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THE IRRELEVANT INFORMATION PRINCIPLE
FOR COLLECTIVE PROBABILISTIC REASONING

Martin Adamč́ık and George Wilmers

Within the framework of discrete probabilistic uncertain reasoning a large literature exists
justifying the maximum entropy inference process, ME, as being optimal in the context of a
single agent whose subjective probabilistic knowledge base is consistent. In particular Paris
and Vencovská completely characterised the ME inference process by means of an attractive
set of axioms which an inference process should satisfy.

More recently the second author extended the Paris–Vencovská axiomatic approach to infer-
ence processes in the context of several agents whose subjective probabilistic knowledge bases,
while individually consistent, may be collectively inconsistent. In particular he defined a natu-
ral multi–agent extension of the inference process ME called the social entropy process, SEP.
However, while SEP has been shown to possess many attractive properties, those which are
known are almost certainly insufficient to uniquely characterise it. It is therefore of particular
interest to study those Paris–Vencovská principles valid for ME whose immediate generalisa-
tions to the multi–agent case are not satisfied by SEP. One of these principles is the Irrelevant
Information Principle, a powerful and appealing principle which very few inference processes
satisfy even in the single agent context. In this paper we will investigate whether SEP can
satisfy an interesting modified generalisation of this principle.
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1. MOTIVATION

In this paper we consider the following fundamental problem of discrete multi-agent
probabilistic uncertain reasoning. We are interested in finding a general procedure which,
given a finite set of agents, each possessing a subjective probabilistic knowledge base over
a finite space of possible events, yields a single probability function or social probability
function defined over that space of events, which optimally represents the joint knowledge
of all the agents, and such that that general procedure satisfies some natural criteria
derived from logical or rational considerations.

There are several initial assumptions we want to make. Firstly we assume that the
probabilistic beliefs or “knowledge” of each particular expert is consistent with the laws
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of probability. Secondly all agents are assumed to have equal status, and the final social
probability function should not depend on the order in which the agents’ knowledge
bases are considered.

We illustrate the motivation behind this idea by a toy two-agent example.

Imagine that two safety experts are evaluating safety in a chemical factory producing
nitrogen fertilizers. For simplicity we consider only the ammonia supply which is stored
in a tank connected to the rest of the factory by a valve which is controlled by an electric
circuit.

The first expert believes that there is a 4% chance that a mechanical problem will
cause the valve to fail. The second expert comes up with a different opinion that there
is an 8% chance that a mechanical problem will cause the valve to fail. Moreover, the
first safety expert thinks that there is a 7% chance that the electric circuit will fail. We
suppose that both experts have no other knowledge related to this problem.

Taken together the joint beliefs (knowledge) of the two experts are inconsistent in
this case. In practice an individual’s knowledge is usually incomplete and offers a lot
of uncertainty; the first expert in above example has no knowledge about, for instance,
the conditional probability of a mechanical fault on the the valve occurring, given a
fault on the electric circuit. The situation becomes more complicated once the second
agent is considered, whose knowledge is inconsistent with the knowledge of the first
agent. Considering both of the experts’ knowledge together we could for example ask
the following question:

Question. How should a rational adjudicator whose only knowledge consists of what
is related to him by the two experts above, evaluate the probability that both the valve
and the electric circuit will be faulty, based only on the experts’ subjective knowledge
specified above and without any other assumptions?

Assuming, as we do in this paper, that each agent’s uncertain knowledge can be
represented within the framework of probability theory, we can describe the knowledge
of each expert by a set of possible probability distributions over four possible mutually
exclusive cases: there will be (1) a fault on the valve and a fault on the electric circuit, (2)
a fault on the valve and no fault on the electric circuit, (3) no fault on valve and a fault
on the electric circuit and (4) no faults on the valve or on the electric circuit. We can
denote the corresponding probabilities that (1),(2),(3) and (4) is true by real numbers
w1, w2, w3 and w4 from the interval [0, 1] which sum to 1. Based on the knowledge
of the first expert w1 + w2 = 0.04 and w1 + w3 = 0.07. Any probability function
(x, 0.04 − x, 0.07 − x, x + 0.89), where x ∈ [0, 0.04], is consistent with the knowledge
of the first expert. Similarly, the second expert admits any (x, 0.08 − x, y, 0.92 − y)
where x ∈ [0, 0.08] and y ∈ [0, 0.92]. This representation of the knowledge of the experts
naturally abstracts from the complex nature of the actual problem. However we are
not interested here in the particular manner in which this abstraction from the infinite
complexity of a real world problem has been accomplished. Instead we will focus on the
following narrower, abstract, but more clearly defined question:
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Question. Given two (or more) sets of probability functions corresponding to the knowl-
edge bases of corresponding experts as in the above example, which single probability
function best represents the combined probabilistic knowledge of the experts?

