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FUZZY EMPIRICAL DISTRIBUTION FUNCTION:
PROPERTIES AND APPLICATION

Gholamreza Hesamian and S.M. Taheri

The concepts of cumulative distribution function and empirical distribution function are
investigated for fuzzy random variables. Some limit theorems related to such functions are
established. As an application of the obtained results, a method of handling fuzziness upon the
usual method of Kolmogorov–Smirnov one-sample test is proposed. We transact the α-level
set of imprecise observations in order to extend the usual method of Kolmogorov–Smirnov one-
sample test. To do this, the concepts of fuzzy Kolmogorov–Smirnov one-sample test statistic
and p-value are extended to the fuzzy Kolmogorov–Smirnov one-sample test statistic and fuzzy
p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for
comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept
or reject the null hypothesis of interest. Some numerical examples are provided to clarify the
discussions in this paper.
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1. INTRODUCTION

Nonparametric procedures are statistical procedures that makes relatively mild assump-
tions regarding the distribution and/or the form of underlying functional relationship.
The Kolmogorov–Smirnov test is a nonparametric procedure for the equality of contin-
uous, one-dimensional probability distributions that can be used to compare a sample
with a reference probability distribution or to compare two samples. In the classical
version of such a test, the observations of sample are generally assumed to be crisp (pre-
cise) quantities. But real data are usually imprecise. For instance, in hydrology studies
in which the water level of a river at a certain time may not turn out to be exact. Typ-
ically, such data are expressed in imprecise quantities. For example: “the water level is
very low”, “it is high”, “it is approximately 2.7 (m)”, and the like. Similarly, in lifetime
analysis in reliability theory, we may not consider a precise/exact value as the lifetime
for an item. For instance, an automobile tire may work perfectly for a certain time but
be losing in performance for some time, and finally go fail completely at a certain time.
In this case, the lifetime data may be reported by imprecise quantities such as: “about
32000 (km)”, “approximately 35000 (km)”, and so on.
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The analysis of such imprecise/fuzzy data requires new statistical methods to be
developed. Fuzzy set theory provides necessary tool for modeling the imprecise quantities
and for developing statistical procedures to analyze such data. In the present work, we
are going to investigate distribution function and empirical distribution function in the
fuzzy environment. Moreover, we try to establish some limit theorems for such functions.
In addition, based on the obtained results, we extend the Kolmogorov–Smirnov one-
sample test to fuzzy environments.

Some previous studies stated below have presented approaches to non-parametric
tests for imprecise observations. Kahraman et al. [19], using defuzzification method,
proposed some algorithms with crisp results for non-parametric tests when the data are
fuzzy. Grzegorzewski [10] introduced a fuzzy confidence interval for the median of a
population in the presence of vague data and discussed the problem of testing hypoth-
esis about the median. He demonstrated also a straightforward generalization of some
classical non-parametric tests based on fuzzy random variables [13]. Moreover, he stud-
ied some non-parametric median tests based on the necessity index of strict dominance
suggested by Dubois and Prade [5] for fuzzy observations [11, 12]. In this manner, he ob-
tained a fuzzy test showing a degree of possibility and a degree of necessity for evaluating
the underlying hypotheses. He also proposed a modification of the classical sign test to
cope with fuzzy data. The proposed test is a so-called bi-robust test, i. e. a test which is
both distribution-free and which does not depend so heavily on the shape of the mem-
bership functions used for modeling fuzzy data [14]. Denoeux et al. [3] extended some
non-parametric rank-based tests for fuzzy data. Their approach relied on the definition
of a fuzzy partial ordering based on the necessity index of strict dominance between
fuzzy numbers. For evaluating the hypotheses of interest, they employed the concepts of
the fuzzy p-value and the degree of rejection of the null hypothesis quantified by a degree
of possibility and a degree of necessity, when a given significance level is a crisp number
or a fuzzy set. Hryniewicz [17] introduced the fuzzy version of the Goodman-Kruskal’s γ
measure in the contingency tables where observations of the response variable are fuzzy
(and observations of the explanatory variable are crisp). Taheri and Hesamian [32] inves-
tigated a fuzzy version of the Goodman-Kruskal γ measure of association for a two-way
contingency table when the observations are crisp but the categories are described by
fuzzy sets. They also developed a method for testing of independence in such a two-way
contingency table. In addition, they [33] extend the Wilcoxon signed-rank test to the
case where the available observations are imprecise quantities, rather than crisp and the
significance level is given by a fuzzy number. Moreover, they [15] proposed a generaliza-
tion of the non-parametric two-sample tests for imprecise observations. They considered
mainly location and scale tests that utilized a proposed ranking method based on the
credibility measure. For more on statistical methods with fuzzy observations the reader
is referred to the relevant literature, for example [6, 26, 35].

