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A MODIFIED VERSION OF EXPLICIT RUNGE–KUTTA
METHODS FOR ENERGY-PRESERVING

Guang-Da Hu

In this paper, Runge–Kutta methods are discussed for numerical solutions of conservative
systems. For the energy of conservative systems being as close to the initial energy as possible,
a modified version of explicit Runge–Kutta methods is presented. The order of the modified
Runge–Kutta method is the same as the standard Runge–Kutta method, but it is superior in
energy-preserving to the standard one. Comparing the modified Runge–Kutta method with
the standard Runge–Kutta method, numerical experiments are provided to illustrate the effec-
tiveness of the modified Runge–Kutta method.
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1. INTRODUCTION

In this paper, we consider the numerical solutions of the system of nonlinear differential
equations

ẋ(t) = f(x(t)), (1)

where f : Rd → Rd is continuously differentiable, x(t) ∈ Rd is state variable vector and
the initial vector x(0) = x0 is known. We always assume that system (1) has a unique
solution. Furthermore, assume that an energy function of system (1), E(x(t)) is a known
constant

E(x(t)) = E(x(0)), (2)

i. e., the energy E(x(t)) is conservative for any t ≥ 0.
System (1) has the first integral E(x(t)), and numerical methods that preserve this

integral are usually called energy-preserving methods. The energy-preserving method is
one of the geometric numerical integration methods [7, 8, 10].

All Runge–Kutta (RK) methods preserve arbitrary linear invariants [7, 12], and some
(the symplectic) RK methods preserve arbitrary quadratic invariants [5]. However, no
RK methods can preserve arbitrary polynomial invariants of degree 3 or higher [4].

In this paper, we are only concerned with explicit RK methods. We emphasize that
we do not require E(xn) = E(x(0)) exactly holds, but approximately holds when explicit
RK methods are applied to general conservative system (1) with (2). We study numerical
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methods that provide an approximation to the solution of (1) with (2) preserving the
energy in the sense that E(xn) approximates to E(x(0)).

The conservative systems appear in many problems in science and engineering, for
instance, mechanical vibration, celestial mechanics and Hamiltonian systems [11].

In order to numerically preserve the energy of conservative systems, many numeri-
cal methods have been developed [1, 2, 3, 8]. Because the numerical methods require
E(xn) = E(x(0)) holds exactly for numerical solutions, only implicit numerical methods
are possible for general conservative system (1). Projection methods are developed for
the numerical solutions of differential equations on manifolds [3, 8]. The methods are
also applied to conservative system (1) with (2). The basic principle of the projection
RK methods for preserving-energy is as follows. An arbitrary RK method is applied
to system (1) to obtain a numerical solution, then project the numerical solution onto
the manifold which is determined by the energy function. The methods require to solve
a system of nonlinear equations at each step. The projection method is implicit even
if an explicit RK scheme is applied [3, 8]. Hence the computational effort is large to
implement projection RK methods. Recently the line integral methods are introduced
in [2] and developed in [1] which have been applied to conservative systems. The key
idea of these methods are imposing energy conservation through a line integral. These
methods are also implicit. An explicit RK scheme is presented in [6] which preserves
quadratic conservation laws. We have to point out that the explicit RK scheme in [6]
can give the exact values of quadratic functions. The idea of the explicit RK scheme in
[6] is interesting.

With respect to the computational cost, explicit RK methods are superior to implicit
ones. However, the standard explicit RK methods do not preserve the energy function
well. For general conservative system (1) with (2), it is impossible for any explicit RK
methods to exactly preserve the energy [4]. When explicit RK methods are applied to
general conservative system (1) with (2), the requirement E(xn) = E(x(0)) must be
relaxed to develop explicit numerical methods. We only require that E(xn) is as close
to E(x(0)) as possible. The aim of numerical computation is to seek an approximated
(numerical) solution which is as close to the exact solution as possible. Because a
numerical solution is approximated, it is not necessary for the energy function of the
numerical solution must be preserved exactly. We require that the energy function is
also approximated. Hence it is reasonable that the energy function of the numerical
solution is as close to the exact energy as possible. In this paper, based on the idea,
with the gradient of the energy function a modified version of explicit RK methods is
presented.

