Kybernetika - Article detailKybernetikaInternational journal of Institute of Information Theory and AutomationOn an exponential inequality and a strong law of large numbers for monotone measuresG. ChoquetTheory of capacities.Ann. Inst. Fourier 5 (1954), 131-295.D. DennebergNon-additive Measure and Integral.Kluwer Academic Publishers, Dordrecht 1994.A. DvoretzkyOn the strong stability of a sequence of events.Ann. Math. Statist. 20 (1949), 2, 296-299.T. S. KimH. C. KimOn the exponential inequality for negatively dependent sequence.Korean Math. Soc. Commun. 22 (2007), 2, 315-321.E. LehmannSome concepts of dependence.Ann. Math. Statist. 37 (1966), 1137-1153.J. LiM. YasudaQ. JiangH. SuzukiZ. WangG. J. KlirConvergence of sequence of measurable functions on fuzzy measure spaces.Fuzzy Sets and Systems 87 (1997), 317-323.R. MesiarJ. LiE. PapThe Choquet integral as Lebesgue integral and related inequalities.Kybernetika 46 (2010), 1098-1107.H. J. NooghabiH. A. AzarnooshExponential inequality for negatively associated random variables.Statist. Papers 50 (2009), 419-428.P. D. OliveiraAn exponential inequality for associated variables.Statist. Probab. Lett. 73 (2005), 189-197.E. PapNull-additive Set Functions.Kluwer, Dordrecht 1995.V. V. PetrovSums of Independent Random Variables.Springer-Verlag, Berlin 1975.S. VarošanecOn h-convexity.J. Math. Anal. Appl. 326 (2007), 303-311.X. WangS. HuA. Shen.W. YangAn exponential inequality for a NOD sequence and a strong law of large numbers.Appl. Math. Lett. 24 (2011), 219-223.Z. WangG. J. KlirGeneralized Measure Theory.Springer, New York 2009.G. XingS. YangAn exponential inequality for strictly stationary and negatively associated random variables.Commun. Statistics-Theory and Methods 39 (2010), 340-349.G. D. XingS. C. YangA. L. LiuX. P. WangA remark on the exponential inequality for negatively associated random variables.J. Korean Statist. Soc. 38 (2009), 53-57.