Naturally, we would like to find a general procedure doing this for any knowledge
bases which satisfies some natural principles. We will formalize this idea in a general
setting in the next section.

We should emphasize here that our reduction of the experts’ knowledge to a the-
oretical question as above assumes that all the knowledge of an individual expert is
incorporated in the formal representation of her knowledge base. This last assumption
is sometimes referred to as the Principle of Total Evidence [2] or the Watts assumption
(see [11]). In order to avoid confusion, it is clearly essential that this assumption be
adhered to in any discussion of the general theoretical characteristics of a mode of prob-
abilistic inference. Of course when applied to the formalisation of any real life problem
considered by a human agent, the Principle of Total Evidence is never adhered to in
practice, as indeed is illustrated by our formalisation of the toy example above. This ba-
nal fact of life has historically bedevilled theoretical discussion of probabilistic inference,
because it is often extremely hard to give illustrative real world examples of abstract
principles of probabilistic inference without a philosophical opponent being tempted to
challenge one’s reasoning using implicit background information concerning the example
which is not included in its formal representation as a knowledge base. This tendency
to overlook the Principle of Total Evidence provides an inexhaustible supply of invalid
arguments1.

On the other hand if one assumes that all of each expert’s individual knowledge has
been included in the formal representation of her knowledge base, it is clearly of con-
siderable interest to formulate and study general principles which tell us under what
circumstances part of that knowledge can be considered to be irrelevant to the determi-
nation of the value which the social probability function should accord to a particular
event. It is this idea which forms the central theme of the present paper.

2. FORMALIZATION

Let L = {a1 . . . ah} be a finite propositional language where a1, . . . , ah are propositional
variables. In our example n = 2, a1 stands for sentence “there will be a fault on the
valve” and a2 stands for sentence “there will be a fault on the electric circuit”. By
the disjunctive normal form theorem any L-sentence can by expressed as a disjunction
of atomic sentences (atoms) and we will denote a maximal set of logically inequivalent
atoms {α1, . . . , αJ}, where J = 2h, by At(L). The atoms of At(L) are thus mutually
exclusive and exhaustive.

A probability function w over L is defined by a function w : At(L) → [0, 1] such that∑J
j=1 w(αj) = 1.

1See e.g. Jaynes [6] for an analysis of this phenomenon in relation to certain criticisms of the
maximum entropy inference process.
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A value of w on any L-sentence ϕ may now be defined in the obvious way by setting

w(ϕ) =
∑

αj |=ϕ

w(αj).

Note that formula ϕ which is not satisfiable, e. g. a1 ∧¬a1, is defined as the disjunction
of an empty set of atoms and we set w(ϕ) = 0 in this case.

We will denote the set of all probability functions over L by DL. For the sake of
brevity we will often write wj instead of w(αj), but note that this notation makes
sense only for atomic sentences αj . Given a probability function w ∈ DL, a conditional
probability is defined by Bayes’s formula

w(ϕ|ψ) =
w(ϕ ∧ ψ)

w(ψ)

for any L-sentence ϕ and any L-sentence ψ such that w(ψ) 6= 0 and is left undefined
otherwise.

