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RELATIVE COST CURVES: AN ALTERNATIVE TO AUC
AND AN EXTENSION TO 3-CLASS PROBLEMS

Olga Montvida and Frank Klawonn

Performance evaluation of classifiers is a crucial step for selecting the best classifier or the
best set of parameters for a classifier. Receiver Operating Characteristic (ROC) curves and
Area Under the ROC Curve (AUC) are widely used to analyse performance of a classifier.
However, the approach does not take into account that misclassification for different classes
might have more or less serious consequences. On the other hand, it is often difficult to specify
exactly the consequences or costs of misclassifications. This paper is devoted to Relative Cost
Curves (RCC) – a graphical technique for visualising the performance of binary classifiers over
the full range of possible relative misclassification costs. This curve provides helpful information
to choose the best set of classifiers or to estimate misclassification costs if those are not known
precisely. In this paper, the concept of Area Above the RCC (AAC) is introduced, a scalar
measure of classifier performance under unequal misclassification costs problem. We also extend
RCC to multicategory problems when misclassification costs depend only on the true class.

Keywords: classifier, performance evaluation, misclassification costs, cost curves, ROC
curves, AUC
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1. INTRODUCTION AND MOTIVATION

A Receiver Operator Characteristic plot (for overviews see for instance [1, 3, 6, 9]) al-
lows a classifier to be evaluated and optimised over all possible operating points. The
Area Under ROC has become a standard performance evaluation criterion in two-class
pattern recognition problems, used to compare different classification algorithms inde-
pendent of operating points, prior, and costs. However, this became the main reason
for criticising this approach: “The most fundamental shortcoming is the simple fact
that a single, scalar performance measure cannot capture all aspects of the performance
differences between two classifiers. An important example of this failing occurs when
the cost of misclassifying examples in one class is much different than the cost of mis-
classifying examples in the other class, or when one class is much rarer than the other.
A scalar measure can give expected performance given a probability distribution over
costs and class ratios, but will not indicate for which costs and class ratios one classifier
outperforms the other.” [2]
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Existing well-known cost curve techniques (see [2, 4, 7]) evaluate the performance of a
classifier by visualising its error rate across all possible values of probability of an object
coming from one of the classes. Cost Curves generalised approach and Brier Curves
technique [7] allow to analyse classifiers performance over a range of two operating
conditions simultaneously. The curves depict normalised expected costs of a classifier
over the full range of possible class distributions and misclassification costs.

In case unequal costs are the primary interest the Relative Cost Curves (RCC) tech-
nique, introduced in [8], offers a characterisation of the performance of a classifier in a
more intuitive way. The method observes expected relative costs of a binary classifier
as a function of miscalssification costs.

Section 2 introduces the notion of RCC, briefly describes the algorithm for evaluating
expected costs and explains how to visualise them. The next section is devoted to Area
Above RCC, a scalar measure of classifier performance. The idea of AAC is analogue to
AUC, but has its own advantages and disadvantages. In Section 4 a simplified misclassi-
fication costs problem is generalised to the multi-class case. Well known data examples
are analysed and compared in Section 5, where we also demonstrate the benefit of RCC.
Final conclusions are presented in Section 6.

2. RELATIVE COST CURVES FOR BINARY CLASSIFICATION PROBLEMS

Relative cost curves were introduced in [8] and are based on the following ideas. We
consider a classification problem with two classes. In the biomedical literature persons
showing a given disease are usually classified as + and healthy as −. We will use such a
notation, i. e. we are faced with a dataset where each instance is assigned to one of the
two classes + or −. In addition, we have a score for each instance: X = (x1, x2, . . . , xn),
xi ∈ R, i = 1, . . . , n. Without loss of generality, we assume that a higher score speaks
more in favour of the class +. We will denote all instances that come from the negative
class as X−, |X−| = k, k ≤ n. Analogously, X+ stands for all instances from the positive
class, |X+| = n−k. The score can come from a classifier, i. e. a function – usually learned
from data – that assigns score for the class or disease under consideration to an object
or patient based other attributes like blood values. In this case, it the score is often
the probability for the class + that the classifier has computed. For instance, naive
Bayes classifiers or logistic regression provide such scores in the form of probabilities.
But the score does not need to be a probability. It can also be the signed distance to
the separating hyperplane of a support vector machine, the output of a neuron of a
neural network or simply the value of a specific attribute, like a biomarker, usually the
measurement of a certain biochemical component which is an indicator for a specific
disease.

