributions. We compare the results of this method with the k − L procedure due to
[2] that uses k fixed points to fit the empirical characteristic function with the theoretical
one.

The structure of this paper is as follows. In Section 2 we give the definitions of discrete
stable distributions and describe their basic properties. The approximated maximum
likelihood (AML further on) method is described in Section 3, where we also summarize
the known results about the properties of the estimator. In Section 4 we adapt the AML
method to the case of discrete stable distributions and in Section 5 we give an overview
of the results of a simulation study and show the quality of the AML estimator.

2. DISCRETE STABLE DISTRIBUTIONS

The definition of discrete stable distributions uses a generalization of the stability prop-
erty on discrete random variables. The stability property for real random variables states
that a random variable X is strictly stable if for every non-negative integer n there exists
a constant an such that X d= an

∑n
i=1Xi, where X1, . . . , Xn are independent copies of

X. The constant an takes form of n−1/α where α is the index of stability that express
the heaviness of the tails. In the case of integer valued random variables one need a
different normalization since with the normalization constant an one does not obtain
integer values.

[8] used the binomial thinning transformation instead of the an normalization as
a generalization of the stability property for random variables on N. The binomial
thinning transformation of a natural valued random variable X is defined as X̂(p) =∑X

i=1 εi where εis are iid (independent and identically distributed) random variables:
P(εi = 1) = 1− P(εi = 0) = p and p ∈ (0, 1]. A random variable X with values in N is
said to be positive discrete stable (denoted PDS) if for all n ∈ N there exists a constant
pn ∈ (0, 1] such that

X
d=

n∑
i=1

X̂i(pn),

where X1, . . . , Xn are independent copies of X. The probability generating function
takes simple form P(z) = exp {−λ(1− z)γ} , with γ ∈ (0, 1] being the index of stability
and λ > 0 a scaling parameter. The case of γ = 1 is a special one and corresponds to
the classical Poisson distribution.

The stochastic representation of PDS distribution is due to [1]:

PDS(γ, λ) d= P
(
λ1/γS(γ, 1, σ, 0)

)
,
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where P(λ) is Poisson r.v. with parameter λ; S(α, β, σ, µ) is stable r.v. with index of
stability α, skewness β, scale σ and location µ; and σ = (cos(γπ/2))1/γ .

The definition of discrete stability introduced by [8] is limited to non-negative random
variables. It was extended to random variables on all integers in [6] where discrete stable
distributions on integer valued random variables were defined and studied. To define
discrete stable distribution for random variables on all integers Z one needs a different
normalization as the binomial thinning operator does not make sense for X ∈ Z. For a
integer valued random variable X we denote

X̃(p) =
|X|∑
i=1

εi,

where εis are iid and P(εi = ±1) = p and P(εi = 0) = 1 − 2p with p ∈ (0, 1/2] and
further

X̄(p(1), p(2)) =


∑X

i=1 ε
(1)
i , X ≥ 0,

−
∑|X|

i=1 ε
(2)
i , X < 0,

ε
(1)
i s are iid, ε(2)i s are iid and independent of ε(1)i s and P(ε(1)i = 1) = 1−P(ε(1)i = 0) = p(1)

and P(ε(2)i = 1) = 1− P(ε(2)i = 0) = p(2) with p(1), p(2) ∈ (0, 1].
We say that a random variable X ∈ Z is symmetric discrete stable (denoted SDS) if

there exists a sequence {pn, n ∈ N}, pn ↓ 0 such that

n∑
i=1

X̃i(pn) d−→ X as n→∞,

where X1, X2, . . . are independent copies of X. The probability generating function of
SDS distribution has two parameters γ ∈ (0, 1] and λ > 0 and takes the following form

P(z) = exp
{
−λ
(

1− 1
2
(z + 1/z)

)γ}
.

The parameter γ plays again the role of the index of stability expressing the heaviness
of tails and λ is the scaling parameter.

The stochastic representation of SDS distribution was derived in [7]:

SDS(γ, λ) d= CP
(
λ1/γS(γ, 1, σ, 0),±1

)
,

where CP(λ,±1) is compound Poisson r.v. with parameter λ and jumps of size ±1 with
equal probabilities; S(α, β, σ, µ) is stable r.v. with index of stability α, skewness β, scale
σ and location µ; and σ = (cos(γπ/2))1/γ .

