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ON PRECISION OF STOCHASTIC OPTIMIZATION
BASED ON ESTIMATES FROM CENSORED DATA

Petr Volf

In the framework of a stochastic optimization problem, it is assumed that the stochastic
characteristics of optimized system are estimated from randomly right–censored data. Such a
case is frequently encountered in time-to-event or lifetime studies. The analysis of precision
of such a solution is based on corresponding theoretical properties of estimated stochastic
characteristics. The main concern is to show consistency of optimal solution even in the random
censoring case. Behavior of solutions for finite data sizes is studied with the aid of randomly
generated example.
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1. INTRODUCTION

The problem of stochastic optimization is often formulated as to find a solution to

inf
v

φF (v) = inf
v

EF ϕ(Y, v), (1)

where ϕ is a cost function, v is an input “control” variable from certain feasibility set V ,
EF stands for the expectation under distribution function F , and, finally, Y is a random
variable (or vector) with distribution function F . In the present paper it is assumed that
F has to be estimated, in a non-parametric way, from observed data. Then, a standard
approach considers a solution of (1) using estimated F instead of ‘true’ one. A number of
papers has already dealt with the problem of optimization based on statistical estimates.
The main concern was asymptotic optimality of solution (see for instance Dupačová and
Wets [2]), as well as the rate of convergence. A nice overview of the history as well as
of the most recent results in this area is provided in Houda and Kaňková [3].

The situation is even more complicated if the data available for estimation are not
complete. We shall consider here the random censoring from the right side. It is quite
frequent in the analysis of demographic, survival or insurance data. The lack of informa-
tion leads to higher variability (and, sometimes, to a bias) of estimates and, consequently,
to higher uncertainty of optimal solutions.
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The approaches to statistical data analysis in cases when the data are censored or
even truncated have been studied by a number of authors, mostly in the framework
of statistical survival analysis (cf. Kalbfleisch and Prentice [4]). The main objective
of the present paper is to study the increase of uncertainty of results of optimization
problem when the censoring is causing growing variability of estimates and to formulate
conditions ensuring asymptotic consistency of these results. This problem has been
already examined by Volf [8] where the solution was based on the properties of the
mean value estimated from censored data. Both parametric and non-parametric forms
of unknown distribution function F were considered. The asymptotic optimality of
solutions was proven, however without examination of convergence rates.

The approach of the present paper differs from that of Volf [8], though some starting
points are the same. We concentrate to the non-parametric estimate of F . In the next
section we recall the product-limit estimate (PLE) as a generalization of the empirical
distribution function and some of its large sample properties. Then, in Section 3, we
follow the approach proposed in Kaňková [5] and generalize it for the censored data
case. It is the basis for the main results of the paper contained in Section 4. We prove
the convergence of optimal solutions computed from estimated distribution function to
the optimum (1), along with the rates of convergence. In Theorems 1 and 2 we also
distinguish the cases with light and heavy tails. Finally, in Section 5 an example deals
with a simple optimization problem, properties of obtained solutions are illustrated with
the aid of simulations.

2. RANDOM CENSORING AND PRODUCT-LIMIT ESTIMATE

In the present section we shall recall some results concerning estimates from randomly
right-censored data. They are collected in survival analysis literature, let us mention
again Kalbfleisch and Prentice [4], and they shall be used in next parts of the paper.

Let Y be a continuous-type random variable characterizing, for instance, a random
time to certain event. Let another continuous random variable Z be a censoring variable,
Y, Z being mutually independent. Further, let f(y), g(z), F (y), G(z), F (y) = 1−F (y),
G(z) = 1−G(z) denote the density, distribution and survival functions of both variables.
It is assumed that we observe just X = min(Y, Z) and δ = 1[Y ≤ Z], i. e. δ indicates
whether Y is observed or censored from right side. The data are then given as random
sample (Xi, δi, i = 1, . . . , N). Notice that the case without censoring is obtained when
G(t) ≡ 0 on the region where F (t) < 1. In the sequel we shall assume that sup{t :
G(t) < 1} ≥ sup{t : F (t) < 1}, so that Z does not cut off (with probability 1) the right
tail of Y . Let us remark here that in some cases we can deal, for instance, with the
logarithm of time. Then the domain of data can be the whole R.