Now consider two distinct propositional languages L1 = {a1, . . . , ah1} and L2 =
{b1, . . . , bh2}. Let At(L1) = {α1, . . . , αJ} and At(L2) = {β1, . . . , βI}. Then every atom
of the joint language L1 ∪ L2 can be written uniquely (up to logical equivalence) as
αj ∧ βi for precisely one 1 ≤ j ≤ J and precisely one 1 ≤ i ≤ I. With only a slight
abuse of notation, for an L1 ∪ L2-probability function r we will often write rji instead
of r(αj ∧ βi), in a similar way as for an L1-probability function v we write vj instead of
v(αj).

Now notice that |= αj ↔
∨I

i=1 αj ∧ βi. Therefore, the marginal probability function
whose jth value is given by

∑I
i=1 rji is the projection of an L1∪L2-probability function

r to the language L1. We will denote it by r|L1 . Similarly if ∆ is a set of L1 ∪ L2-
probability functions, we denote the set {v|L1 : v ∈ ∆} by ∆|L1 . Also if v is an
L1-probability function and w is an L2-probability function then the product function
v · w defined by v · w(αj ∧ βi) = vjwi is an L1 ∪ L2-probability function such that
(v ·w)|L1 = v.

A (probabilistic) knowledge base K over L is a set of constraints on probability func-
tions over L such that the set of all probability functions satisfying the constraints in K
forms a nonempty closed convex subset VK of DL. VK may be thought of as the set of
possible probability functions of a particular agent which are consistent with her subjec-
tive probabilistic knowledge base K. In the sequel we shall loosely identify K with VK,
and may also refer to such a VK as a knowledge base. Note that the non-emptiness of
VK corresponds to the assumption that K is consistent, while if K and F are knowledge
bases then the knowledge base K ∪ F corresponds to VK∪F = VK ∩ VF. The set of all
knowledge bases VK over L is denoted by CL.

In the toy example, the knowledge of the first expert can be represented by the
knowledge base K which consist of a set of linear constraints on a probability function
w = (w1, w2, w3, w4) defined over the atomic sentences a1 ∧ a2, a1 ∧ ¬a2, ¬a1 ∧ a2 and
¬a1 ∧¬a2. Then K = {w1 +w2 = 0.04, w1 +w3 = 0.07} and VK = {(x, 0.04− x, 0.07−
x, x+ 0.89) : x ∈ [0, 0.04]}.

Given K ∈ CL1 note that the underlying language L1 is implicitly understood in the
notation VK which should more properly be denoted V L1

K . Thus if L1 ⊂ L then K is
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also in CL and V L
K = {w ∈ DL : w|L1 ∈ V L1

K }. For simplicity we shall normally just
write VK when the appropriate language is understood.

We now define the central notion which maps any given sequence of knowledge bases
to a single probability function termed the social probability function for that sequence.
A social inference process S defines for each L and n ≥ 1 a function

SL : CL× . . .× CL︸ ︷︷ ︸
n

→ DL.

The number n here intuitively represents the number of distinct agents or distinct sources
of information.

The restricted notion S (or SL) in the case of a single knowledge base or agent, i.e.
when n = 1, is simply called an inference process and the properties of such inference
processes have been extensively studied by Paris, Vencovská and others (see [5, 11, 12,
13, 15]).

As was noted above, a consistent knowledge base K yields a set VK of possible
probability functions consistent with K. In the case of single agent with knowledge
base K there are several possible procedures to choose a specific probability function
from VK. However by the traditional possible worlds modelling or information theoretic
arguments whose origins go back to nineteenth century statistical mechanics as in [6] or
[12], the maximum entropy inference process ME has been justified as being optimal,
where MEL(K) is defined as that unique probability function w in VK which maximizes
the Shannon entropy H(w) of w given by

H(w) = −
J∑

j=1

wj logwj .

H is a strictly concave function and therefore it attains a unique maximum over any
nonempty closed convex region VK of DL.

A quite different justification for ME to the traditional ones was described in [15] by
Johnson and Shore. Their work was developed by Paris and Vencovská in [13] where they
showed that a list of principles based on symmetry and consistency uniquely characterises
ME. It therefore seems fruitful to look at the axiomatic approach also in the more
general context of a social inference process. Accordingly we may ask:

What general principles should a social inference process S satisfy in order to ensure
that for any given knowledge bases, and in the absence of any other information, S
chooses a social probability function according to rational criteria?