We say that a random variable X ∈ Z is discrete stable (denoted DS) if there exist
sequences {p(i)

n , n ∈ N}, p(i)
n ↓ 0 for i = 1, 2 such that

n∑
i=1

X̄i(p(1)
n , p(2)

n ) d−→ X as n→∞,
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where X1, X2, . . . are independent copies of X. The probability generating function of
DS distribution has three parameters γ ∈ (0, 1] and λ1, λ2 > 0 and takes the following
form

P(z) = exp {−λ1 (1− z)γ − λ2 (1− 1/z)γ} .

The parameter γ plays again the role of the index of stability expressing the heaviness
of tails and λ1 and λ2 together express the skewness and the scale of the distribution.
If λ1 > λ2 then the distribution is skewed to the right. The case of γ = 1 and λ1 = λ2

coincides with the symmetric discrete stable distribution with γ = 1 and λ = 2λ1. The
case of γ = 1 results in a distribution that is sometimes called Skellam distribution, the
difference of two Poisson distributed random variables.

The fact that DS random variable is difference of two independent random variables
with PDS distribution follows directly from the form of its characteristic function which
is a product of two characteristic functions. Thus DS random variable can be represented
as:

DS(γ, λ1, λ2)
d= PDS(γ, λ1)− PDS(γ, λ2).

It was shown in [6] that symmetric discrete stable distribution form a discrete ana-
logue of symmetric α-stable distribution with α ∈ (0, 2] and that discrete stable distri-
bution is a discrete version of α-stable distribution with α ∈ (0, 1) ∪ {2}.

3. APPROXIMATED MAXIMUM LIKELIHOOD METHOD

In this section we describe a method of estimation that was introduced by [4], and further
extended in [3]. The proposed method is a very general approach that can be used in
cases when the distribution is not defined through density function or the probability
mass function and instead only some functionals of the distribution are given as functions
of parameters (eg. characteristic function, probability generating function etc.).

Let {Pθ, θ ∈ Θ} be a family of probability distributions on a measurable space
(X ,M), where the parametric space Θ ⊂ Rd, and X ∼ Pθ. In the maximum likelihood
estimation one assumes the existence of a density function p(x, θ) and of a function

J(x, θ) =

(
∂p
∂θi

(x, θ)
p(x, θ)

)
i=1,...,d

.

The maximum likelihood estimator θ∗ of the parameter θ, given a set of n observations
x1, . . . , xn, is a solution of

∑n
j=1 J(xj , θ) = 0. The Fisher information matrix is given as

I(θ) = Eθ(J(X, θ)J(X, θ)T ).

However if the density does not exist or it is not known in a closed form, this method
cannot be used.

Consider a linear space Lk generated by a set of k + 1 complex valued functions
{ϕ0(x), . . . , ϕk(x)}, ϕ0 ≡ 1, on space X with inner product denoted by (·, ·)θ and defined
by
(
ϕ(X), ψ(X)

)
θ

= Eθ

[
ϕ(X)ψ(X)

]
, where ψ denotes complex conjugate of ψ. The
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functions ϕi, i = 1, . . . , k, are such that Eθϕi(X)ϕi(X) < ∞, θ ∈ Θ, i = 1, . . . , k. We
assume we know functionals of our distribution, namely, for i, j = 0, . . . , k

πi(θ) =
(
1, ϕi(X)

)
θ

= Eθϕi(X),

πij(θ) =
(
ϕi(X), ϕj(X)

)
θ

= Eθϕi(X)ϕj(X),

are known as functions of the parameter θ. Further, we will use the following notation:
ϕ(x) = (ϕi(x), i = 0, . . . , k), π(θ) = (πi(θ), i = 0, . . . , k) and Π(θ) = (πij(θ), i, j = 0, . . . , k) .

The method is an analogue of the maximum likelihood method in the sense that it
approximates the undefined function J(x, θ) by its projection onto the linear space Lk.
[3] call this method H-method of maximum likelihood where H is the Hilbert space Lk.

