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DYNAMIC APPROACH TO OPTIMUM SYNTHESIS
OF A FOUR-BAR MECHANISM USING A SWARM
INTELLIGENCE ALGORITHM

Edgar A. Portilla-Flores, Maria B. Calva-Yáñez, Miguel G. Villarreal-
Cervantes, Paola A. Niño Suárez and Gabriel Sepúlveda-Cervantes

This paper presents a dynamic approach to the synthesis of a crank-rocker four-bar mecha-
nism, that is obtained by an optimization problem and its solution using the swarm intelligence
algorithm called Modified-Artificial Bee Colony (M-ABC). The proposed dynamic approach
states a mono-objective dynamic optimization problem (MODOP), in order to obtain a set of
optimal parameters of the system. In this MODOP, the kinematic and dynamic models of the
whole system are consider as well as a set of constraints including a dynamic constraint. The
M-ABC algorithm is adapted to solve the optimization problem by adding a suitable constraint-
handling mechanism that is able to incorporate the kinematic and dynamic constraints of the
system. A set of independent computational runs were carried out in order to validate the
dynamic approach. An analysis from the mechanical and computational point of view is pre-
sented, based on the obtained results. From the analysis of the simulation and its results, it is
shown that the solutions for the proposed algorithm lead to a more suitable design based on
the dynamic approach.
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1. INTRODUCTION

Mechanisms are used continuously in a wide variety of machines and electromechanical
devices. Several working processes require a continuous input motion that provides
a non-symmetrical or complex output motion. It is difficult to design a mechanism
which achieves an adequate output motion as it is specified, so that the mechanism
design requires an improvement. The synthesis of the mechanism could be achieved
by using graphical, analytical and numerical methods [6, 17, 20]. The computational
cost increases as the number of precision points increases [17]. The formulation of the
mechanism synthesis as an optimization problem is an alternative approach to find the
dimension of the links by using heuristic or gradient optimization techniques [11, 12].

In [1], the path synthesis of a four-bar mechanism (FBM) to track more than five
points in the coupler link is solved by using three different evolutionary algorithms
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with a new refinement technique. In that work, the DE shows faster convergence to
the optimal result and a smaller error of adjustment to target points, than the genetic
algorithm (GA) and the particle swarm optimization (PSO). The work presented in [13]
proposed an evolutionary algorithm to solve the path synthesis problem of a four-bar
linkage. In [10], another design approach of a four-bar mechanism for path generation
purposes is formulated as a constrained multi-objective optimization problem. The
tracking error, the transmission angle’s deviation and the maximum angular velocity
ratio are introduced as the mechanical performance indexes. It proposes a hybridization
of the traditional NSGA-II algorithm with an adaptive local search mechanism which
presents a superior mechanical design in terms of energy efficiency and practical viability.
In [16], an optimum synthesis of a FBM that meets the necessary input motion for a
continuously variable transmission was carried out. A mechanical synthesis of a FBM is
established as an optimization problem. The kinematic analysis of the FBM is presented
and also objective functions and constraints are proposed, and the solutions are obtained
with a swarm intelligent algorithm called Modified Bacterial Foraging Algorithm. The
goal of the mechanical design is to obtain a set of dimensions of the mechanical elements
of the FBM, which allows a large amplitude on the motion of the rocker as well as
ensures a smooth transmission of force and speed on the joint of the connecting rod and
the rocker of the FBM.

On the other hand, there are several researches focused on finding better heuristic
algorithms to tackle several complex problems of the real world. Scientists have observed
the nature for years in order to improve their heuristic algorithms. Natural selection
eliminates species with poor foraging behaviour and favours species with high foraging
behaviour which is essential for maximization of species fitness. Hence, the real world
optimization problems can be solved by using heuristic algorithms based on the natural
selection called bio-inspired algorithms.

Many bio-inspired algorithms use the concept of swarm intelligence (SI) such as PSO
[9], artificial fish swarm algorithm [14], ant colony [4] and bacterial foraging algorithm
[18]. They have been studied and used in several optimization problems. In the SI
models the population of interacting agents or swarms is able to organize itself. In
recent years, a new swarm intelligence has been used: the artificial bee colony algorithm
[7], developed by Prof. Karaboga in 2005. The artificial bee colony (ABC) algorithm
simulates the intelligent foraging behaviour of honey bee swarms. The ABC algorithm
has had a rapid developed and it has been used in machining processes [19], in filter
design [8] and in chaos control and synchronization of nonlinear systems [5].