A generalization of empirical distribution function is the well known Kaplan–Meier
“Product Limit Estimate” (PLE) of survival function. Let us first sort (re-index) the
data in increasing order, X1 ≤ X2 ≤ · · · ≤ XN , then the PLE of F (t) has the form

FN (t) =
N∏

i=1

(
N − i

N − i + 1

)δi·1[Xi≤t]

.

Again, notice that when all δi = 1, we obtain the empirical survival function. The
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following proposition is due to Breslow and Crowley [1]:

Proposition 1. Let T > 0 be such that still F (T ) ·G(T ) > 0. Then the random process

VN (t) =
√

N

(
FN (t)
F (t)

− 1
)

=
√

N
F (t)− FN (t)

F (t)

converges, on [0, T ], when N →∞, to Gaussian martingale with zero mean and variance
function

C(t) =
∫ t

0

dF (s)
F (s)2 G(s)

. (2)

Here, FN (t) = 1− FN (t). The asymptotic variance function can be estimated by its
empirical version:

CN (t) =
N∑

i=1

Nδi

(N − i + 1)2
· 1[Xi ≤ t],

which is consistent in probability, uniformly w.r. to t ∈ [0, T ] (see again Breslow and
Crowley [1]).

Further, denote DN (t) = VN (t)
/
(1+C(t)). For the case without censoring we obtain

that C(t) = F (t)
/
F (t) and DN (t) =

√
N(F (t)−FN (t)) leading to standard Kolmogorov–

Smirnov statistics. From (2) it is also seen that the variance in the case with censoring
(when G(t) ≤ 1) is larger than without it (i. e. when G(t) = 1 on whole [0, T ]). It
has been proved (see, for instance, Robbins and Siegmund [7]) that the approximate
two-sided 1 − α band for |DN (t)| on (0, T ) is based on cα =

√
− ln(α

2 )/2. Namely, in
the case without censoring cα is the approximate distribution-free critical value for the
Kolmogorov–Smirnov test,

P

(
sup

t
|FN (t)− F (t)| ≥ cα/

√
N

)
.= α.

In the case with censoring, we have

DN (t) =
√

N (F (t)− FN (t))
/
F (t)

/
(1 + C(t)),

hence, corresponding 1− α confidence band for F (t) depends on both F and G and its
width is increasing for larger t. Then the approximate 1− α borders for |FN (t)− F (t)|
on [0, T ] are given as ±cα · F (t) · (1 + C(t))/

√
N .

The asymptotic properties of the PLE listed above concern just to any interval
(−∞, T ) with finite T . However, for our purposes the consistency on the whole line
is needed. From a set of relevant results, we shall refer here to the paper of Rejto [6],
where the following statement is proved.

Proposition 2. (Rejto [6]) Let us consider the random censoring model with distri-
bution functions F,G continuous. Let there exist a, b ∈ (0, 1] and a real τ such that
aF (t)b ≤ G(t) on [τ,∞). Then almost surely

sup
−∞<t<∞

|FN (t)− F (t)| = O

([
ln N

N

] 1
2+b

)
. (3)
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Again, FN (t) = 1 − FN (t) and FN (t) denotes the PLE of survival function F (t) of
random variable Y . Notice that the proposition contains no explicit assumption con-
cerning the distributions tails. Just implicitly, it requires that the right tail of censoring
distribution G should be heavier than the same tail of the distribution F . In the case
without censoring (Ḡ(t) ≡ 1) the proposition states a known fact that (3) holds for any
b > 0, hence Nβ supt |FN (t)− F (t)| → 0 a.s. for any β < 1

2 ).