The projection of J(x, θ) will be denoted Ĵ(x, θ) and as part of the linear space Lk

takes the following form
Ĵ(x, θ) = cT (θ)ϕ(x),

where c(θ) = (cij(θ), i = 0, . . . , k; j = 1, . . . , d).
We compute the approximation of the Fisher information matrix as

Î(θ) = ||Ĵ(X, θ)||2 =
(
Ĵ(X, θ), Ĵ(X, θ)

)
θ

= Eθ

[
Ĵ(X, θ)Ĵ∗(X, θ)

]
= cT (θ)Eθ [ϕ(X)ϕ∗(X)] c(θ) = cT (θ)Π(θ)c(θ). (1)

Since Ĵ is a projection of J onto Lk, the following orthogonality condition has to hold
for all i = 1, . . . , d and j = 0, . . . , k(

Ji(X, θ)− Ĵi(X, θ), ϕj(X)
)

θ
= Eθ

[(
Ji(X, θ)− Ĵi(X, θ)

)
ϕj(X)

]
= 0. (2)

From this set of equalities the form of the unknown matrix c(θ) retrieves, as is shown
in the following lemma.

Lemma 3.1. If an inverse of the matrix Π(θ) exists then c(θ) = Π−1(θ)∇π(θ).

P r o o f . It follows from the orthogonality condition that for all i = 1, . . . , d and j =
0, . . . , k

Eθ [Ji(X, θ)ϕj(X)] = Eθ

[
Ĵi(X, θ)ϕj(X)

]
.

The left-hand side equals

Eθ [Ji(X, θ)ϕj(X)] =
∫ ∂p(x,θ)

∂θi

p(x, θ)
ϕj(x)p(x, θ)dx =

∂

∂θi

∫
ϕj(x)p(x, θ)dx =

∂πj(θ)
∂θi

.

The right-hand side can be rewritten as

Eθ

[
Ĵi(X, θ)ϕj(X)

]
= Eθ

[
cT
·i(θ)ϕ(X)ϕj(X)

]
=

k∑
m=0

cmi(θ)πmj(θ).
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Putting together, we obtain

∂πj(θ)
∂θi

=
k∑

m=0

cmi(θ)πmj(θ), i = 1, . . . , d; j = 0, . . . , k.

If we use a matrix notation, ∇π(θ) = Π(θ)c(θ). Hence if the inverse of Π(θ) exists, then
the matrix c(θ) = Π−1(θ)∇π(θ). �

The maximum likelihood estimator θ∗ of the parameter θ is obtained as the solution
of
∑

m J(xm, θ) = 0. The AML estimator θ̂∗ of the parameter θ is obtained in a very
similar way; instead of J we consider its approximation Ĵ. Hence we are trying to find
a solution of a set of equations

n∑
m=1

Ĵ(xm, θ) = 0, (3)

or equivalently
n∑

m=1

k∑
i=0

cij(θ)ϕi(xm) = 0, j = 1, . . . , d.

The following properties of the AML estimator were shown in [4].

Theorem 3.2. The AML estimator θ̂∗ that is a solution of (3) is consistent and asymp-
totically normal √

n
(
θ̂∗ − θ

)
→ N (0, Î−1(θ)).

Remark 3.3. We can see that the AML estimator is not asymptotically efficient in the
classical sense. However the approximated Fisher information matrix converges to the
theoretical Fisher information matrix as k goes to infinity: limk→∞ Î(θ) = I(θ). This
follows from the monotonicity property of the approximated Fisher information that was
shown in [4]. The Theorem 3.2 shows that with k going to infinity, we can achieve very
high asymptotic efficiency but for the price of computation speed as the computational
complexity grows with higher values of k.

4. ESTIMATING PARAMETERS OF DISCRETE STABLE DISTRIBUTIONS

The method described in previous Section is very general and can be used for many
distributions where classical approaches fail due to the lack of a closed form of density
function or probability mass function. The AML method is applicable if we know only
some functionals of the distribution such as characteristic function or probability gener-
ating function, which is the case of stable distributions or discrete stable distributions.
In this Section we apply this method to the case of discrete stable distributions and
describe the algorithm of estimation.