In this paper, the synthesis of a four-bar mechanism that provides a symmetric motion
in its rocker link is formulated as a dynamic optimization problem. In this dynamic op-
timization problem the kinematic and dynamic behaviours of the mechanism are merged
and included as a dynamic constraint. This can be achieved because the dynamic synthe-
sis is developed in the framework of the mechatronic design approach, where structural
and control aspects must be integrated in the design of systems. On the other hand,
due to the usual complexity of the dynamic problem, an heuristic algorithm called the
M-ABC algorithm was used in order to solve it.

The rest of this paper is structured as follows: Section 2 describes the dynamic model
of the FBM mechanism and the driving motor, Section 3 establishes the design variable
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vector, the design objective and the constraints of the dynamic optimization problem.
The dynamic approach of the mechanism synthesis is established in Section 4. In Section
5 the ABC algorithm is explained as well as its modification for accelerating the search.
The discussion of the algorithm, the optimum design and the results are presented in
Section 6. Conclusions are drawn in Section 7.

2. MECHANISM SYNTHESIS PROBLEM

One of the most used mechanism in the industrial machinery is the Four-Bar mechanism
(FBM). That is because the operational principle of this mechanism enables a coupling
with a continuous rotational power supply in order to obtain a desired output motion.

Fig. 1. A four-bar mechanism in a crank-rocker configuration.

2.1. Kinematic analysis of the FBM

The kinematics of this mechanism has been widely described [20]. The crank-rocker
schematic representation is shown in Figure 1. This FBM configuration is composed by
a reference bar (L1), a crank bar (L2), a connecting rod bar (L3) and a rocker bar (L4),
where θi with i = 1, 2, 3, 4, is the ith angle between the horizontal axis and the ith bar
in the counterclockwise direction. Also, the center of mass of each bar is denoted by a
black-white circle and its location are described by ri and φi where i = 2, 3, 4. Finally,
θ̇i represents the angular velocity, and υix and υiy are the x and y velocity components
of the center of mass of the ith bar i.

From the kinematic analysis it can be probed that θ3 and θ4 can be expressed as a
function of θ2. Therefore, the equations of motion for each bar of the mechanism are
established as follows:

θ̇i = γiθ̇2 i = 2, 3, 4 (1)
υix = αiθ̇2 i = 2, 3, 4 (2)
υiy = βiθ̇2 i = 2, 3, 4 (3)
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where:
α2 = −r2 sin(θ2 + φ2) (4)
α3 = −L2 sin θ2 − r3γ3 sin(θ3 + φ3) (5)
α4 = −r4γ4 sin(θ4 + φ4) (6)
β2 = r2 cos(θ2 + φ2) (7)
β3 = L2 cos θ2 + r3γ3 cos(θ3 + φ3) (8)
β4 = r4γ4 cos(θ4 + φ4) (9)
γ2 = 1 (10)

γ3 =
L2 sin(θ4 − θ2)
L3 sin(θ3 − θ4)

(11)

γ4 =
L2 sin(θ3 − θ2)
L3 sin(θ3 − θ4)

. (12)

The angles θ3 and θ4 can be computed as follows:

θ3 = 2arctan

[
−b1 ±

√
b2
1 + a2

1 − c2
1

c1 − a1

]
(13)

θ4 = 2arctan

[
−e1 ±

√
d2
1 + e2

1 − f2
1

f1 − d1

]
(14)

where:
a1 = 2L3 (L2 cos θ2 − L1 cos θ1) (15)
b1 = 2L3 (L2 sin θ2 − L1 sin θ1) (16)
c1 = L2

1 + L2
2 + L2

3 − L2
4 − 2L1L2 cos (θ1 − θ2) (17)

d1 = 2L4 (L1 cos θ1 − L2 cos θ2) (18)
e1 = 2L4 (L1 sin θ1 − L2 sin θ2) (19)
f1 = L2

1 + L2
2 + L2

4 − L2
3 − 2L1L2 cos (θ1 − θ2) . (20)

In order to obtain the appropriate values of the angles θ3 and θ4, the sign of the
radicals in (13) and (14) are (+√ ) and (−√ ), respectively; this is due to the open
configuration in the FBM considered.