This paper is organized as follows: In Section 2, we recall some necessary concepts
related to fuzzy numbers and fuzzy random variables. In Section 3, we generalize the
concept of cumulative distribution function and empirical distribution function for fuzzy
data at a crisp as well as at a fuzzy point. We extend some large sample properties of
empirical distribution function to fuzzy environments in Section 4. In Section 5, we
provide an approach to test the one-sided Kolmogorov–Smirnov fuzzy hypothesis when
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the available data are fuzzy. To do this, we introduce the concepts of fuzzy Kolmogorov–
Smirnov one-sample test statistic and fuzzy p-value. For making a decision rule to reject
or accept the null hypothesis, we use an index for comparing the observed fuzzy p-value
with a given fuzzy significance level. We also illustrate a numerical example to clarify the
discussions in this paper and to show the possible application in a fuzzy environment.
A brief conclusion is presented in Section 6. In addition, a review on the classical
Kolmogorov–Smirnov one-sample test is provided in Appendix.

2. FUZZY NUMBERS AND FUZZY RANDOM VARIABLES

A fuzzy number [4] is a function µ eA : R → [0, 1], satisfying

• Ã is normal (i. e. there exist an x0 ∈ R, such that µ eA(x0) = 1.

• Ã is fuzzy convex (i. e. µ eA(λx+(1−λ)y) ≥ min{µ eA(x), µ eA(y)}, for every x, y ∈ R,
λ ∈ [0, 1].

• µ eA is upper semi-continuous.

• the closure of {x ∈ R : µ eA(x) > 0}, denoted by supp(Ã), is compact.

These properties imply that for each α ∈ (0, 1], the α-cut of Ã defined by

Ã[α] = {x ∈ R : µ eA(x) ≥ α} = [ÃL
α, ÃU

α ]

is a closed interval in R, as well as supp(Ã), and the following equality holds

Ã[0] = supp(Ã) = lim
α→0+

Ã[α].

One of the popular forms of a fuzzy number, to be considered in this work, is the
so-called triangular fuzzy number Ã = (Al, Ac, Ar)T whose membership function and
α-cut are given by

µ eA(x) =


0 x < Al,

x−Al

Ac−Al Al ≤ x < Ac,
Ar−x

Ar−Ac Ac ≤ x ≤ Ar,

0 x > Ar,

 ∀x ∈ R,

Ã[α] = [Al + (Ac −Al)α, Ar − (Ar −Ac)α],

which is typically a formal representation of the concept of “about Ac”. We denote by
F(R) the set of all fuzzy numbers on R. For more on fuzzy numbers see [23].

Below, we recall some definitions and results related to fuzzy random variables (for
more details, see [20, 22, 24, 30]).

Given a probability space (Ω, A,P), a fuzzy random variable is defined to be a Borel
measurable mapping X̃ : Ω → F(R) such that for any α ∈ (0, 1], the α-cut X̃[α] is
a random variable, i. e. X̃[α] : Ω → H(R) (H(R) is the class of nonempty compact
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intervals) (see [8] and [30]). It is a Borel measurable function with respect to the Borel
σ-field generated by the topology associated with the Hausdorff metric on H(R),

dH(A,B) = max
{

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|
}

.

Two fuzzy random variables X̃ and Ỹ are said to be independent if and only if each
random variable in the set {X̃L

α , X̃U
α : α ∈ (0, 1]} is independent of each random variable

in the set {Ỹ L
α , Ỹ U

α : α ∈ (0, 1]}. They are called identically distributed if X̃L
α and Ỹ L

α ,
and also X̃U

α and Ỹ U
α , are identically distributed for all α ∈ (0, 1]. Similar arguments

can be used for more than two fuzzy random variables.
We say that X̃1, . . . , X̃n is a fuzzy random sample (with the same distribution as

X̃) if they are independent and identically distributed. We denote by x̃1, x̃2, . . . , x̃n the
observed values of a fuzzy random sample.