3. PRELIMINARY RESULTS

In next two sections we shall investigate whether (and under which assumptions) the
consistency of estimate of F ensures already the consistency of optimal solution. Namely,
whether optimal values (both φ and v) of problem (1) obtained from a case with non-
complete information on F converge to optimal φ∗ and v∗ obtained when F is known.

There are several ways how to address this problem. We shall follow here the approach
starting from certain results summarized in Kaňková [5] and later on in Houda and
Kaňková [3]. Let us recall the statement from which other assertions can be derived:

Proposition 3. (Kaňková [5], Proposition 2.1) Let F,G be two distribution functions
on R, let v ∈V , V be a compact set. If:

1. ϕ(y, v) is a Lipschitz function of y on R, with Lipschitz constant L not depending on
v ∈ V ,

2. finite EF ϕ(y, v), EGϕ(y, v) exist for all v ∈ V ,

3. ϕ(y, v) is a uniformly continuous function on R× V , then

| inf
v

EF ϕ(Y, v)− inf
v

EGϕ(Y, v)| ≤ L

∫
R

|F (y)−G(y)|dy.

It is seen that two sets of assumptions are needed, the first concerning the properties
of criterion function ϕ(y, v). The second set of assumptions ensures the closeness of
distributions, here expressed via the Wasserstein metric. Hence, we should derive such
a closeness from the convergence of estimated distribution function. As it has been said,
for the case of non-censored data the solution of the problem, under specific conditions,
has been reported in Kaňková ([5] Corollary 2.5 and 2.7). In the sequel we shall follow
a similar approach for the case of randomly right-censored data and the PLE.

Proposition 4. Let the assumptions of Proposition 2 hold, with some a, b ∈ (0, 1],
τ > 0. Further, let there exist C,D, T > 0 such that f(x) ≤ C exp(−D|x|) on
(−∞,−T ) ∪ (T,∞). Then, for each β < 1/(2 + b), almost surely

lim
N→∞

Nβ

∫ ∞

−∞
|F (x)− FN (x)|dx = 0.

P r o o f . For y, z > T we obtain that F̄ (y) =
∫∞

y
f(x) dx ≤ C/D · exp(−Dy) and∫∞

z
F̄ (y) dy ≤ C/D2 · exp(−Dz). Also

∫ −z

−∞ F (y) dy ≤ C/D2 exp(−Dz), it can be shown
in the same way.
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Let us now select a sequence of numbers AN →∞ when N →∞ such that

AN

(
ln N

N

) 1
2+b

→ 0.

Further, let us consider a version of the PLE FN truncated in such a way that FN = 0
on (−∞,−AN ), FN = 1 on (AN ,∞). Then, almost surely, when already AN > T ,∫ ∞

−∞
|F (x)− FN (x)|dx =

∫ −AN

−∞
F (x) dx +

∫ AN

−AN

|F (x)− FN (x)|dx +
∫ ∞

AN

F (x) dx

≤ 2
C

D2
exp(−D ·AN ) + 2 ·AN · O

([
ln N

N

] 1
2+b

)
.

It is seen that if we take for instance AN = ln(N)/D, we obtain desired statement of
the proposition. �

Remark 1. In the proof we had to consider a truncated form of the PLE. In practice,
as we always deal with finite N , this means no restriction.

Similarly like Kaňková [5] in Corollary 2.7 we shall investigate also the case with
heavier tails of Pareto type.

Proposition 5. Let the assumptions of Proposition 2 hold, with some a, b ∈ (0, 1],
τ > 0. Further, let there exist C, T > 0 and α > 1 such that f(x) ≤ C · |x|−α−1 on
(−∞,−T ) ∪ (T,∞). Then, for each β < 1

(2+b) · (1−
1
α ), almost surely

lim
N→∞

Nβ

∫ ∞

−∞
|F (x)− FN (x)|dx = 0.