2.2. Dynamic analysis of the FBM

The four-bar mechanism has one degree of freedom (dof ) in the crank (bar L2). This
dof is actuated by a DC motor. From the schematic representation of the mechanism
in Figure 1, the mass, the inertia, the length, the mass center length and the mass
center angle of the ith bar are represented by mi, Ji, Li, ri, φi, respectively. The stiffness
constant of the spring and the damping coefficient of the damper are represented by k
and C, respectively.

Let θ2 and θ̇2 be the generalized coordinate and velocity of the FBM, respectively,
then the Lagrange’s equation is formulated in (21). The variables K, P and D are the
kinetic energy (22), potential energy (23) and the Rayleigh’s dissipation function (24),
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respectively. Finally, the variable T represents the external input torque applied on
crank bar. The angular position when the spring is in equilibrium is named as θ4,0.

d
dt

(
∂L
∂θ̇2

)
− ∂L

∂θ2
+

∂D

∂θ̇2

= T (21)

where:

K =
4∑

i=2

(
1
2
mi

(
υ2

ix + υ2
iy

)
+

1
2
Jiθ̇

2
i

)
=

1
2
A (θ2) θ̇2

2 (22)

P =
1
2
k (θ4 − θ4,0)

2 (23)

D =
1
2
Cθ̇4

2
=

1
2
C(γ4θ̇2)2 (24)

A (θ2) =
4∑

i=2

(
mi

(
α2

i + β2
i

)
+ γ2

i Ji

)
. (25)

It is important to remark that in the potential energy function (23), the angle θ4 can
be expressed as a function of θ2 using (14).

Computing the total and partial derivative of (21), the motion equation of the FBM
results in (26).

T = A (θ2) θ̈2 +
1
2

dA (θ2)
dθ2

θ̇2
2 + kγ4 (θ4 − θ4,0) + Cγ2

4 θ̇2 (26)

where:

A (θ2) = C0 + C1γ
2
3 + C2γ

2
4 + C3γ3 cos (θ2 − θ3 − φ3) (27)

dA (θ2)
dθ2

= 2C1γ3
dγ3

dθ2
+ 2C2γ4

dγ4

dθ2

+C3
dγ3

dθ2
cos (θ2 − θ3 − φ3)

−C3γ3 (1− γ3) sin (θ2 − θ3 − φ3) (28)
C0 = J2 + m2r

2
2 + m3L

2
2 (29)

C1 = J3 + m3r
2
3 (30)

C2 = J4 + m4r
2
4 (31)

C4 = 2m3L2r3 (32)
dγ3

dθ2
=

L2 (D1 + D2)
L3 sin2 (θ3 − θ4)

(33)

dγ4

dθ2
=

L2 (D3 + D4)
L4 sin2 (θ3 − θ4)

(34)

D1 = (γ4 − 1) sin (θ3 − θ4) cos (θ4 − θ2) (35)
D2 = (γ4 − γ3) sin (θ4 − θ2) cos (θ3 − θ4) (36)
D3 = (γ3 − 1) sin (θ3 − θ4) cos (θ3 − θ2) (37)
D4 = (γ4 − γ3) sin (θ3 − θ2) cos (θ3 − θ4) . (38)
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In order to model the whole system, the dynamic of the actuator must be included
into the dynamics of the FBM (26). A schematic diagram of the DC motor is represented
in Figure 2, where L and R represent the inductance and the armature resistance, and
i(t) and u(t) are the input current and the input voltage, respectively. J and B are the
inertia moment and the friction coefficient of the output shaft, respectively. TL, Tm and
Vb are the load torque, the magnetic motor torque and the back electromotive force of
the motor, respectively. The motor constant is represented by Kf and the constant of
the back electromotive force is represented by Kb.

Fig. 2. Schematic diagram of a DC Motor.

The dynamic model of the DC motor [2], takes into account the electrical and me-
chanical subsystems. Using Kirchhoff’s second law, the closed loop circuit of Figure 2

can be written as (39).