The aim of this work is to extend the one-sample procedure to the case where the
observations are fuzzy rather than crisp.

3. FUZZY CUMULATIVE DISTRIBUTION FUNCTION
AND FUZZY EMPIRICAL DISTRIBUTION FUNCTION

In this section we extend the concept of c.d.f. and e.d.f. to the case the observations
are values of a fuzzy random sample.

Definition 3.1. The fuzzy set F̃ eX(x̃) is said to be the fuzzy cumulative distribution
function (f.c.d.f) of the fuzzy random variable X̃, whenever its membership function at
x̃ ∈ F(R) is given by

µ eFfX(ex)(y) = sup
α∈[0,1]

αI(y ∈ [(F̃ eX(x̃))L
α, (F̃ eX(x̃))U

α ]), (1)

where
(F̃ eX(x̃))L

α = P(X̃U
α ≤ x̃L

α), (F̃ eX(x̃))U
α = P(X̃L

α ≤ x̃U
α ), (2)

and I is the indicator function,

I(ρ) =
{

1 if ρ is true,
0 if ρ is false.

Let us notice that for 0 < α1 < α2 ≤ 1 we have (F̃ eX(x̃))L
α1

≤ (F̃ eX(x̃))L
α2

, and
(F̃ eX(x̃))U

α2
≤ (F̃ eX(x̃))U

α1
. Hence, for 0 < α1 < α2 ≤ 1 we have (F̃ eX(x̃))[α2] ⊆ F̃ eX(x̃))[α1],

and so Equation (2) defines the nested set of closed intervals indexed by α. Therefore,
the membership function of f.c.d.f. can be uniquely determined by (1) due to the Rep-
resentation Theorem (see, e. g. [23]).

Remark 3.2. If the fuzzy point x̃ reduces to the crisp number x, then the α-cuts of
the f.c.d.f. reduce as follows

(F̃ eX(x))[α] = [P(X̃U
α ≤ x),P(X̃L

α ≤ x)]. (3)
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Fig. 1. Fuzzy cumulative distribution function in Example 3.5.

In addition, if the fuzzy random sample X̃1, X̃2, . . . , X̃n reduce to the crisp random
sample X1, X2, . . . , Xn, then, for every α ∈ (0, 1]

F̃L
α (x) = F̃U

α (x) = P(X ≤ x) = FX(x).

Therefore, we obtain the classical c.d.f.

Definition 3.3. We say F̃ eX(·) is continuous on R if for every α ∈ (0, 1], (F̃ eX(·))L
α and

(F̃ eX(·))U
α are continuous on R.

Remark 3.4. As interpreted by some authors [10, 22, 31], a fuzzy random variable X̃

is a vague perception of an ordinary random variable X called the original of X̃. Based
on the above definition, we can say that the f.c.d.f. F̃ eX is a vague perception of FX .
Now, let {FX,θ : θ ∈ Θ ⊆ Rp} be a class of continuous parametric c.d.f. If we consider a
vector of fuzzy parameters as a mapping θ̃ : Θ → (F(R))p, p ≥ 1, then it is natural that
we have

(F̃ eX)L
α = inf

θ∈eθ[α]
FX,θ, (F̃ eX)U

α = sup
θ∈eθ[α]

FX,θ. (4)

Example 3.5. Suppose X̃ has exponential distribution with fuzzy parameter λ̃ ∈ F(R)
such that supp(λ̃) ⊆ (0,∞). Therefore, by (4), we obtain

µ eFfX(x)(y) = sup
α∈[0,1]

αI

(
y ∈

[
1− exp

(−x

λ̃U
α

)
, 1− exp

(−x

λ̃L
α

)])
. (5)

For example let λ̃ = (80, 100, 120)T . In this case, 3-dimensional curve of f.c.d.f. is shown
in Figure 1. Moreover, α-levels of such a f.c.d.f. are shown in Figure 2, for some values
of α.
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Fig. 2. The α-levels of f.e.d.f in Example 3.5, for α = 0.2, 0.5, 0.8, 1.