This paper is organized as follows. A modified revision of explicit RK methods is
presented in section 2. In section 3, comparing the modified revision of the explicit RK
methods with standard RK method, numerical experiments are provided to illustrate
the effectiveness of the modified RK method. Conclusion is given in section 4.

2. A MODIFIED VERSION OF EXPLICIT RUNGE–KUTTA METHODS

In this section, considering system (1) with (2), we present a modified version of explicit
RK methods with the gradient of energy function such that the energy of the numerical
solution is as close to the initial energy as possible.
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The gradient of E(x) is defined by

∇E(x) =
[
∂E(x)
∂x1

,
∂E(x)
∂x2

, . . . ,
∂E(x)
∂xd

]T

,

where x = [x1, x2, . . . , xd]T .
Now we consider the numerical solution of system (1) by RK methods. Let xn denote

an approximation (numerical solution) to the solution x(tn) of system (1) at tn, i. e.,
xn ≈ x(tn). The standard s−stage RK method for system (1) is defined by the difference
system [7] {

xn+1 = xn + h
∑s

i=1 bigi,
gi = f(xn + h

∑s
j=1 aijgj), i = 1, 2, . . . , s.

(3)

Here h stands for a step-size and tn = tn−1 +h. When aij = 0 for i ≤ j, the RK method
is explicit. Hereafter we will only consider explicit RK methods.

Assume that the continuous-time system (1) has a known energy function E(x(t))
with E(x(t)) = E(x(0)). We want to seek a modified version of explicit RK methods
which produces a numerical solution xn such that E(xn) is as close to E(x(0)) as possible.
In addition, the order of the modified version is the same as the standard RK methods.
Since we are only concerned with explicit RK methods, it is emphasized that we only
require that E(xn) = E(x(0)) approximately holds.

Now we present a modified version of the pth order explicit RK method (3) with the
modified formula

x̄n+1 =

 xn+1 − hp+1∇E(xn+1), if 4E(xn+1) > 0,
xn+1, if 4E(xn+1) = 0,
xn+1 + hp+1∇E(xn+1), if 4E(xn+1) < 0,

(4)

where 4E(xn+1) = E(xn+1)− E(x(0)).

Now we present the main result of this paper.

Theorem 2.1. Assume that the localizing assumption xn = x(tn) holds, the energy
function E(x(t)) of nonlinear system (1) is conserved and continuously differentiable.
Let the modified RK method (3) – (4) be applied to system (1) with (2). If the step-size
h is sufficiently small and the gradient ∇E(xn+1) 6= 0, then

E(x̄n+1) < E(xn+1), for 4E(xn+1) > 0 (5)

and
E(x̄n+1) > E(xn+1), for 4E(xn+1) < 0 (6)

hold. Furthermore, the order of the modified version (3) – (4) is the same as the standard
one (3).

P r o o f . For 4E(xn+1) > 0, by formula (4),

x̄n+1 = xn+1 − hp+1∇E(xn+1). (7)
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According to Taylor expansion of E(x̄n+1) at xn+1 and (7), we have

E(x̄n+1) = E(xn+1)− [∇E(xn+1)]T [∇E(xn+1)]hp+1 + O(h2(p+1)). (8)

Since ∇E(xn+1) 6= 0 and h is sufficiently small, we obtain

E(x̄n+1) < E(xn+1).

Similarly, for 4E(xn+1) < 0, by formula (4),

x̄n+1 = xn+1 + hp+1∇E(xn+1), (9)

we obtain
E(x̄n+1) > E(xn+1).

Since the energy function E(x(t)) is continuously differentiable, ||∇E(xn+1)|| is bound-
ed. By the modified formula (4), x̄n+1 has the same order p as xn+1. The proof is
completed. �

Remark 2.1. Formula (4) may be extended to the following form

x̄n+1 = xn+1 + λhp+1∇E(xn+1), (10)

where the parameter λ is a real number. An optimal choice of the parameter λ can be
done by

min
λ

[E(x̄n+1)− E(x(0))]2.

It involves solving a line (one-dimensional) search.
Based on the modified RK method (3) with (10), we propose the following computa-

tional procedure to numerically solve system (1) with (2).