L
di (t)
dt

+ Ri (t) = u (t)−Kbθ̇a (39)

The equation (40) is obtained by applying the Newton’s second law to the mechanical
part of the DC motor, where Ta and Tb are the output torques of the shafts a and b,
respectively (see Figure 2).

Tm −Bθ̇a − Ta − TL = Jθ̈a. (40)

The mechanical transmission among the two gears in the shafts, that is the gear ratio n
of the output gear box of the DC motor is expressed in (41), where ri and Ni, ∀ i = 1, 2
are the radius and the number of teeth of the gears, respectively. Moreover, θ̇a and θ̇b

are the angular velocities of shafts a and b, respectively.

Tb

Ta
=

θ̇a

θ̇b

=
r2

r1
=

N2

N1
= n. (41)

Substituting from (41) the value of Ta into (40), the torque applied to the mechanical
system is written as (42).

Tb = n
(
Tm − TL −Bθ̇a − Jθ̈a

)
. (42)
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Finally, by using in (42) the mathematical relationships θ̇a = nθ̇b from (41), Tm = Kf i
and TL = 0, the dynamic equations of the DC motor are as follows:

Tb = nKf i (t)− n2Bθ̇b − n2Jθ̈b (43)

L
di (t)
dt

+ Ri (t) = u (t)− nKbθ̇b. (44)

Considering that the shaft “b” of the DC motor is jointed to the crank bar of the
FBM, the torque and the angular displacement are related as follows: T = Tb, θ̇b = θ̇2.
So, the next step is to couple the dynamics of the DC motor (43) – (44) with the dynamics
of the FBM (26). Hence, the coupled dynamic representation of the DC Motor with the
FBM in the state variable vector ~x = [x1, x2, x3]T = [θ2, θ̇2, i]T is given by (45).

~̇x = f(~x, u(t), t)

=

 x2

A0

[
A1x

2
2 + A2x2 + nKfx3 + A3

]
1
L (u (t)− nKbx2 −Rx3)

 (45)

where:

A0 =
1

A (x1) + n2J1
(46)

A1 = −1
2

dA (x1)
dx1

(47)

A2 = −
(
Cγ4

2 + n2B
)

(48)
A3 = −kγ4 (θ4 − θ4,0) . (49)

3. OPTIMAL STRATEGY

As it was previously mentioned, the goal of the dynamic approach to optimum synthesis
of the FBM is not only to consider the kinematics of the mechanism, but to consider both
the dynamics and the kinematics. This work represents a first step in the development
of this approach.

3.1. Design variables

Once the dynamic and kinematic analysis of the FBM are carried out, it should be clear
that the vector of design variables is composed by the dimensions of the bars and the
θ1 angle of the reference bar. Let the vector of design variables ~p defined as follows:

~p = (p1, p2, p3, p4, p5)T = (L1, L2, L3, L4, θ1)T . (50)

3.2. Objective function

It is important to mention that in this synthesis case, the motion amplitude of the rocker
is the output of the system. A maximum value for the objective function expressed in
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(51), implies the maximization of the output of the FBM. From the kinematic analysis
[20], the amplitude of the motion of this mechanical element is given by:

Φ1 = θ4 max − θ4 min (51)

where θ4 max and θ4 min are computed according with the four-bar configuration as fol-
lows:

• Case a) θ1 < 0 :

θ4 max = π −
[
abs(θ1) + arccos

(
L2

1 + L2
4 − (L3 − L2)2

2L1L4

)]
(52)

θ4 min = π −
[
abs(θ1) + arccos

(
L2

1 + L2
4 − (L3 + L2)2

2L1L4

)]
. (53)

• Case b) θ1 = 0 :

θ4 max = π − arccos
(

L2
1 + L2

4 − (L3 − L2)2

2L1L4

)
(54)

θ4 min = π − arccos
(

L2
1 + L2

4 − (L3 + L2)2

2L1L4

)
. (55)

• Case c) θ1 > 0 :

θ4 max = π +
[
abs(θ1)− arccos

(
L2

1 + L2
4 − (L3 − L2)2

2L1L4

)]
(56)

θ4 min = π +
[
abs(θ1)− arccos

(
L2

1 + L2
4 − (L3 + L2)2

2L1L4

)]
. (57)

3.3. Design constraints

In order to obtain a set of values which produce a suitable FBM, a set of design con-
straints is established.