Definition 3.6. Suppose that X̃1, X̃1, . . . , X̃n is a fuzzy random sample. Then, the
fuzzy empirical distribution function (f.e.d.f.) at x̃ ∈ F(R) is defined to be a fuzzy set
with the following membership function

µfcFn(ex)
(y) = sup

α∈[0,1]

αI

(
y ∈

[
(˜̂Fn(x̃))L

α, (˜̂Fn(x̃))U
α

])
,

in which,

(˜̂Fn(x̃))L
α =

1
n

n∑
i=1

I((X̃i)U
α ≤ x̃L

α), (˜̂Fn(x̃))U
α =

1
n

n∑
i=1

I((X̃i)L
α ≤ x̃U

α ). (6)

Remark 3.7. If the fuzzy point x̃ reduces to the crisp number x, then the α-cuts of
the f.e.d.f. reduces as follows

(˜̂Fn(x))[α] =

[
1
n

n∑
i=1

I((X̃i)U
α ≤ x),

1
n

n∑
i=1

I((X̃i)L
α ≤ x)

]
. (7)

Moreover, if the fuzzy random sample X̃1, X̃2, . . . , X̃n reduce to the crisp random
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sample X1, X2, . . . , Xn, then, for every α ∈ (0, 1]

(˜̂Fn(x̃))L
α = (˜̂Fn(x̃))U

α =
1
n

n∑
i=1

I(Xi ≤ x) = F̂n(x),

so we obtain the classical e.d.f.

Remark 3.8. It should be mentioned that Viertl ([35], p. 44) defined the concept of
e.d.f. for fuzzy data. Let x̃1, x̃1, . . . , x̃n be fuzzy data whose α-cuts are given by x̃i[α] =
[(x̃i)L

α, (x̃i)U
α ]. At x ∈ R, the corresponding α-cuts of the fuzzy empirical distribution

function are defined by

(˜̂Fn(x))L
α =

1
n

n∑
i=1

I((x̃i)U
α ≤ x),

(˜̂Fn(x))U
α =

1
n

n∑
i=1

I((x̃i)L
α ≤ x).

The above definition for f.e.d.f., although based on a fuzzy sample, is a function of the
real argument. However, in Definition 3.6 we define the concept of f.e.d.f. as a function

of a fuzzy argument x̃. Note that, ˜̂Fn(x̃) reduces to the one proposed by Viertl provided
x̃ = x ∈ R.

It is remarkable that Viertl suggested another concept called by him as “smoothed
empirical distribution function” ([35], p. 45). Let x̃1, x̃1, . . . , x̃n be fuzzy data with the
(integrable) membership functions µexi

, i = 1, 2, . . . , n. Then, the smoothed empirical
distribution function is defined as follows

F̂n

sm
(x) =

1
n

n∑
i=1

∫ x

−∞ µexi
(x) dx∫ +∞

−∞ µexi
(x) dx

.

As mentioned above we use an extension of the classical e.d.f. different from that
proposed by Viertl since: 1) In the proposed method, f.c.d.f. is defined on the fuzzy
points while in the Viertl’s approach it is defined on the real points. 2) We discuss the
large sample property of f.e.d.f. as we will see below.

Example 3.9. Suppose that, based on a fuzzy random sample of size n = 30, we obtain
the triangular fuzzy numbers given in Table 1, (data set are taken from [34]). The f.e.d.f.
is shown in Figure 3 for two fuzzy points. Note that, the f.e.d.f. can be expressed by
“about 0.43” at x̃ = (1, 1.5, 2)T , and by “about 0.67” at x̃ = (1.6, 2, 2.3)T . Moreover, as
we see in Figure 4, the value of f.e.d.f. increase to “about one” as x̃ increases.