The first step is to choose the functionals πi(θ) and πi,j(θ) and therefore the set
of functions Lk. For discrete stable distributions a natural choice is the probability
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generating function P(z) whose formulas were given in Section 2. We define ϕi(x) = zx
i

with zi ∈ C, for i = 1, . . . , k and z0 = 1. Then πi(θ) = Eθ(zi
X) = P(zi). The choice of

zis can be done in an optimal way by maximizing the determinant of the approximated
Fisher information matrix and thus obtaining optimal estimate in sense of efficiency. We
thus need to solve the following optimization problem

max
z∈A

|̂I(θ)|, (4)

where z = (z1, . . . , zk)T . The set A is the domain of definition of the approximated
Fisher information matrix Î(θ). The approximated Fisher information matrix reduces
from (1) to (5) thanks to Lemma 3.1:

Î(θ) = ∇π(θ)T Π(θ)−1∇π(θ). (5)

The probability generating function of PDS distribution is defined for |z| ≤ 1. The
set A is therefore given by A = {z ∈ Ck : |zi| ≤ 1, i = 1, . . . , k}. It turns out that the
optimal solution z of (4) is such that <(zi) ∈ (0, 1] and =(zi) = 0 for all i = 1, . . . , k.

The probability generating function of SDS distribution is defined for
∣∣z + 1

z

∣∣ ≤ 2.
Therefore

A ={z ∈ Ck :
∣∣∣∣zi +

1
zi

∣∣∣∣ ≤ 2,
∣∣∣∣ziz̄j +

1
ziz̄j

∣∣∣∣ ≤ 2, i, j = 1, . . . , k}

={z ∈ Ck : |zi| = 1, i = 1, . . . , k}.

The case of DS distribution leads also to A = {z ∈ Ck : |zi| = 1, i = 1, . . . , k}.

Speed of convergence of Î(θ). The goal is to have a quick estimation method with
high asymptotic efficiency, however these two properties are as usually in contradiction.
With the optimal choice of the linear space Lk = {1, zx

1 , . . . , z
x
k} we can achieve, given a

fixed size of the linear space k, the highest possible efficiency. The speed of convergence of
the optimal approximated Fisher information matrix for different values of the parameter
γ for PDS distribution is displayed in Figure 1 and for SDS distribution in Figure 2.
We can see that for PDS distribution the size k = 5 is enough, for SDS distribution
depending on the unknown value of γ the size k to achieve high asymptotic efficiency
might be significantly higher.

For the solution of the optimization problem (4) one need to know the unknown
parameter θ. The AML estimation is thus done sequentially in four steps as described
in Algorithm 4.1.

Algorithm 4.1.

Step 1: Choose k ∈ N and z = (z1, . . . , zk)T with zi uniformly and independently
distributed over the set A.

Step 2: Find initial estimate θ̂∗(0) by solving (3) with randomly chosen z from Step 1.
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Step 3: Use the initial estimate θ̂∗(0) to find the optimal value of the vector z by
maximizing

∣∣∣̂I(θ̂∗(0))∣∣∣.
Step 4: Find final AML estimate θ̂∗ by solving (3) with optimally chosen z from Step 3.

This algorithm where the values of z are chosen optimally instead of randomly have a
significant effect on the quality of the estimator in terms of the efficiency. We will show
on a simulation study how the random and optimal choice affect the resulting estimator
in the next Section.

5. SIMULATION STUDY

In the current Section we do two simulation studies. First we show the asymptotic be-
haviour of the AML estimator on simulated samples from SDS distribution and prove
that the optimal choice of z significantly improves the results of the estimation. Sec-
ondly we will compare the results of the AML estimation with the results of the k − L
method described in [2] on simulated samples of PDS and SDS distributions. The sim-
ulation algorithms can be derived from the stochastic representations of discrete stable
distributions given in Section 2.
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Î(θ)


Fig. 1. Speed of convergence of |bI(θ)| for PDS(γ, 1) with γ = 0.4
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Î(θ)


0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

k



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5.1. Asymptotic behaviour of the AML estimate of SDS distribution

Here we look at the asymptotic behaviour of the AML estimator as a function of k. We
repeatedly (1000 times) simulate a sample of size 1000 from SDS(0.8, 1) distribution and
for every k ∈ {3, . . . , 25} we estimate the parameters using the Algorithm 4.1. The mean
square errors of the estimators of γ and λ are displayed in Figure 3. The behaviour of
the determinant of the approximated Fisher information matrix is displayed in Figure 4.
The optimal choice of z leads to best possible estimates as the determinant of the
approximated Fisher information matrix approaches very closely the theoretical value
(computed with the real values of parameters and optimally chosen vector z). The
random choice of z cannot compete with the optimal one in sense of efficiency. In
Figure 5 we see the asymptotic behaviour of the estimates of γ and λ respectively as a
function of k.