A simple decision rule of the form “If xi < t, then class −, otherwise class +” will be
used to make the classification decision. For every fixed threshold t ∈ R, all instances
can be divided into four groups as shown in Table 1, which is also known as contingency
table or confusion matrix.

False positive rate will stand for false positive instances divided by k, true positive
rate – for true positive divided by n−k. The higher t is chosen, the less false positives the
classifier will produce, but at the same time the number of true positives will decrease.
The choice of t depends on two aspects.
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• The misclassification costs for false positives and for false negatives. It should
be noted that misclassification costs for false positives and false negatives can be
quite different. It makes a big difference whether a healthy person is wrongly
classified as having a specific disease or a patient suffering from a specific disease
is considered to be healthy.

• The prior distribution of the classes. Although the misclassification costs for false
negatives might be high, it might still not be advisable to choose a low threshold t in
order to reduce the number of false negatives. If the fraction of instances from the
class + is very small, a small threshold t will lead to an extremely large number of
false positives in comparison to the false negatives and the overall misclassification
costs will be very high.

predicted class
true class − +

− True Negative False Positive
+ False Negative True Positive

Tab. 1. Contingency table.

More generally speaking, we consider a normalised cost matrix as shown in Table 2.
A correctly classified instance will cause no costs – the zeros in the diagonal – whereas a
false positive will cause the misclassification costs 1 and a false negative the misclassifi-
cation costs c > 0. Without loss of generality, we have assumed that the misclassification
costs for false positives are normalised to 1. This is no restriction, since we have not
specified the unit in which we measure the costs (Euros, Dollars, Cents,. . .). So we sim-
ply say that the cost unit corresponds to the misclassification costs of a false positive.
When the classification is based on minimising the costs, it is sufficient to know the
ration of the costs for a false positive and a false negative, but not their absolute values.

predicted class
true class − +

− 0 1
+ c 0

Tab. 2. A normalised cost matrix for a classification problem with

two classes.

Given the value c, the average misclassification costs for threshold t are

g(t) =
1
n
·
( n∑

i=1

I{xi∈X+}I{xi<t} + c ·
n∑

i=1

I{xi∈X−}I{xi≥t}

)
, (1)

where IA is the indicator function for A. The optimal threshold t can now be determined
by minimising Eq. (1).
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In real applications, it is often difficult to specify exact misclassification costs. There-
fore, the value c is usually not fixed, but considered to be variable or a probability dis-
tribution over c is assumed (compare [4]). Here, we do not make any assumption about
c. We can represent the average misclassification costs as a function CC of c, i. e.

CC(c) = min{g(t) | t ∈ R}. (2)

This cost curve has two disadvantages.

• The normalisation of the costs in Table 2 with respect to the false positives was a
more or less arbitrary choice. We could have carried out the normalisation in the
same way with respect to the false negatives. However, our normalisation causes
an asymmetric situation. The cases where false negatives are considered worse
than false positives correspond to the infinite interval c ∈ (1,∞), whereas the
cases where false positives are considered worse than false negatives correspond
to the finite interval c ∈ (0, 1). Since RCC is a visualisation technique, we use a
logarithmic scale for the costs to avoid asymmetry. In this way, cases where false
negatives are considered worse than false positives correspond to the interval c ∈
(−∞, 0) and cases where false positives are considered worse than false negatives
correspond to the interval c ∈ (0,∞). If we do not carry out this normalisation,
the cost curve could look very unstable in the interval (0, 1), since essentially the
same things are represented in the finite interval (0, 1) and the infinite interval
(1,∞), except that the roles of the two classes are exchanged with respect to the
costs.

• A low value of CC at costs c does not necessarily mean that the score is useful
for the classification. For instance at c = 1, we can easily achieve low costs if
the two classes are extremely imbalanced, say 99% of the instances belong to the
class −. Choosing t large enough will assign all instances to the majority class
− and the average misclassification costs become in this case 0.01, corresponding
to the 1% false negatives. But this value of 0.01 for the average misclassification
costs is obtained even without considering the scores. This would mean that the
scores are useless unless they lead to a misclassification rate significantly lower
than 0.01. Therefore, the relative costs of the classifier using the scores compared
to the naive classifier are considered. The naive classifier ignores the scores and
assigns all instances to the class which yields the lower misclassification costs. The
average misclassification costs for the naive classifier are

CCnaive(c) =
1
n

min{k, (n− k) · c}, (3)

where k of the n instances belong to the class −.