We might hope that ultimately such a set of rational principles may determine
uniquely a particular social inference process S.

3. LANGUAGE INVARIANCE AND IRRELEVANT INFORMATION

In this section we examine how certain fundamental invariance principles formulated by
Paris and Vencovská for an inference process (see [11]) can be extended to the notion of
a social inference process.



180 M. ADAMČÍK AND G.M. WILMERS

An obvious question we need to ask regarding social inference processes is whether
they depend on the choice of a particular propositional language L = {a1, . . . , ah}. For
fixed S, L, with ϕ ∈ SL and K1, . . . ,Kn ∈ CL consider SL(K1, . . . ,Kn)(ϕ). It would
seem to be irrational to change this value if L is extended to a larger language by adding
a set of propositional variables {b1, . . . , bk}, all distinct from the variables of L, provided
that we have not supplied any new knowledge. Following [11] we will formulate this as
the following principle:

LI [Language Invariance Principle]. A social inference process S satisfies language
invariance if whenever L1 and L2 are languages with L1 ⊆ L2 and K1, . . . ,Kn ∈ CL1,
then

SL1(K1, . . . ,Kn)(ϕ) = SL2(K1, . . . ,Kn)(ϕ)

for any L1-sentence ϕ.

In the case when n = 1 it is well known that several popular inference processes,
including ME, satisfy LI (see [11] or p. 213 of [5] for details).

Following [11] we may also ask a different question in the same vein. What will
happen if alongside the new propositional variables, new knowledge concerning these
variables is also provided which contains no reference to the old variables. Again, it
would seem to be rational that the value of a social inference process on a sentence that
is formulated in the original language should not change. This leads us to

IIP [The Irrelevant Information Principle]. Let L = L1 ∪ L2 where L1 and L2

are disjoint propositional languages, and let K1, . . . ,Kn and F1, . . . ,Fn be knowledge
bases formulated for the languages L1 and L2 respectively. Then for any L1-sentence ϕ

SL(K1 ∪ F1, . . . ,Kn ∪ Fn)(ϕ) = SL(K1, . . . ,Kn)(ϕ).

In the case when n = 1 this principle plays a crucial role in the characterisation of
ME in [13]. Nevertheless, despite its intuitive plausibility this principle is in fact very
hard to satisfy; indeed although ME satisfies it, almost all other commonly used (single
agent) inference processes do not do so (see [11] and [5] for details).

IIP appears even harder for a social inference processes to satisfy. However, in this
multi-agent case we might argue that this principle is just too strong. If knowledge
provided by agents for the language L2 is inconsistent then the addition of such new
knowledge may provide us with more information on how strongly the agents disagree,
which in turn may affect our evaluation of the knowledge concerning L1. However, if
the new knowledge does not change the level of disagreement as is the case when the
new knowledge of all the agents is jointly consistent, then the principle of irrelevant
information is arguably more justified. Accordingly we formulate:

CIIP [The Consistent Irrelevant Information Principle]. Let L = L1∪L2 where
L1 and L2 are disjoint propositional languages. Let K1, . . . ,Kn and F1, . . . ,Fn be
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knowledge bases formulated for the languages L1 and L2 respectively, and suppose that
F1, . . . ,Fn are jointly consistent. Then for any L1-sentence ϕ

SL(K1 ∪ F1, . . . ,Kn ∪ Fn)(ϕ) = SL(K1, . . . ,Kn)(ϕ).

Assuming LI this last equation is equivalent to

SL(K1 ∪ F1, . . . ,Kn ∪ Fn)(ϕ) = SL1(K1, . . . ,Kn)(ϕ).

For instance, in the toy example of section 1 the information of both experts about
a possible fault on the electric circuit is both consistent and a priori irrelevant to the
probability that there will be a fault on the valve. Hence if we want to know only the
probability that there will be a fault on the valve, then applying the CIIP we need
consider only the fact that the first expert states that this probability is 4% and the
second states that this probability is 8%.