3.3.1. Grashof’s law

In order to conduct a continuous motion, the mechanical elements of the FBM must fulfill
the Grashof’s law: for a plane four-bar linkage, the sum of the length for the shortest
and largest links can not be greater than the sum of the length of the two remaining links,
if a continuous relative rotation between any two elements is desired [17]. Denoting as s
and l the shortest and the largest links of the four-bar mechanism, and as p and q the
other two links, Grashof’s law is established as detailed in (58).

s + l ≤ p + q. (58)

In the problem tackled in this work, Grashof’s law is given by:

L2 + L3 ≤ L1 + L4. (59)
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Furthermore, in order to ensure that the solution method produces Grashof-type mech-
anisms, the solutions must fulfills the conditions established in (60) and (61).

L1 ≤ L3 (60)
L4 ≤ L3. (61)

3.3.2. Transmission angle

One of the most used characteristics to evaluate the quality of a linked mechanism is the
measure of its transmission angle. The transmission angle is defined as [17]:the angle
between the output link and the coupler link. Generally taken as the absolute value of
the pair of acute angle corners formed at the intersection of the two links and varies
continuously from a maximum value to a minimal, as the linkage passes through its
range of motion.

The transmission angle in a FBM is defined as follows:

µ =

{
|θ3 − θ4| , if µ ≤ π

2

π − µ, if µ > π
2

(62)

where the angles θ3 and θ4 are computed from (13) and (14).
A recommended design constraint is that µ must be greater than 45◦ along the crank

cycle, so that it fulfills (63).
µ ≥ 45◦. (63)

3.3.3. Motion Symmetry

A necessary characteristic of the rocker motion is a symmetrical motion around the ver-
tical axis. Hence, in order to guarantee the symmetrical motion, an equality constraint
(64) is established,

180◦ − θ4 max = θ4 min. (64)

3.3.4. System size

Due to the available space, the mechanical elements of the FBM must fulfill dimensional
constraints. For this reason, the length of each bar is determined between 0.05m and
0.5m, and these constraints are presented in (65) to (68).

0.05 ≤ L1 ≤ 0.5 (65)
0.05 ≤ L2 ≤ 0.5 (66)
0.05 ≤ L3 ≤ 0.5 (67)
0.05 ≤ L4 ≤ 0.5 . (68)

On the other hand, the angle between the horizontal axis and the reference bar (L1) is
limited between 45◦ and −45◦, as pointed out in (69).

− 45◦ ≤ θ1 ≤ 45◦. (69)



Dynamic approach to optimum synthesis 795

4. DYNAMIC APPROACH STATEMENT FOR THE DIMENSIONAL SYNTHESIS

The dynamic approach statement for the dimensional synthesis of the FBM is formulated
as a mono-objective dynamic optimization problem (MODOP). This MODOP consists
on finding the optimal design variables ~p∗ ∈ R5 which maximize the performance func-
tion (70) subject to the dynamic behaviour of the FBM represented in state variables
(71) and the inequality and equality constraints in the design (72) – (76); it is important
to remark that the inequality constraint 75 is a dynamic constraint which is evaluated
using the profile of the state vector.

Max Φ1(~p) = (θ4 max − θ4 min)2

~p ∈ R5 (70)

subject to:

~̇x = f(~x, ~p, t) (71)
g1(~p) = p2 + p3 − p1 − p4 ≤ 0 (72)
g2(~p) = p1 − p3 ≤ 0 (73)
g3(~p) = p4 − p3 ≤ 0 (74)

g4(~p, t) =
π

4
− µ(~p, t) ≤ 0 (75)

h1(~p) = π − θ4 max − θ4 min = 0 (76)

0.05 ≤ pi ≤ 0.5, i = 1, . . . , 4 and − π
4 ≤ p5 ≤ π

4 . (77)

5. SWARM INTELLIGENCE STRATEGY

Currently, Swarm Intelligence Algorithms (SIA’s) are a suitable option in order to solve
optimization problems. One of the most popular algorithms is the Artificial Bee Colony
(ABC), which is an algorithm based on the foraging behaviour of the honey bee [7].
Originally, this algorithm deals with unconstrained non-linear optimization problems.
However, taking into account that the engineering problems usually include a set of
constrains, a Modified Artificial Bee Colony (M-ABC) for constrained numerical opti-
mization version [15] was used in this work. In this section, a brief explanation of the
main aspects of the ABC algorithm is presented. Then, the M-ABC algorithm is pre-
sented, remarking the computational implementation that was carried out in the present
work.