This leads to the definition of the relative cost curve

RCC(log2(c)) =
CC(c)

CCnaive(c)
· 100 %. (4)

A value of 100% for RCC at costs c would mean that the scores are of no use for
these costs. The lower the value of RCC, the more the scores contribute to minimise the
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misclassification costs. At 0, we would have a perfect classifier without misclassifications.
Values over 100% indicate that the assumption that higher scores always speak more in
favour of the class + is not always valid. This might also simply be a sampling effect,
since we always deal with a finite sample.
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Fig. 1. An example for a Relative Cost Curve with a band based on

cross-validation.

Figure 1 shows an example of an RCC. The curve is based on 10-fold cross-validation,
i. e. the curve corresponds to the mean of 10 RCCs. The area around the curve corre-
sponds to the standard deviation derived from the 10 RCCs.

Apart from the theoretical definition of RCCs, there is also a computational aspect,
how these curves can be calculated to plot their graphs. A simple approach would
evaluate Eq. (4) at equidistant points to draw the graph. However, one would have to
fix a sampling rate for the equidistant points. A large sampling rate would lead to high
computational costs, whereas a low sampling rate would result in a bad approximation
quality of the true RCC.

Fortunately, the RCC can be calculated exactly by choosing a flexible sampling rate.
The algorithm for this drawing algorithm is described in detail in [8] and basically needs
a sorting of the instances in increasing order with respect to their scores.

3. AREA ABOVE CURVE

Letting the threshold t vary from ∞ to −∞, ROC curves plot the false positive rate
of a classifier on the x-axis against the true positive rate on the y-axis. Note that the
ROC curve is independent of the prior distribution of the classes. AUC is defined in
terms of ROC curves, summarising the ROC curve to a single performance value. It is
simply the area under the ROC curve. A value of 0.5 for AUC corresponds to random
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guessing, whereas an AUC of 1 would mean that the classifier can perfectly separate
the classes, at least for the given data. AUC can also be interpreted as the probability
that a randomly selected instance from the class + has a higher score than a randomly
selected instance from the class −.

We apply a similar idea and introduce the Area Above Curve (AAC) in terms of
Relative Cost Curves. As stated before, RCC values generally lie below 100%. Therefore,
we propose to measure classifier performance as the area between RCC and the y = 100
curve – the line corresponding to the performance of the naive classifier. Notice, that
RCC is defined on an unbounded interval, therefore AAC needs to be restricted to a
finite interval of misclassification costs to avoid infinite values (Figure 2). Essentially,
AAC is the area between the RCC and the 100% line of the naive classifier. But since
the RCC should normally be under the 100% line and for reasons of a simple name, we
simply call it area above curve.
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Fig. 2. Area Above Curve on two different intervals of

misclassification costs.

The AAC value is obtained by standardising the area with respect to the area of the
naive classifier on a given interval:

AAC[a, b] = 1−
∫ b

a
RCC(log2(c))d(log2 c)

100(log2(b)− log2(a))
.

Perfect classification results in a large area. The AAC value is bounded by 1. This
upper bound of 1 corresponds to a perfect classifier with no misclassification. Poor
classification results in a small area. Even negative values of AAC are possible if a
classifier performs worse than the naive classifier. This can happen, especially when
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cross-validation is used and the classifier by chance yields sometimes worse results than
the naive classifier. We recommend to use RCC as a primary analysis, but conclusions
might be supported by the AAC value.

For example, both classifiers in Figure 3 perform similarly, but the AAC value mea-
sured on a given interval points out which one is better for this range of costs.

Fig. 3. Comparison of the performance of two classifiers.

4. MULTICLASS PROBLEMS

Since we have adopted the ideas from AUC for the introduction of AAC, the application
is restricted to classification problems with two classes. There are extensions of ROC
curves and AUC to classification problems with three [12] or more classes [5, 10]. Here we
also extend the idea of AAC to classification problems with three classes under certain
assumptions on the cost matrix. First consider the following example:

A company wants to classify potential customers in order to send them an appropriate
offer. Classes depend on age (student, senior, working age) or region (districts, cities,
countries etc.) or any other factor. Based on current client classes contribution levels,
approximate costs of loosing a potential customer from a particular class might be
calculated. Notice, that for the company there is no interest if a “Prague citizen” has
been classified as an “Ostrava citizen” or as a “Brno citizen”, in both cases the company
looses a potential “Prague citizen” client, by sending an inappropriate marketing offer.

A similar situation can occur in medical diagnosis. If we do not only distinguish
between two classes, i. e. healthy and a specific disease, but between a number of different
diseases, the wrong diagnosis means that the patient is not treated correctly and will
suffer from the consequences of the undiscovered and untreated disease.