P r o o f . Now, for y, z > T we obtain that F (y) =
∫∞

y
f(x) dx ≤ C/α · y−α and∫∞

z
F (y) dy ≤ C/(α(α − 1)) · z−α+1. Again, the same bound will be obtained for∫ −z

−∞ F (y) dy.
Let us also consider a sequence of numbers AN →∞ when N →∞ and a truncated

version of the PLE such that FN = 0 on (−∞,−AN ), FN = 1 on (AN ,∞). Then almost
surely, when AN > T ,∫ ∞

−∞
|F (x)− FN (x)|dx =

∫ −AN

−∞
F (x) dx +

∫ AN

−AN

|F (x)− FN (x)|dx +
∫ ∞

AN

F (x) dx

≤ 2
C

α(α− 1)
·A−α+1

N + 2 ·AN · O

([
ln N

N

] 1
2+b

)
.

Let us now take AN = Nγ and find an optimal γ > 0 guaranteeing maximal speed of
convergence. The last expression is then of the order

Nγ(1−α) + (lnN)
1

2+b ·Nγ− 1
2+b .
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Hence, optimal γ is such that γ(1− α) = γ − 1
2+b , i. e. γ = 1

(2+b)α . Therefore, with this
γ, almost surely ∫ ∞

−∞
|F (x)− FN (x)|dx ≤ O

(
(lnN)

1
2+b ·N

1
2+b ( 1

α−1)
)

and the statement is proven. �

4. MAIN RESULTS

In this part we wish to show consistency of solutions computed as optimal w.r. to
the PLE of distribution function F . Therefore, we shall combine Proposition 3 with
Propositions 4 or 5, respectively. Let us first summarize relevant assumptions.

A1. Variable v ∈ V , where V is a compact set (it also means that in (1) infimum over
V becomes minimum).

A2. Function ϕ(y, v) is a Lipschitz function of y on R, with Lipschitz constant C not
depending on v.

A3. EF ϕ(Y, v) are finite for all v ∈ V .

A4. Function ϕ(y, v) is uniformly continuous on R× V .

A5. Assumptions of Proposition 2 hold, with some a, b ∈ (0, 1], τ > 0.

4.1. Convergence of optimal costs φ

Let us, for a distribution function H, denote φ∗(H) = minv EHϕ(Y, v) (provided it ex-
ists). The following two theorems are direct consequences of Proposition 3 and Propo-
sitions 4 or 5, respectively.

Theorem 1. Let assumptions A1–A5 hold. Further, let there exist C,D, T > 0 such
that f(x) ≤ C exp(−D · |x|) on (−∞,−T )∪(T,∞). Then, for each β < 1/(2+b), almost
surely

lim
N→∞

Nβ · |φ∗(F )− φ∗(FN )| = 0.

Theorem 2. Let assumptions A1–A5 hold. Further, let there exist C, T > 0 and α > 1
such that f(x) ≤ C · |x|−α−1 on (−∞,−T )∪ (T,∞). Then, for each β < 1

(2+b) · (1−
1
α ),

almost surely

lim
N→∞

Nβ · |φ∗(F )− φ∗(FN )| = 0.
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4.2. Convergence of optimal solutions v

As V is a compact set, there always exists at least one solution in V . Therefore, let us
denote

v∗F = arg min
v

φF (v), φ∗(F ) = φF (v∗F ), v∗N = arg min
v

φFN
(v), φ∗(FN ) = φFN

(v∗N ).

Let us first state several propositions which will help us to prove the main result of the
present part.

Lemma 1. From A4 it follows that functions φH(v) are continuous in v ∈ V , uniformly
for all distribution functions H(y).

P r o o f . Consider ε > 0 and a distribution function H(y). Then, due to A4, we can
select δ > 0 such that for each v0, v ∈ V : |v−v0| ≤ δ it holds that |ϕ(y, v)−ϕ(y, v0)| ≤ ε,
for each y ∈ R1. Then

|φH(v)− φH(v0)| ≤
∫ ∞

0

|ϕ(y, v)− ϕ(y, v0)|dH(y) ≤ ε.