4. THE SOCIAL ENTROPY PROCESS

In this section we define a particular social inference process formulated by the second
author in [17] and [18]. The Social Entropy Process SEP, is defined by the following two
stage process. At the first stage we define the set ∆L(K1, . . . ,Kn) as those probability
functions v which globally minimise the sum of Kullback-Leibler divergences (cross-
entropies)

n∑
k=1

CE(v,w(k)) =
n∑

k=1

J∑
j=1

vj log
vj

w
(k)
j

(1)

subject only to the conditions that w(1) ∈ VK1 , . . . ,w
(n) ∈ VKn , where

vj log
vj

w
(k)
j

=

{
0 if vj = 0 and w(k)

j = 0,
∞ if vj 6= 0 and w(k)

j = 0.

Recall that vj and w(k)
j stand for v(αj) and w(k)(αj) respectively, where αj is an atom

and there are J (logically inequivalent) atoms in At(L).
It is not difficult to see ([18]) that ∆L(K1, . . . ,Kn) is nonempty if there is some

atom αj such that for no k is it the case that for all w ∈ VKk
w(αj) = 0. Under this

condition ∆L(K1, . . . ,Kn) is well-defined. From now on we shall consider only n-tuples
of knowledge bases K1, . . . ,Kn which satisfy this condition. Note that the definition of
a social inference process is not much restricted by such an assumption.

In [18] it is proved that ∆L(K1, . . . ,Kn) is also a closed convex region of DL and
therefore there is a unique probability function in ∆L(K1, . . . ,Kn) having maximal
entropy, and we will denote this function by MEL(∆L(K1, . . . ,Kn)). Therefore, at the
second stage of the definition we set SEPL(K1, . . . ,Kn) = MEL(∆L(K1, . . . ,Kn)). It
is clear that SEPL coincides with MEL in the case when n = 1 and, it is straightforward
to show that SEP is language invariant.

The set ∆L(K1, . . . ,Kn) is often a singleton and in that case the second stage is
essentially redundant. For instance, this happens whenever VKk

is a singleton for some



182 M. ADAMČÍK AND G.M. WILMERS

k. The function which maps K1, . . . ,Kn to ∆L(K1, . . . ,Kn) is therefore called the weak
social entropy process and is denoted by WSEP. WSEP may naturally be considered
as a merging operator which merges the evidence of the n agents into a single knowledge
(or evidence) base without necessarily picking a unique social belief function2.

For any v ∈ ∆L(K1, . . . ,Kn) there is an n-tuple w(1) ∈ VK1 , . . . ,w
(n) ∈ VKn mini-

mizing
∑n

k=1 CE(v,w(k)) defined in (1). We will denote the set of all such n-tuples by
ΓL(K1, . . . ,Kn).

Lemma 4.1. The following are equivalent:

(i) The probability functions v, w(1), . . . ,w(n) minimize (1) subject only to w(1) ∈
VK1 , . . . ,w

(n) ∈ VKn .

(ii) w(1), . . . ,w(n) maximize
∑J

j=1

(∏n
k=1 w

(k)
j

) 1
n

, subject only to w(1) ∈ VK1 , . . . ,

w(n) ∈ VKn , and vj =

“Qn
k=1 w

(k)
j

” 1
n

PJ
j=1

“Qn
k=1 w

(k)
j

” 1
n

for all j = 1, . . . , J .

For a proof see [18]. We will define the maximal value of
∑J

j=1

(∏n
k=1 w

(k)
j

) 1
n

subject

to w(1) ∈ VK1 , . . . ,w
(n) ∈ VKn

to be ML(K1, . . . ,Kn).
The lemma above implies that SEPL coincides with the logarithmic (or “normalised

geometric mean”) pooling operator of decision theory (cf. [3]) in the very special case
when each VKk

defines a single probability function.
In addition to the above pleasing properties, SEP satisfies a set of natural principles

listed in [17] and [18] similar to those shown to be satisfied by ME in [13]. However
these are almost certainly not sufficient to characterise SEP in the manner in which
ME was characterised in [13].