5.1. Artificial Bee Colony

In [7], the process of the search of nectar in the flowers by the honey bees has been seen
as an optimization process. The way that this kind of social insects manages to focus
efforts on areas with high amounts of food sources has been modelled as a heuristic for
optimization. Two behaviours are used in order to do this: the recruitment of bees into
a food source and the abandonment of a source. It is important to remark that in the
ABC algorithm, the solutions of the problem are represented by the food sources, not
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by the bees. The bees act as variation operators, so when one of them comes to a food
source, the bee calculates a new candidate solution based on this source.

In the ABC algorithm, the colony of artificial bees consists of three types of bees:
employed, onlooker and scout bees. Usually, the number of employed bees is equal to the
number of food sources and each employed bee will be assigned to each one of the sources.
When the bee arrives to the food source, it will calculate a new solution (the bee will fly
to another nearby food source) from it and retain the best solution based on a greedy
selection. The number of onlooker bees is usually the same as the number of employed
bees. This type of bees is assigned to a food source according to the profitability of
such source. In the same way that the employed bees, the onlooker bees will calculate
a new solution based on their assigned food source. When a food source profitability
does not improve after a certain number of iterations, this source is abandoned and is
replaced by a new one randomly assigned. The user-defined parameters required by the
ABC algorithm are: the number of food sources or solutions SN , the total number of
iterations or cycles MCN , and the number of cycles that a non improved food source
will be kept before being replaced by a new source, limit. It is important to remark that
an advantage of the ABC algorithm is that the solutions are real-encoding. Therefore,
it is widely used in engineering design problems.

5.2. Modified Artificial Bee Colony

The M-ABC algortihm is shown in Figure 3. In this algorithm, the variation operator
used by both employed and onlooker bees in order to generate a new candidate solution
νg

i includes a recombination mechanism. The variation operator is given by:

νg
i,j =

{
xg

i,j + φj · (xg
i,j − xg

k,j), if rand(0,1) < MR
xg

i,j , otherwise
(78)

where subscript j indicates the corresponding variable of the ith candidate solution
at iteration g, xg

i represents the solution in which the bee is located at that moment,
xg

k is a randomly chosen food source (which must be different to xg
i ) and φ is a real

number within [−1, 1] generated randomly for every variable. Finally, the user-defined
recombination mechanism is established as 0 ≤ MR ≤ 1. On the other hand, in order
to select the best food source, a tournament selection is carried out based on the set of
rules defined in [3]. Such set of rules is stated as follows:

• Between two feasible food sources, the one with the best objective function value
is preferred.

• Between a feasible food source and an infeasible food source, the feasible one is
preferred.

• Between two infeasible food sources, the one with the lowest value of the sum of
constraint violations is preferred.

In the M-ABC algorithm, a dynamic tolerance for equality constraints is proposed.
Such mechanism is established as follows:

ε(g + 1) =
ε(g)
dec

(79)
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where g is the current iteration and dec is the decreasing rate value of each iteration
(dec > 1). The aim of this is to start with a feasible region larger than the original
one, in order to meet in an easier way the equality constraints at the beginning of the
iterations. A simple way to compute the decreasing rate value is given by:

dec = e

0@ ln(ε0)− ln(εf )
MCN

1A
(80)

where ε0 is the initial tolerance value and εf is the final tolerance value.
In the M-ABC algorithm, a smart flight operator is included. This operator combines

three elements: (1) the information of the solution to be replaced xg
i , the solution that

is used as a reference point in order to generate a new solution, after this, the original
solution is eliminated, (2) the best solution xg

B , that will bias the location of the new
solution, the aim of including this food source is to find a feasible solution or, at least,
an infeasible solution closer to the feasible region, and (3) a solution which is randomly
selected xg

k in order to avoid a full attraction by the best solution so far. The new
solution taking into account the smart flight operator is computed as follows:

νg
i,j = xg

i,j + φ · (xg
k,j − xg

i,j) + (1− φ) · (xg
B,j − xg

i,j). (81)

Finally, the boundary constraint-handling used for the design variables is imple-
mented as follows:

νg
i,j =


2 ∗ Lj − νg

i,j , if νg
i,j < Lj

2 ∗ Uj − νg
i,j , if νg

i,j > Uj

νg
i,j , otherwise

(82)

where, as previously mentioned νg
i,j is the jth variable of the ith candidate solution at

iteration g. Finally, Lj is the lower limit and Uj is the upper limit of the jth variable,
respectively.