�

The following proposition is a variant of Proposition 4 of Volf [8]. As its proof needs
the first derivative of a Lipschitz function, we shall refer here to the following property:

Remark 2. A Lipschitz function h : R → R is differentiable almost everywhere, i. e.
at every point outside a set R0 of Lebesgue measure zero. Corresponding derivative
(h′, say) is therefore defined on R−R0 and bounded there by the Lipschitz constant of
function h. Further, h(b) − h(a) =

∫ b

a
h′(x) dx for every a, b. For convenience, we can

set h′(x) ≡ 0 on R0.

Proposition 6. Let h(y) be an integrable function with finite mean
h̄ =

∫∞
∞ h(y) dF (y). Further, let the following hold:

1. h(y) is a Lipschitz function with Lipschitz constant C < ∞.

2. Assumptions of Proposition 2 are fulfilled with some a, b, τ .

3. Let AN →∞ be a positive, increasing sequence such that for N →∞

AN ·
(

ln N

N

) 1
2+b

→ 0.

Then h̄N =
∫ AN

−AN
h(y) dFN (y) is the strongly consistent estimate of h̄.

P r o o f . Denote first hN =
∫ AN

−AN
h(y) dF (y), hence hN → h̄. Let, for given N , XN,i be

ordered data, XN,1 ≤ XN,2 ≤ XN,N . Further, denote K, L such indices that

K = min{i : XN,i ≥ −AN} − 1, L = max{i : XN,i ≤ AN}+ 1.
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Denote, omitting index N , TK = −AN , TL = AN , Ti = XN,i for i = K +1, . . . , L−1. If
we consider again a version of FN truncated in such a way that FN = 0 on (−∞,−AN ),
FN = 1 on (AN ,∞), then we can rewrite the estimate

h̄N =
L∑

i=K+1

h(Ti)(FN (Ti)− FN (Ti−1))

= h(AN )FN (AN )− h(−AN )FN (−AN )−
L∑

i=K+1

FN (Ti−1)(h(Ti)− h(Ti−1)).

Notice that the last term equals sum of integrals∫ Ti

Ti−1

FN (y) · h′(y) dy,

because FN (y) = FN (Ti−1) on [Ti−1, Ti). Here h′ is the derivative of h in the sense of
Remark 2.

Further, by per-partes integration we obtain

hN =
∫ AN

−AN

h(y) dF (y) = F (AN )h(AN )− F (−AN )h(−AN )−
∫ AN

−AN

h′(y)F (y) dy.

Then h̄N − hN = h(AN )(FN (AN )− F (AN ))− h(−AN )(FN (−AN )− F (−AN ))−

−
∫ AN

−AN

h′(y)(FN (y)− F (y)) dy.

From properties of function h it follows that both |h(−AN )|, |h(AN )| ≤ C · (AN + D),
where D is some finite constant, for instance |h(0)|.

Therefore we may conclude that

|h̄N − hN | ≤ {2C(AN + D) + 2CAN} · sup
y
|FN (y)− F (y)|,

which tends to zero a.s. due to assumptions 2 and 3. �

Theorem 3. Let either assumptions of Theorem 1 or assumptions of Theorem 2 hold.
Then, for N →∞, there exists a subsequence {v∗N(k)} ⊂ {v

∗
N}, k = 1, 2, . . . such that it

converges almost surely, when k →∞, to some v0 ∈ {arg minv φF (v)}.

P r o o f . From either Theorem 1 or Theorem 2 and compactness of V it follows that
there exist (at least one of each) optimal solutions v∗F , v∗N and that a.s., when n →∞,

φFN
(v∗N ) → φF (v∗F ) = φ∗(F ).
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From compactness of V it also follows that there exists a sub-sequence {N(k), k =
1, 2, . . .} ⊂ {1, 2, . . .} and v0 ∈ V such that a.s., for k →∞,

v∗N(k) → v0, φFN(k)(v
∗
N(k)) → φ∗(F ),

while, in general, φF (v0) ≥ φ∗(F ). Further, Lemma 1 implies that also φFN(k)(v0) →
φ∗(F ) a.s. for k →∞.