Furthermore, although SEP is language invariant, it does not satisfy the Irrelevant
Information Principle IIP. A simple counterexample is provided by the following3:

Let L1 = {a1}, L2 = {a2} and L = L1 ∪ L2. In the following we consider just two
agents. Assume that the first agent possesses knowledge K1 = {w(a1) = 0.2}, F1 =
{w(a2) = 0.2} and the second has knowledge K2 = {w(a1) = 0.3}, F2 = {w(a2) = 0.4}.
Suppose that w(1) ∈ V L1

K1∪F1
and w(2) ∈ V L2

K2∪F2
. We can identify ML(K1∪F1,K2∪F2)

defined above by maximizing the following expression for parameters w(1)(a1 ∧ a2) = x
and w(2)(a1 ∧ a2) = y:

ML(x, y) =
√
xy +

√
(0.2− x)(0.3− y) +

√
(0.2− x)(0.4− y)

+
√

(0.6 + x)(0.3 + y).

It is the matter of elementary analysis to prove that the above is strictly maximal for
x = 0.12 and y = 0.24. Since ML(0.12, 0.24) =

√
0.08 +

√
0.48 it follows that

SEPL(K1 ∪ F1,K2 ∪ F2)(a1) =
√

0.12 · 0.24 +
√

0.08 · 0.06√
0.08 +

√
0.48

. (2)

2The general framework of probabilistic merging operators is investigated in [1].
3A counterexample to IIP for SEP was first found by Soroush Rafiee Rad (private communication,

2010).
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On the other hand

SEPL1(K1,K2)(a1) =
√

0.06√
0.06 +

√
0.56

.

Later, in corollary 5.4, we will show that SEP is language invariant; hence we also
have that

SEPL(K1,K2)(a1) =
√

0.06√
0.06 +

√
0.56

. (3)

Since (2) and (3) are not equal it follows that SEP does not satisfy IIP.

Since IIP in its single agent form played a crucial role in the characterisation of
ME, this failure could be interpreted as a significant criticism of SEP. However, while
IIP may perhaps be too strong in the multi-agent case, we note that the weaker CIIP
principle may still be regarded as a natural generalization of the single agent IIP since
it also reduces to IIP for the case n = 1.

We shall say that the merging operator WSEP satisfies CIIP if, whenever L =
L1 ∪ L2 where L1 and L2 are disjoint propositional languages and K1, . . . ,Kn and
F1, . . . ,Fn are knowledge bases formulated for the languages L1 and L2 respectively
such that F1, . . . ,Fn are jointly consistent, then

WSEPL(K1 ∪ F1, . . . ,Kn ∪ Fn) |L1 = WSEPL1(K1, . . . ,Kn).

We prove that WSEP satisfies CIIP in the following section. However, except in the
cases when ∆L1(K1, . . . ,Kn) is a singleton, the question as to whether SEP also satisfies
CIIP remains open.

We conclude this section by mentioning some other approaches to the problem of the
integration of multi–agent probabilistic evidence which can be found in the literature. In
the very special case when each agent specifies a single probability function, a procedure
for combining this evidence into a single probability function is called a pooling operator
by decision theorists. Pooling operators, and in particular the normalised geometric
mean pooling operator to which SEP reduces in this special case, have been extensively
studied from an axiomatic viewpoint (see e. g. [3]). However, except for the work previ-
ously cited ([1, 17, 18]), the more general problematic of a social inference process does
not appear to have been investigated from an axiomatic standpoint. Nonetheless there
exist a number of proposals for what are in essence particular social inference processes,
sometimes defined in a somewhat different framework; in this context we should mention
[7, 8, 9, 10, 14] and [16]. In particular in [9] and [16] results are proved about iterative
convergence procedures based on Kullback–Leibler divergence, one of which yields par-
ticular points in ∆L(K1, . . . ,Kn). The connection between these algorithms and SEP
merits further investigation.