5.3. Implementation issues

As it is mentioned in this section, a M-ABC algorithm was used. However, due to the
type of optimization problem some adaptations were carried out:

• Since the solution of the optimization problem must meet the Grashof’s criteria,
the set of rules was not applied directly, in a step prior to the tournament it was
verified that the food sources participants meet the Grashof’s criteria. In fact,
in the lines 15, 21 and 24 of the M-ABC algorithm, the selection between the
contenders is based on the next rules:

1. When both food sources meet the Grashof’s criteria, the set of rules is applied.

2. When a food source meets the Grashof’s criteria and the other one does not,
the Grashof’s one is preferred.

3. When both food sources do not meet the Grashof’s criteria, the one with the
lowest value of the sum of constraint violations is preferred.
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1 BEGIN
2 Initialize the set of food sources x0

i , i = 1, . . . , SN
3 Evaluate each x0

i , i = 1, . . . , SN
4 g = 1
5 IF There are equality constraints
6 Initialize ε(g)
7 END IF
8 REPEAT
9 IF There are equality constraints
10 Evaluate each x0

i , i = 1, . . . , SN with ε(g)
11 END IF
12 FOR i = 1 TO SN

13 Generate νg
i with xg−1

i by using Eq. 78
14 Evaluate νg

i

15 IF νg
i is better than xg−1

i (based on feasibility criteria in Section 5.2)
16 xg

i = νg
i

17 ELSE

18 xg
i = xg−1

i

19 END FOR
20 FOR i = 1 TO SN
21 Select food source xg

i based on binary tournament selection (Section 5.2)
22 Generate νg

i with xg
i by using Eq. 78

23 Evaluate νg
i

24 IF νg
i is better than xg

i (based on feasibility criteria in Section 5.2)
25 xg

i = νg
i

26 END IF
27 END FOR
28 Apply the smart flight by the scout bees (Eq. 81) for those

solutions whose limit to be improved has been reached
29 Keep the best solution so far
30 g = g + 1
31 IF There are equality constraints
32 Update ε(g) by using Eq. FF
33 END IF
34 UNTIL g = MCN
35 END

Fig. 3. Modified Artificial Bee Colony Algortihm (M-ABC).

• In order to apply the smart flight operator (line 28 of the M-ABC algorithm), the
best source is needed, therefore, the search of such source is carried out as follows:

1. In the current distribution of food sources, a search by a food source that
meets the Grashof’s law is carried out. Once that a food source is found,
a search based on the three rules above mentioned continues for this type
of food sources, in order to compare and select the best one of the whole
distribution
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2. In case that the current distribution of food sources does not include Grashof’s
sources, a search for the food source with the lowest value of the sum of
constraint violations is carried out.

• Since the inequality constraint g4 of the optimization problem is a dynamic con-
straint, it is evaluated only when the food source meets the Grashof’s criteria.

It is important to remark that the constraints applied to the M-ABC algorithm are
originated by the type of optimization problem that is solved in the present work, but
the mean idea of the algorithm is preserved.

6. RESULTS AND DISCUSSION

In the present work, a set of 10 independent runs was carried out. A fixed set of values
for the M-ABC parameters was used in all runs as follows: number of solutions SN = 20,
maximum cycle number MCN = 10000, Limit = MCN/(2 ∗SN) = 250, and modifica-
tion rate MR = 0.8. On the other hand, in order to evaluate the equality constraint, the
initial and final desired values of ε0 and εf were taken as 1.0 and 0.01, respectively. The
M-ABC algorithm was coded in Matlab R© R2008a and was run in a Laptop computer
with 6 GB RAM, Intel R© Core i5 processor @ 2.5 GHz, and Microsoft Windows R© 7 OS.