On the other hand, from Proposition 6 we have that simultaneously φFN(k)(v0) →
φF (v0). Therefore we may conclude that a.s. φF (v0) = φ∗(F ) and v0 ∈ {arg minv φF (v)}.

�

Notice that, in general, v0 may be random, distributed on the set {arg minv φF (v)},
while v∗F , φ∗(F ) are not; when v∗F is unique then v0 = v∗F a.s.

From a practical point of view it is more appropriate to study behavior of φF (v∗N )
instead of φN (v∗N ), because v∗N are computed optimally w.r. to estimated FN , while
real costs are given as the expectation w.r. to the ’true’ (but unknown) distribution
function F . As, in general, φF (v∗N ) ≥ φN (v∗N ), it seems to be rather difficult to establish
the convergence of φF (v∗N ) without some additional conditions, not speaking about
specification of convergence rate. Nevertheless, at least the following statement can be
proven.

Corollary 1. Let the assumptions of Theorem 3 hold. Further, let v∗N(k) be a converging
sub-sequence of optimal solutions specified in Theorem 3. Then φF (v∗N(k)) → φ∗(F )
almost surely when k →∞.

P r o o f . The proof follows directly from the convergence v∗N(k) → v0, with v0 ∈
{arg minv φF (v)}, and from Lemma 1 ensuring that then also φF (v∗N(k)) → φF (v0),
which equals φ∗(F ). �

In the next part the behavior of φF (v∗N ) is studied with the aid of a simple artificial
(randomly generated) example.

5. EXAMPLE

Let the time to failure Y of a machine component be modelled by a continuous-type
probability distribution with distribution function, density, survival function F, f, F =
1 − F , respectively. The cost of repair after failure is C1, the cost of preventive repair
is C2 < C1. For the simplicity we assume that only complete repairs, ’renewals’, are
provided, i. e. after each repair the component is new (exchanged) or as new. Let τ be
the time from renewal to preventive repair, we wish to select an optimal value of τ .

Let the criterion function be the proportion of the time to repair to the cost of repair,
namely

ϕ(y, τ) =
y

C1
if y ≤ τ, ϕ(y, τ) =

τ

C2
if y > τ.

Our task is to find optimal τ from a reasonable closed interval T maximizing the mean

φF (τ) = EF ϕ(Y, τ) =
∫ τ

0

y

C1
dF (y) +

τ

C2
F (τ). (4)
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Fig. 1. φF (τ) vers. τ , with optimal point.

In such a simple case the optimal solution can be found directly, by solving equation
dφF (τ)/dτ = 0. In our case

dφF (τ)
dτ

=
τ

C1
f(τ) +

1
C2

(
F (τ)− τf(τ)

)
.

In the sequel the lifetime distribution will be specified and we shall compare the
deterministic solution when F is known with solutions in cases when lifetime distribution
is estimated non-parametrically from censored and non-censored data. Namely, let the
distribution of Y be Weibull, with parameters a = 100, b = 2, i. e. its survival function
is F (t) = exp

(
−
(

t
a

)b), numerical characteristics are EY ∼ 89, std(Y ) ∼ 46. Costs of
repairs are fixed to C1 = 10, C2 = 1. When the distribution function F is known, along
(4) there exists unique optimal solution with

τ∗ = a
( C1

(C1 − C2)b

)1/b

= 74.5356

and maximal working time per cost unit φF (τ∗) = 44.7644. Figure 1 displays the graph
of φF (τ).

In the present part it is assumed that the distribution of Y is not known and therefore
is estimated from generated data non-parametrically, by the PLE. In all cases (without
or with censoring) 100 samples of N observations Yi were generated from the Weibull dis-
tribution mentioned above. In cases with censored data, censoring variables Zi followed
uniform distribution on [0, 250]. Hence, they have survival function G(z) = (250−z)/250
(value 250 corresponds roughly to 0.998 quantile of distribution of Y ). The rate of cen-
soring was then about 36 % ∼ EY/250. For comparison, we generated data of sizes
N = 100, 200, 500, 1000.