Now consider a classification problem with three classes. We will denote them by 0, 1
and 2. Assume that the misclassification costs only depend on the true class but not on
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the class to which an object is assigned wrongly, e. g. classifying an instance from class 0
to class 1 has the same consequences as classifying the instance to class 2. The general
structure of such a misclassification costs matrix is given in Table 3. On the right hand
side of Table 3 is normalised with respect to the costs of the first class. This cost matrix
is a simplified extension to three classes of a cost matrix for two classes in Table 2.

predicted class
true class 0 1 2

0 0 c0 c0

1 c1 0 c1

2 c2 c2 0

predicted class
true class 0 1 2

0 0 1 1
1 c̃1 0 c̃1

2 c̃2 c̃2 0

Tab. 3. Cost matrix for a simplified 3-class problem (left) and a

normalised version (right).

We now assume that two threshold values t1 and t2 must be specified. Scores below t1
are assigned to class 0, scores between t1 and t2 to class 1 and scores above t2 to class 2.
The main advantage of the above mentioned assumptions is that both thresholds can be
found independently.

Let F0 denote all misclassified instances from class 0 (Figure 4). Instances misclassi-
fied from class 1 to class 0 are denoted by F10 and correspondingly instances from class
1 wrongly assigned to class 2 are written as F12. Misclassified instances from class 2 are
denoted as F2. The values depend on the choice of the thresholds.

Applying the same logic as previously, the misclassification costs can be computed in
the following way.

h(t1) = {F0(t1) + c̃1F10(t1)},

f(t2) = {c̃1F12(t2) + c̃2F2(t2)}.

The minimal misclassification costs are

CM(c̃1, c̃2) = min{h(t1) | t1 ∈ R}+ min{f(t2) | t2 ∈ R}.

Thus, the 3-class problem is reduced to two 2-class problems and the algorithm
introduced in [8] can be applied directly. This approach can be extended in a straight
forward manner to find the optimal thresholds for classification problems with k classes
given that misclassification costs depend only on the true class but not on the wrongly
assigned class.
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Fig. 4. Threshold choice for a 3-class problem.

Of course, it is impossible to draw corresponding RCCs for three or more classes, since
the misclassification costs of a classifier would be a function of three or more arguments,
i. e. as many classes we have. As in the case of two-class problems, one can carry out a
normalisation by setting one of the costs ci to 1. In this way, we could get rid of one
argument. This would only help for the visualisation for 3-class problems. In this case,
we could draw the misclassification costs as a 3D-view of a function of two arguments.
But in any case, we can extend our concept of AAC to an arbitrary number of classes.
Instead of the area above a curve, we would have to consider a (hyper-)volume above a
manifold in the same way as AUC is extended to HUM ((hyper-)volume under manifold)
in [10]. For the above described 3-class problem we obtain

RCM(log2(c̃1), log2(c̃2)) =
CC(c̃1, c̃2)

min{lc̃1 + mc̃2; k + mc̃2; k + lc̃1}
· 100%,

where k, l,m are the number of instances from classes 0, 1 and 2, respectively. For given
lower (c̃L

0 , c̃L
1 , c̃L

2 ) and upper (c̃U
0 , c̃U

1 , c̃U
2 ) bounds for each misclassification cost, the

AAC analogue – (hyper-) Volume Above Manifold – is

HAM = 1−

c̃U
1∫̃

cL
1

c̃U
2∫̃

cL
2

RCM(log2(c̃1), log2(c̃2)) d(log2 c̃2) d(log2 c̃1)(
log2

(
c̃U
1

)
− log2

(
c̃L
1

)) (
log2

(
c̃U
2

)
− log2

(
c̃L
2

))
· 100

.
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5. EXAMPLES

5.1. Generated data

As our first example, we consider artificial data where scores of the instances from the
class − follow a standard normal distribution N(0, 1) and scores of the instances from
the class + follow the normal distribution N(d, 1), where d > 0 is assumed. The prior
probability of the class + is p+ ∈ (0, 1), i. e. a fraction of p+ instance scores will be
generated from the class + and a fraction of (1− p+) from the class −.

Fig. 5. Classifier comparison with ROC and RCC.