Example 3.10. Consider the data set in Example 3.9. In this case, the 3-dimensional
curve of the f.e.d.f. is shown in Figure 5 for x ∈ [0, 3]. Note that, this is a special case
of the f.e.d.f. for which the domain is a subset of real numbers. Moreover, the α-levels
of a such f.e.d.f. are shown in Figure 6, for some values of α.
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ex1 = (0.19, 0.23, 0.30)T ex11 = (0.38, 0.41, 0.49)T ex21 = (0.53, 0.64, 0.71)Tex2 = (0.71, 0.76, 0.78)T ex12 = (0.78, 0.86, 0.90)T ex22 = (0.85, 0.94, 0.98)Tex3 = (0.86, 0.98, 1.07)T ex13 = (0.99, 1.02, 1.12)T ex23 = (0.98, 1.08, 1.14)Tex4 = (1.08, 1.14, 1.23)T ex14 = (1.20, 1.23, 1.37)T ex24 = (1.29, 1.37, 1.43)Tex5 = (1.36, 1.46, 1.53)T ex15 = (1.40, 1.53, 1.68)T ex25 = (1.62, 1.64, 1.72)Tex6 = (1.64, 1.69, 1.81)T ex16 = (1.74, 1.78, 1.84)T ex26 = (1.74, 1.83, 1.88)Tex7 = (1.90, 1.95, 2.06)T ex17 = (1.91, 1.99, 2.08)T ex27 = (1.93, 2.04, 2.10)Tex8 = (2.14, 2.17, 2.22)T ex18 = (2.21, 2.25, 2.29)T ex28 = (2.31, 2.36, 2.45)Tex9 = (2.32, 2.40, 2.52)T ex19 = (2.44, 2.45, 2.53)T ex29 = (2.36, 2.49, 2.54)Tex10 = (2.41, 2.51, 2.65)T ex20 = (2.50, 2.57, 2.59)T ex30 = (2.53, 2.61, 2.67)T

Tab. 1. Data set in Example 3.9.
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Fig. 3. Fuzzy empirical distribution function in two fuzzy points

(Example 3.9).

4. THE LARGE SAMPLE CASE

First, we extend the Gelivenko-Cantelli theorem for fuzzy random variables.

Theorem 4.1. Let X̃ be a fuzzy random variable with continuous f.c.d.f. F̃ eX(x). Then,˜̂
Fn(x)−→F̃ eX(x) uniformly in x ∈ R, i. e.

P
(

sup
x∈R

{
|(˜̂Fn(x))L

α − (F̃ eX(x))L
α| ∨ |(

˜̂
Fn(x))U

α − (F̃ eX(x))U
α |
}
→ 0

)
= 1, for all α ∈ (0, 1],

where the symbol ∨ stands for the maximum.

P r o o f . For an arbitrary α ∈ (0, 1], let DL
n,α = supx∈R |(

˜̂
Fn(x))L

α − (F̃ eX(x))L
α| and

DU
n,α = supx∈R |(

˜̂
Fn(x))U

α−(F̃ eX(x))U
α |. By substituting (˜̂Fn(x))L

α by Fn(x) and (F̃ eX(x))L
α

by FX(x), respectively, in Lemma 5.4.1 of [9], we have
P(DL

n,α → 0) = 1 (similarly, P(DU
n,α → 0) = 1), and therefore, P((DL

n,α + DU
n,α) → 0) = 1.



970 G. HESAMIAN AND S.M. TAHERI

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
g

re
e
 o

f 
m

e
m

b
e
rs

h
ip

x̃1 = (1, 1.5, 2)T x̃3 = (1.8, 2, 2.3)T x̃5 = (2.3, 2.6, 13)Tx̃4 = (2.1, 2.4, 2.5)Tx̃2 = (1.4, 1.7, 2.1)T

Fig. 4. Behavior of f.e.d.f. by increasing ex in Example 3.9.

Now, since supx∈R{|(
˜̂
Fn(x))L

α − (F̃ eX(x))L
α| ∨ |(

˜̂
Fn(x))U

α − (F̃ eX(x))U
α |} ≤ DL

n,α + DU
n,α, we

have P(supx∈R{|(
˜̂
Fn(x))L

α −(F̃ eX(x))L
α | ∨ |(˜̂Fn (x))U

α− (F̃ eX (x))U
α |} → 0) ≥ P((DL

n,α+
DU

n,α) → 0) = 1. Consequently, for every α ∈ (0, 1],

P
(

sup
x∈R

{∣∣∣(˜̂Fn(x))L
α − (F̃ eX(x))L

α

∣∣∣ ∨ ∣∣∣(˜̂Fn(x))U
α − (F̃ eX(x))U

α

∣∣∣}→ 0
)

= 1.

�

Remark 4.2. If the fuzzy random variables {X̃n}∞n=1 reduce to the crisp random vari-
ables {Xn}∞n=1, then the above theorem reduces to P(supx∈R |F̂n(x)−FX(x)| → 0) = 1,
which is the Glivenko–Cantelli theorem for crisp random variables. Therefore, Theo-
rem 4.1 is a generalization of Glivenko–Cantelli theorem for fuzzy random variables.