Algorithm

Step 1. Take the initial value x0, the number of steps N, the step-size h and n = 0.

Step 2. Check whether n = N. If n = N, then end the procedure; otherwise, compute
xn+1 by (3).

Step 3. Seek the parameter λ such that

min
λ

[E(x̄n+1)− E(x(0))]2,

where
x̄n+1 = xn+1 + λhp+1∇E(xn+1),

which is from (10). Then, let xn+1 = x̄n+1, n = n + 1, and go to Step 2.
By Step 1 to Step 3, one can obtain the numerical solution x̄n, n = 1, 2, . . . , N.
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Remark 2.2. We have to point out that Theorem 2.1 is only a local property of the
modified formula. It is a further topic to study the efficiency of the above algorithm in
general.

It is obvious to obtain the following result.

Theorem 2.2. Assume that the conditions of Theorem 2.1 are satisfied. For the nu-
merical solution x̄n+1 produced by the above procedure, the inequality

|4E(x̄n+1)| ≤ |4E(xn+1)| (11)

holds, where xn+1 is obtained by the standard RK method (3) and 4E(xn+1) =
E(xn+1) − E(x(0)). Furthermore, the order of the above procedure is the same as the
standard RK method (3).

Remark 2.3. Since the above procedure is explicit, it is superior in computational
cost to the project methods in [8] and the line integral methods in [1, 2] which are
implicit. Inequality (11) in Theorem 2.2 shows that the modified RK method (3) with
(10) for system (1) is superior in energy-preserving to the standard one (3).

Remark 2.4. Assume that system (1) has m first integrals, for i = 1, 2, . . . ,m, Ei(x(t)) =
Ei(x(0)) = ci. Let

E(x(t)) =
m∑

i=1

[Ei(x(t))− ci]2.

Then the above algorithm can be applied to system (1) with m first integrals. It is a
further research topic.

3. NUMERICAL EXPERIMENTS

In this section, two typical conservative systems are given to demonstrate the effective-
ness of the procedure derived based on the modified RK method (3) with (10). The
modified version of the classical fourth-order explicit RK method [7] will be used, i. e.,

xn+1 = xn + h
6 (g1 + 2g2 + 2g3 + g4)

g1 = f(xn)
g2 = f(xn + h

2 g1)
g3 = f(xn + h

2 g2)
g4 = f(xn + hg3)

(12)

with the modified formula

x̄n+1 = xn+1 + λhp+1∇E(xn+1). (13)

We will compare the modified version (12) – (13) with the fourth-order classical RK
method (12). The phase diagrams of numerical solutions and the corresponding energy
functions produced by the two methods will be shown, respectively. All the computations
are carried out by means of Matlab 7.0.
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Example 3.1. Consider the simple pendulum without friction described by the nonlin-
ear differential equation [9]

ẍ + a sinx = 0 (14)

where a > 0 is constant, and x(t) measures the angle formed by the pendulum and the
vertical downward direction.

To change the second-order equation (14) into a first-order system, we let y = ẋ.
Then obtain the system {

ẋ = y
ẏ = −a sinx.

(15)

We take a = 1, the step-size h = 0.1 and the initial position [x(0), y(0)]T = [2π
3 , 0]T .

For system (15), the energy function [9]

E(x, y) =
1
2
y2 + 1− cos x.

The derivative of E(x, y) is
Ė(x, y) = 0.

It means that the trajectories x(t), y(t) starting on the energy surface E(x(0), y(0))
remain on the same surface for all future time.
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Fig. 1. The phase portraits of y(t) and ẏ(t).

Figure 1 shows that the phase portraits of x − y by the modified RK method and
standard one, respectively when the time step is near to 100000. They are denoted by ·
line and dotted line, respectively. The exact phase portrait is denoted by solid line.

Figure 2 shows that the energy functions of numerical solutions by the modified RK
method and standard one, and are also denoted by · line and dotted line, respectively.
The exact energy is denoted by solid line.