Let us compare classifier 1 where d = 1.5 and p+ = 0.5 with classifier 2 where d = 1.5
and p+ = 0.3. Classifier 1 has equal proportions of positive and negative examples,
classifier 2 has 30% positive instances and 70% negative ones. Figure 5 shows ROC
curves on the left hand side and RCCs on the right hand side. On the one hand, the
ROC plot indicates that the classifiers have a similar performance. But on the other
hand, our RCC analysis reveals the difference between the classifiers which comes mainly
from the fact that we have used different prior distributions. The prior class distribution
does not have any influence on ROC curves. From the RCCs it can be seen, that when
misclassifications of instances from the class + have more serious consequences than
misclassifying negative instances, it is better to use classifier 2.

RCC mainly depends on two factors: prior and scores. To understand the RCC’s
behaviour we will observe the curve analysing both factors independently. Figure 6

shows how the RCC changes depending on the prior probability of the class +. We
fixed d = 1.5 and generated 3 datasets with p+ = 0.9, p+ = 0.5 and p+ = 0.1. The
corresponding RCCs are shown in the figure.



Classifiers based on cost curves 657

−5 0 5

50
60

70
80

90
10

0

RCC

log2(c)

re
la

tiv
e 

co
st

s 
[%

] rel=0.1

rel=0.5

rel=0.9

Fig. 6. RCC’s behaviour depending on the prior probability p+ of

the class +.

We take a closer look at the RCC which corresponds to the classifier with p+ = 0.5.
The curve is non-increasing on the interval c ∈ (−∞, 0). Relative costs are minimal
at 0 when misclassifying negative instances has the same consequences as misclassifying
positive instances. The curve is non-decreasing on c ∈ (0,+∞). All RCCs with p+ = 0.5
will show this behaviour for the following reason. Consider given misclassification costs
c ∈ (0,∞). Let us abbreviate the sums in Eq. (1), i. e. the number of false positives and
false negatives, by

s+ =
n∑

i=1

I{xi∈X+}I{xi<t} (5)

and

s− =
n∑

i=1

I{xi∈X−}I{xi≥t}, (6)

repsectively. Given that n/2 of the data belong to the + and n/2 of the data to class −,
the relative costs are

RCC(log2(c)) =
min
t∈R

{
1
n · (s+ + c · s−)

}
min{c,1}

2

=
min
t∈R

{
1
n ·

(
max{ 1

c , 1} · s+ + max{1, 1
c} · s−

)}
1
2

≥
min
t∈R

{
1
n · (s+ + s−)

}
1
2

. (7)

Eq. (7) corresponds exactly to the relative costs for c = 1, i. e. log2(c) = 0.
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For p+ 6= 0.5 the RCC shifts to the right when p+ < 0.5 and to the left when p+ > 0.5.
Another example shows how RCC behaves when the parameter d is changed where we

assume equal prior probabilities for both classes. The parameter indicates how well two
classes are separated, the bigger d, the better classes are separated. In Figure 7 three
RCCs for d = 0.5, d = 1.5 and d = 4.5 are shown. An ideal classifier separating the
classes perfectly with no misclassifications would have the x-axis as its RCC. Similarly,
a classifier where scores provide no information on the classes would have y = 100 as its
RCC, since random guessing is the best strategy.
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Fig. 7. RCC’s behaviour depending on the parameter d, i. e. how well

classes are separated.

5.2. Breast cancer data

The breast cancer dataset [11] was obtained from the University of Wisconsin Hospitals,
Madison from Dr. William H. Wolberg. He assessed biopsies of breast tumours for 699
patients up to 15 July 1992; each of nine attributes has been scored on a scale of 1 to
10, and the outcome is also known. There are 699 instances: 241 of class malignant and
458 of class benign. The dataset is also known as the “biopsy dataset”.

We compare two classifiers, i. e. two attributes or biomarkers: marginal adhesion and
bland chromatin. Figure 8 shows the ROC curves on the left hand side. It seems that
bland chromatin clearly outperforms marginal adhesion. The right plot shows the RCCs
based on 10-fold cross-validation. On the one hand, in general terms bland chromatin
outperforms marginal adhesion here. This conclusion is supported by an AAC value of
0.19 for bland chromatin and 0.02 for marginal adhesion. But on the other hand, for
c ∈ [0.0625, 1.1] (or log2(c) ∈ [−4, 0.1]) bland chromatin is unstable, marginal adhesion
performs better.
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Fig. 8. Comparing of marginal adhesion and bland chromatin

classifiers.

6. CONCLUSIONS

We have demonstrated in this paper that our proposed RCC and AAC analysis can
complement ROC and AUC analysis. RCC and AAC reveal properties of the classifiers
that cannot be seen from ROC curves, since neither the prior distribution of the classes
nor the consequences (costs) for misclassifications are taken into account whereas these
aspects play a crucial role for RCC and AAC.
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