Definition 4.3. For the sequence {X̃n}∞n=1 of fuzzy random variables and a fuzzy num-
ber Z̃, we say X̃n → Z̃ with probably one (w.p.1), if

P([|(X̃n)L
α − Z̃L

α | ∨ |(X̃n)U
α − Z̃U

α |] → 0) = 1, for all α ∈ (0, 1]. (8)

Remark 4.4. If the fuzzy random variables {X̃n}∞n=1 and Z̃ reduce to the crisp random
variables {Xn}∞n=1 and Z, then the above equality reduces to P(Xn → Z) = 1, which is
the definition of convergence w.p.1 of ordinary (non fuzzy) random variables. Definition
4.3, therefore, is a generalization of convergence w.p.1 to the case of fuzzy random
variables.

Theorem 4.5. Let X̃ be a fuzzy random variable with continuous f.c.d.f. F̃ eX(x) and x̃

be a fuzzy number whose α-cuts are [x̃L
α, x̃U

α ], α ∈ (0, 1]. Then, ˜̂Fn(x̃) → F̃ eX(x̃) w.p.1,
for every x̃ ∈ F(R).
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Fig. 5. Fuzzy empirical distribution function in Example 3.10.

P r o o f . For every α ∈ (0, 1], we observe that ˜̂Fn(x̃)[α] is a random variable. Therefore,˜̂
Fn(x̃) : Ω −→ F(R) is a fuzzy random variable for any n ∈ N (Section 2). Now for a fixed

α ∈ (0, 1] and a fixed x̃ ∈ F(R), we have |(˜̂Fn(x̃))L
α−(F̃ eX(x̃))L

α| ∨|(
˜̂
Fn(x̃))U

α−(F̃ eX(x̃))U
α | ≤

|(˜̂Fn(x̃))L
α − (F̃ eX(x̃))L

α|+ |(˜̂Fn(x̃))U
α − (F̃ eX(x̃))U

α |. Since for all α ∈ (0, 1], (X̃i)L
α, i =

1, 2, . . . , n (and also (X̃i)U
α , i = 1, 2, . . . , n) are independent and identically distributed,

(˜̂Fn(x̃))L
α converges to FL

α (x̃L
α) = (F̃ eX(x̃))L

α, w.p.1 (also (˜̂Fn(x̃))U
α converges to FU

α (x̃U
α ) =

(F̃ eX(x̃))U
α , w.p.1) by Strong Law of Large Numbers (see, e. g. [9]). For any fixed α ∈ (0, 1]

and any fixed x̃ ∈ F(R), therefore, P([|(˜̂Fn(x̃))L
α − (F̃ eX(x̃))L

α| ∨|(
˜̂
Fn(x̃))U

α − (F̃ eX(x̃))U
α |]

→ 0) ≥ P((|(˜̂Fn(x̃))L
α − (F̃ eX(x̃))L

α|+ |(˜̂Fn (x̃))U
α− (F̃ eX (x̃))U

α |) → 0) = 1. Consequently,
for all α ∈ (0, 1], and for all x̃ ∈ F(R)

P
([∣∣(˜̂Fn(x̃))L

α − (F̃ eX(x̃))L
α| ∨ |(

˜̂
Fn(x̃))U

α − (F̃ eX(x̃))U
α

∣∣]→ 0
)

= 1.

�

Therefore, we can roughly say that, based on a sequence of independent and identical

fuzzy random variables, the f.e.d.f. ˜̂Fn(x̃) is a strong fuzzy consistent estimator for the
c.d.f. F̃ eX(x̃).

Remark 4.6. If the fuzzy point x̃ ∈ F(R) reduces to the crisp number x ∈ R, then the
result of above theorem reduces as follows

P
([∣∣(˜̂Fn(x))L

α − (F̃ eX(x))L
α| ∨ |(

˜̂
Fn(x))U

α − (F̃ eX(x))U
α )
∣∣]→ 0

)
= 1, for all α ∈ (0, 1].
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Fig. 6. The α-levels of f.e.d.f in Example 3.10, for α = 0, 0.3, 0.7, 1.