Figure 2 displays cloud of 100 non-parametric estimates of F obtained from 100
generated samples, the cases without censoring are plotted in the left subplot, the right
subplot shows estimates obtained from censored data. It is well seen how the variability
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Fig. 2. Set of 100 estimates of distribution function, FN (t), from

non-censored (left) and censored data (right), for N = 100. ’True’

distribution function F (t) is plotted by solid curve.

in the right subplot increases for large times. Theoretically, if we take α = 0.05 and
N = 100, the half-width of 95% confidence band for ’true’ distribution function, in
the non-censored case, is given approximately (see Part 2) as cα/

√
N = 0.136. As

regards the censored data, function C(t) (here defined on [0, 250)) has no analytical form,
nevertheless, we can compute it numerically. We have seen in Part 2 that, at a given t,
the half-width of 1−α band is given as dN,α(t) = cα/

√
N ·F (t)·(1+C(t)). We computed it

at three points corresponding roughly to three quartiles of utilized Weibull distribution.
Namely, at points t = 55, 85, 120 we obtained dN,α(t) = 0.142, 0.158, 0.195, respectively.

Figure 3 displays optimal solutions τm, each obtained as the maximizer of (4) with
mth estimate FN of F , m = 1, 2, . . . , 100. We then computed corresponding φF (τm),
i. e. the mean costs under τm evaluated w.r. to ’true’ Weibull F . The left subplot
shows the case without censoring, the right subplot then results from censored samples.
Notice (expected) larger variability (i. e. uncertainty) in censored data cases. In order
to compare convergence and variability of results for different data sizes N , the data of
the same type were generated also with N = 200, 500, 1000. Table 1 contains sample
characteristics of obtained ’sub-optimal’ solutions, each computed from 100 repetitions
of data of size N . The table contains also results observed for the higher rate of censoring.
Namely, in the case denoted as “censoring 2” variables Zi followed Weibull distribution
with parameters aZ = 80, bZ = 2. Then the rate of censoring was about 60 %. As
expected, imprecision of results is higher, in particular for larger N .
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Fig. 3. Optimal solutions τm (on x axis) and corresponding φF (τm)

(on y axis) based on nonparametric estimates displayed in Figure 2,

for non-censored (left) and censored (right) cases, both for N = 100.

N non-cens.: mean std cens.1: mean std cens.2: mean std
100 τm 76.751 9.154 78.288 11.585 76.453 11.437

φF (τm) 44.123 0.839 43.763 1.553 43.821 1.352
200 τm 75.469 8.088 78.725 10.015 77.217 10.782

φF (τm) 44.283 0.611 43.948 1.172 43.903 1.319
500 τm 75.706 5.492 75.239 6.897 76.570 8.508

φF (τm) 44.530 0.289 44.409 0.535 44.222 0.915
1000 τm 74.590 4.647 75.517 4.691 76.365 6.647

φF (τm) 44.597 0.203 44.596 0.256 44.418 0.530

Tab. 1. Sample means and standard deviations of τm and φF (τm),

for different N and two different proportions of censorig. Case with

N = 100 and censoring 1 corresponds to samples plotted in Figures 2

and 3.

Observed (prevailing) decrease of means of τm with increasing N is probably caused
by a nonsymmetric shape of dependence of φF (τ) on renewal interval τ , which is seen
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both in Figure 1 and Figure 3. The mean of τm has therefore tendency to be greater
than optimal τ∗, simultaneously converging to it.

6. CONCLUSION

The contribution was devoted to the study of impact of randomly right-censored data to
the increase of variability of statistical estimates and, consequently, to the imprecision of
solution of a stochastic optimization problem. To this end, relevant theoretical properties
of nonparametric product-limit estimator of distribution function were recalled. They
were utilized to proving asymptotic consistency of optimal solutions computed from
censored data. The impact of data incompleteness to imprecision of solution was studied
also with the aid of randomly generated example.
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