Remark 5.1. The algorithm from the previous Section is slightly modified in the sim-
ulation study. To achieve more precise estimates we added one step at the end of the
algorithm. In this additional step we estimate parameter θ1 in the presence of a nuisance
parameter (θ2, . . . , θd). This method was proposed by [5] and the idea is in modifying
the likelihood function (in our case the informant Ĵ(x, θ)) as

J̃1(x, θ) = Ĵ1 − Êθ[Ĵ1|Ĵ2, . . . , Ĵd],

where Êθ is the mathematical expectation in the wide sense, i. e. we solve linear regres-
sion problem of Ĵ1 on Ĵ2, . . . , Ĵd. We first estimate all parameters together using the
algorithm and then we estimate parameter λ with a nuisance parameter γ. Using this
method the MSE of the estimate of parameter λ is significantly decreased.
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Fig. 3. Mean square error of AML estimator of γ (left) and λ (right)

as a function of k. Parameters estimated from simulated sample of

size 1000 from SDS(0.8, 1), with 1000 repetitions. The dashed line

correspond to the initial estimate θ̂∗(0) and the full line to the optimal

estimate θ̂∗.
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5.2. Comparison of results of the AML method with the k − L method

The k−L procedure introduced by [2] uses the asymptotic distribution of the empirical
characteristic function at k fixed points t1, . . . , tk ∈ R. Let us denote fn the empirical
characteristic function, i. e.

fn(t) =
1
n

n∑
i=j

eitxj ,
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where x1, . . . , xn is the observed sample. The characteristic function can be obtained
from probability generating function as fθ(t) = P(eit). We use the following notation

Vn = (<fn(t1), . . . ,<fn(tk),=fn(t1), . . . ,=fn(tk))T
,

Vθ = (<fθ(t1), . . . ,<fθ(tk),=fθ(t1), . . . ,=fθ(tk))T
,

and Σ = cov(Vn). The ECF estimate is given as the solution of the minimization problem

min
θ∈Θ

(Vn − Vθ)T Σ−1(Vn − Vθ).

[2] show that this estimator is consistent, asymptotically normal and asymptotically
efficient.

In our simulation study we compare results of the AML method and the k−Lmethod.
We simulate samples of size 2000 from SDS(0.8, 1) and PDS(0.5, 4). We simulate 100
samples and we compare the mean square errors of the AML and k−L estimates. We use
k = 10 for the AML method in case of SDS distribution and k = 5 for PDS distribution.
We use k = 10 points in the k − L method. The results are given in Table 1.

γ λ

AML 0.801 0.999
(0.018) (0.036)

k − L
0.806 1.001

(0.033) (0.038)

γ λ

AML 0.500 4.002
(0.006) (0.080)

k − L
0.496 3.978

(0.028) (0.212)

Tab. 1. Estimated parameters of SDS(0.8, 1) (left) and PDS(0.5, 4)

(right) distributions from simulated samples of size 2000 with 100

repetitions. The mean square errors of the estimators are given in

parentheses.

5.3. Discussion of results

The results show that the AML method is more accurate as the mean square errors of
the AML estimates are considerably lower than the mean square errors of the k − L
estimates; in our simulation study the MSE of the AML estimate of parameter γ in the
case of PDS distribution is almost five times smaller than the corresponding MSE of
the k−L estimate. Moreover, the quality of the k−L method depends significantly on
the choice of the points t1, t2, . . . , tk. On the other hand, in many practical applications
the speed of computations is more important than the precision of the estimates. The
k − L method would then be favourable over the AML method, which is slower due to
the optimization Algorithm 4.1.
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[6] L. B. Klebanov and L. Slámová: Integer valued stable random variables. Stat. Probab.
Lett. 83 (2013), 1513–1519.
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