5. WSEP SATISFIES CIIP

In what follows we will fix two distinct propositional languages L1 = {a1, . . . , ah1} and
L2 = {b1, . . . , bh2}. Let L = L1 ∪ L2 and let At(L1) = {α1, . . . , αJ} and At(L2) =
{β1, . . . , βI}.
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For r ∈ SL, to simplify the notation we will often denote r|L1(αj) by rj·. We will also
denote the conditional probability function r(βi|αj) by ri|j . It follows that rji = rj·ri|j ,
i. e. the value rji can be computed as the product of the projection of r to L1 on the
L1-atom αj and the conditional probability r(βi|αj).

Lemma 5.1. Let w(k)
j ≥ 0 be real numbers for all 1 ≤ j ≤ J and 1 ≤ k ≤ n where

k, j, J, n ∈ N. Then
J∑

j=1

(
n∏

k=1

w
(k)
j

) 1
n

≤

 n∏
k=1

J∑
j=1

w
(k)
j

 1
n

. (4)

Equality holds if and only if either there are real constants l(1) > 0, . . . , l(n) > 0 such that
l(1)(w(1)

1 , . . . , w
(1)
J ) = l(2)(w(2)

1 , . . . , w
(2)
J ) = . . . = l(n)(w(n)

1 , . . . , w
(n)
J ) or

∑J
j=1 w

(k)
j = 0

for some k.

This lemma is Hölder’s inequality, see [4], and it will be very useful in the following
proof.

Lemma 5.2. Let K1, . . . ,Kn ∈ CL1, F1, . . . ,Fn ∈ CL2 be such that F1, . . . ,Fn are
jointly consistent.

(a) If v ∈ ∆L1(K1, . . . ,Kn) and t is an L2-probability function such that t ∈
⋂n

i=1 VFi

then v · t ∈ ∆L1∪L2(K1 ∪F1, . . . ,Kn ∪Fn). In particular F1, . . . ,Fn could be empty in
which case t can be arbitrary.

(b) Let r ∈ ∆L1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn). Then r|L1 ∈ ∆L1(K1, . . . ,Kn). Moreover
ML1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn) = ML1(K1, . . . ,Kn).

P r o o f . For a given v ∈ ∆L1(K1, . . . ,Kn) let (p(1), . . . ,p(n)) ∈ ΓL1(K1, . . . ,Kn) be

such that vj =

“Qn
k=1 p

(k)
j

” 1
n

ML1 (K1,...,Kn) . Then ML1(K1, . . . ,Kn) =
∑J

j=1

(∏n
k=1 p

(k)
j

) 1
n

. For a
given r ∈ ∆L1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn) let

(w(1), . . . ,w(n)) ∈ ΓL1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn)

be such that rji =

“Qn
k=1 w

(k)
ji

” 1
n

ML1∪L2 (K1∪F1,...,Kn∪Fn) .

Let us consider probability functions w(1)|L1 , . . . ,w
(n)|L1 . We will denote M =∑J

j=1

(∏n
k=1 w

(k)
j·

) 1
n

. Then M ≤ ML1(K1, . . . ,Kn) since ML1(K1, . . . ,Kn) is maximal.
But by the lemma 5.1 also ML1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn) ≤M , hence

ML1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn) ≤ ML1(K1, . . . ,Kn). (5)

(a) Let t ∈
⋂

i VFi
. We are going to prove that

(p(1) · t, . . . ,p(n) · t) ∈ ΓL1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn). (6)
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It is easy to see that p(1) · t, . . . ,p(n) · t satisfy K1 ∪ F1, . . . ,Kn ∪ Fn respectively.
Moreover,

∑
j=1,...,J,i=1,...,I

(
n∏

k=1

p
(k)
j ti

) 1
n

=
∑

j=1,...,J,i=1,...,I

(
n∏

k=1

p
(k)
j

) 1
n

ti = ML1(K1, . . . ,Kn),

since
∑I

i=1 ti = 1. But from (5) we already know that ML1∪L2(K1∪F1, . . . ,Kn∪Fn) ≤
ML1(K1, . . . ,Kn) hence (6) is proved.

(b) By (a) and (5) we have

ML1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn) = M = ML1(K1, . . . ,Kn) (7)

hence ∑
j=1,...,J,i=1,...,I

(
n∏

k=1

w
(k)
ji

) 1
n

=
J∑

j=1

(
n∏

k=1

I∑
i=1

w
(k)
ji

) 1
n

.