The results of these computational experiments are shown in Table 1. The statistical
analysis of the independent runs can be observed in Table 2. Finally, the time required
per run is shown in Table 3.

Run Vector of design variables Objective function

1 0.434183161 0.111987151 0.434193070 0.200010277 -0.198555316 1.474881068

2 0.436286674 0.112199817 0.436288484 0.200024842 -0.197834785 1.480289545

3 0.462774558 0.113985089 0.462909518 0.200010509 -0.183396807 1.527252312

4 0.499960734 0.116714229 0.499963500 0.200009037 -0.169495104 1.602442026

5 0.499314875 0.116673002 0.499315293 0.200004459 -0.169621422 1.601355458

6 0.496355846 0.116497626 0.496356328 0.200014750 -0.170800563 1.596298246

7 0.499756750 0.116698292 0.499759307 0.200000141 -0.169562651 1.602141700

8 0.499882643 0.116710523 0.499883948 0.200010631 -0.169479315 1.602308234

9 0.496954796 0.116528730 0.496956381 0.200001937 -0.170573303 1.597376571

10 0.496757589 0.116506497 0.496765845 0.200040121 -0.170134742 1.596069930

Tab. 1. Details of the solutions obtained by the M-ABC algorithm.

From Tables 1 and 2 it can be observed that the M-ABC algorithm has a steady
behaviour from a computational point of view, as the best and worst solutions shown
a similar performance. On the other hand, the computational time for the execution of
the algorithm is not expensive, taking into account the kind of problem that was solved,
as can be seen in Table 3.
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Best 1.602442026

Mean 1.568041509

Worst 1.474881068

Std. Dev. 0.050117723

Tab. 2. Statistical results for the independent runs by the M-ABC

algorithm.

Run Time required/Hrs

1 1.10

2 1.13

3 1.06

4 0.94

5 0.94

6 0.83

7 0.82

8 0.86

9 0.96

10 0.81

Average 0.94

Tab. 3. Time required at each independent run by the M-ABC

algorithm.

6.1. Mechanical analysis of solutions

It is worth recalling that the goal of the optimization problem is to obtain a set of values
for the FBM mechanism. Therefore, the best and worst solutions obtained by the M-
ABC algorithm were subject to simulation in order to obtain more information about
the mechanical performance of the resulting mechanism. The simulation results for the
displacement angle (θ4) of the rocker and the transmission angle (µ) for the best and
worst solutions obtained, are shown in Figure 4.

As it is mentioned in Section 3, the optimal set of values for the FBM mechanism,
should allow a symmetric displacement of the rocker around the vertical axis (π

2 rad
is the reference value), and in order to obtain a high efficiency of the mechanism, the
transmission angle should be greater than π

4 rad and stay around of π
2 rad, along the entire

motion of the mechanism. As it can be observed in Figure 4, the best and worst solutions
have values inside the requirements previously established on the optimal strategy.

7. CONCLUSIONS

In the present work a dynamic approach to obtain the optimum synthesis of a FBM
mechanism using a swarm intelligence algorithm is presented. The mechanical synthesis
is established as an optimization problem, where the dynamic model of the system is



Dynamic approach to optimum synthesis 801

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 

 
Diplacement of θ

4

Transmission angle µ

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 

 
Diplacement of θ

4

Transmission angle µ

b)

Fig. 4. Simulation of the angular displacement of the rocker θ4 and

transmission angle µ for the best a) and the worst b) solution in

Table 1.

considered besides a set of constraints and an objective function. It is important to
remark that one of the constraints is a dynamic one.

A swarm intelligence algorithm called Modified-Artificial Bee Colony was imple-
mented to obtain the solution of the optimization problem. A set of independent runs
were carried out in order to test both the performance and the behaviour of the algorithm
and its solutions.

The results presented in this work show that the dynamic approach proposed is suit-
able for the analysis and design of this type of planar mechanisms. Also, the computa-
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tional implementation of the M-ABC algorithm allows its application without important
changes or adaptations, in order to solve real-world problems.

Future work will include a design methodology which deals with the optimal design,
considering both the mechanical structure and the controller simultaneously.
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