For comparison, the values obtained using the modified RK method and the standard
RK are shown. Both the methods produce an accurate solution for small values of t, but
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Fig. 2. Energy function E(t).

for large values the standard RK method differs significantly from the modified version.
For this example, the energy decay using the standard RK method is substantial, whereas
the modified version produces a value of the energy function that oscillates but remains
very near the exact value over the entire time period, see Figure 2. It is also apparent
in Figure 1 that the position and the velocity obtained from the modified version, even
for large values of t, are very nearly on the curve followed by the exact solution, whereas
the standard RK method provides very poor approximations.

For 100000 time steps, the number of updates of the modified RK method for this
example is 126643. The average number of updates in each time step is 1.26643.

Remark 3.1. In example 1, the energy function is not quadratic form, the scheme in
[6] can not work.

Example 3.2. Consider a Hamiltonian system described by the nonlinear differential
equations [11] {

q̇ = ∂H(q,p)
∂p

ṗ = −∂H(q,p)
∂q

(16)

where q = [q1, q2]T and p = [p1, p2]T are the generalized position and generalized mo-
mentum coordinates, respectively. The Hamiltonian function is

H(q, p) =
1

2m
[(p1)2 + (p2 − kq1)2]. (17)

The energy function E(q, p) = H(q, p) for the Hamiltonian system.
The parameters of the Hamiltonian system are m = 1 and k = 1. Assuming that the

initial conditions are q1(0) = −1 q2(0) = 2, p1(0) = 0 and p2(0) = D = 4, then the exact
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solution q = [q1, q2]T satisfies the circle equation(
q1 −

D

k

)2

+ (q2 − C)2 =
2mE0

k2
,

where

C = q2 −
1
k

√
2mE0 − (D − kq1)2,

and
E0 = E(q(0), p(0)).

Taking h = 0.2, the results of the calculation are shown in Figures 3 and 4.

−2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

q1

q2

Phase plane portrait(RK4),h=0.2,step=200000
time(S)=296.0803,time(E)=131.7643

 

 

(4,2)

E−conservative
Standard
Exact
S−conservative

Fig. 3. The phase portraits of q1(t) and q2(t).
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Fig. 4. Energy function E(t).
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Figure 3 shows that the phase portraits of q1 − q2 by the modified RK method, the
standard one and the scheme in [6], respectively when the time step is near to 200000.
They are denoted by ◦ line, dotted line and ∗ line, respectively. The exact phase portrait
is denoted by solid line.

Figure 4 shows that the energy functions of numerical solutions by the modified RK
method, the standard one, and the scheme in [6], respectively. They are also denoted
by ◦ line, dotted line and ∗ line, respectively. The exact energy is denoted by solid line.

For comparison, the values obtained using the modified RK method and the standard
RK are shown. Both the methods produce an accurate solution for small values of t,
but for large values the standard method differs significantly from the modified version.
For this example, the energy decay using the standard RK is substantial, whereas the
modified version produces a value of E that oscillates but remains very near the exact
value over the entire time period, see Figure 4. It is also apparent in Figure 3 that
the generalized positions obtained from the modified version, even for large values of t,
are very nearly on the circle followed by the exact solution, whereas the standard RK
method provides very poor approximations.

For 200000 time steps, the number of updates of the modified RK method for this
example is 200727. The average number of updates in each time step is 1.0036.

Since the energy function in this example is quadratic form, we can compare the
modified RK method with the scheme in [6]. For this example, we have the following
conclusion.

Remark 3.2. Both the modified RK method and the explicit scheme in [6] can work
well, see Figures 3 and 4. The computation time of the modified RK and the explicit
scheme in [6] are 131.7643 s and 296.0803s, respectively. It shows that the modified RK
method is faster than the scheme in [6]. We have to point out that the explicit scheme
in [6] can give the exact values of quadratic functions and the modified RK method (3)
with (10) can not give the exact values.

Remark 3.3. The above two examples show that the numerical solutions produced
by the procedure based on the modified RK method (3) with (10) is superior to the
standard RK method (3).

4. CONCLUSION

In this paper, a modified version of explicit RK methods is presented for numerical
solutions of conservative systems. A procedure based on the modified RK method is
superior in energy-preserving to the standard RK method. Since the modified version of
RK methods is explicit, it is easier to implement than the implicit methods in literature
for energy-preserving. Numerical experiments show the effectiveness of the procedure
derived based on the modified RK method.
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