By lemma 5.1 this equality could only occur if for each j there are real constants l(1)j >

0, . . . , l(n)
j > 0 such that the proportionality

l
(1)
j (w(1)

j1 , . . . , w
(1)
jI ) = l

(2)
j (w(2)

j1 , . . . , w
(2)
jI ) = . . . = l

(n)
j (w(n)

j1 , . . . , w
(n)
jI )

holds, or w(k)
j· =

∑I
i=1 w

(k)
ji = 0 holds for some k.

Let us consider the coefficient j to be fixed. If w(k)
j· = 0 for every k let q·|j be an

arbitrary L2-probability function with value on ith atom denoted as qi|j . Otherwise for

k̄ such that w(k̄)
j· 6= 0 let us define

qi|j =
w

(k̄)
ji

w
(k̄)
j·

.

Obviously,
I∑

i=1

qi|j =
I∑

i=1

w
(k̄)
ji∑I

i=1 w
(k̄)
ji

= 1

and hence q·|j is a well defined L2-probability function. Notice that thanks to propor-
tionality the definition does not depend on the choice of k̄:

l
(k̄)
j w

(k̄)
ji

l
(k̄)
j

∑I
i=1 w

(k̄)
ji

=
l
(k)
j w

(k)
ji

l
(k)
j

∑I
i=1 w

(k)
ji

.

In other words
w

(k)
ji = w

(k)
j· qi|j . (8)

By (7) the projections to L1 satisfy

(w(1)|L1 , . . . ,w
(n)|L1) ∈ ΓL1(K1, . . . ,Kn).
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Then for L1-probability function v defined by vj =

“Qn
k=1 w

(k)
j·

” 1
n

PJ
j=1

“Qn
k=1 w

(k)
j·

” 1
n

we have that

v ∈ ∆L1(K1, . . . ,Kn).
Moreover,

rji =

(∏n
k=1 w

(k)
ji

) 1
n

∑J
j=1

∑I
i=1

(∏n
k=1 w

(k)
ji

) 1
n

=

(∏n
k=1 w

(k)
j· qi|j

) 1
n

∑J
j=1

∑I
i=1

(∏n
k=1 w

(k)
j· qi|j

) 1
n

= vjqi|j ,

where rj· =
∑

i vjqi|j = vj and ri|j = rji

rj·
= vjqi|j

rj·
= qi|j which gives us the required

result that r|L1 ∈ ∆L1(K1, . . . ,Kn). �

Theorem 5.3. WSEP satisfies LI and CIIP.

This follows easily from lemma 5.2. Moreover this together with the fact that ME is
language invariant (see [11]) yields the following:

Corollary 5.4. SEP is language invariant.

Theorem 5.5. SEP satisfies the CIIP in the special case when there is only one proba-
bility function in ∆L1(K1, . . . ,Kn), say ∆L1(K1, . . . ,Kn) = {w}. Note that by theorem
3.8 in [18] this holds whenever at least one of the agents has a knowledge base which
fixes a probability function for L1.

P r o o f . By lemma 5.2 (b) clearly

SEPL1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn)|L1 = r|L1 = w = SEPL1(K1, . . . ,Kn).

�

6. CONCLUSION

In this paper we have sought to investigate the Irrelevant Information Principle in the
context of multi-agent uncertain reasoning. While this principle plays a crucial role in an
axiomatic characterization of ME given in [13], we have argued that the most obvious
generalization of the Irrelevant Information Principle to the multi–agent context may be
too strong. We have proposed an alternative generalization for a social inference process
called the Consistent Irrelevant Information Principle (CIIP). We have described the
promising social inference process SEP first formulated in [17] and its weaker counter-
part, the merging operator WSEP. We have shown that WSEP satisfies CIIP and
that SEP satisfies CIIP in many cases. The question as to whether SEP satisfies CIIP
in general remains open.



The irrelevant information principle for collective probabilistic reasoning 187

ACKNOWLEDGEMENT

The authors are very grateful to Alena Vencovská for spotting a mistake in the original proof
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