In other words, ˜̂Fn(x) → F̃ eX(x) w.p.1, at x ∈ R. In addition, if the fuzzy observations
and fuzzy point reduce to the crisp observations and crisp point, then the above theorem
reduces to the ordinary convergence w.p.1 of the classical one (i. e. F̂n(x) → FX(x) w.p.1,
at x ∈ R (see [9], p. 125)).

Remark 4.7. Assume that ˜̂Fn(x)−→F̃ eX(x) w.p.1, uniformly in x ∈ R. Then it is easy

to verify that ˜̂Fn(x) −→ F̃ eX(x) w.p.1, at x ∈ R. Hence, we have a relationship between
convergence with probability one and the Glivenko–Cantelli theorem for fuzzy random
variables.

Remark 4.8. It is notable that, Parthasarathy [29] and Nguyen et al. [27] investigated
the Glivenko–Cantelli theorem in a general setting. However, in our proposed approach,
we investigated the basic definitions and the Gelivenko–Cantelli theorem in fuzzy points
rather than crisp ones. Meanwhile, Krätschmer [21] established this theorem in a essen-
tially different framework. His method is based on counting the number of observations
which are “equal to” any specific fuzzy set. But, our method handles a vague concept
of “less than or equal” to compare the observation of a fuzzy random variable and a
given fuzzy number x̃ (or x ∈ R) based on alpha-cuts of the fuzzy observations, as we
proposed in Definition 3.1. Moreover, we use a concept of strong convergence, while he
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established the result by using some metrics on the space of fuzzy numbers. Finally, it
should be mentioned that, Bzowski and Urbanski [2] stated and proved a fuzzy version
of Glivenko–Cantelli theorem for fuzzy variables (i. e. the variables with some possi-
bility distributions rather than probability distributions), which it is established in a
completely different context.

5. KOLMOGOROV–SMIRNOV ONE-SAMPLE TEST IN FUZZY ENVIRONMENT

Now, suppose that we have a fuzzy random sample X̃1, X̃1, . . . , X̃n with observed values
x̃1, x̃2, . . . , x̃n from a population with continuous f.c.d.f. F̃ eX . In this section we general-
ize the classical one-sided Kolmogorov–Smirnov one-sample test to a fuzzy environment.
In fact, based on the observations of a fuzzy random sample, we are going to test the
following fuzzy hypothesis H̃0 : F̃ eX(x) = F̃ 0(x), ∀x,

H̃1 : F̃ eX(x) � F̃ 0(x), for some x.
(9)

in which it means that( eH0 : ( eF eX(x))L
α = ( eF 0(x))L

α, ( eF eX(x))U
α = ( eF 0(x))U

α , ∀α ∈ (0, 1] , ∀x.eH1 : ( eF eX(x))L
α > ( eF 0(x))L

α, ( eF eX(x))U
α > ( eF 0(x))U

α , ∀α ∈ (0, 1], for some x.
(10)

To interpret the alternative hypothesis H̃1, consider the following example.

Example 5.1. Let X̃0 and X̃ have the exponential distribution with fuzzy parameters
λ̃0 = (100, 120, 140)T and λ̃ = (50, 70, 90)T , respectively. As we can observe in Figure 7,
F̃ eX(x) � F̃ 0(x), for some x. In addition, the α-levels of a such f.e.d.f. are shown in
Figure 8, for some values of α.
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Fig. 7. Fuzzy cumulative distribution functions in Example 5.1.
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Fig. 8. The α-levels of f.e.d.f in Example 5.1, for α = 0.3, 0.7, 1.

Definition 5.2. For a fuzzy random sample X̃1, X̃2, . . . , X̃n, the fuzzy Kolmogorov–

Smirnov one-sample test statistic is a fuzzy set
√̃

nD+
n on [0,∞) with the following

membership function

µ√̃
nD+

n

(y) = sup
α∈[0,1]

αI

(
y ∈

[
(
√̃

nD+
n )L

α, (
√̃

nD+
n )U

α

])
, (11)

where

(
√̃

nD+
n )L

α = inf
β≥α

√
n max

{
max

1≤i≤n

{
i/n− (F̃ 0((x̃i)L

β ))U
β

}
, 0
}

,

=
√

n max
{

max
1≤i≤n

{
i/n− (F̃ 0((x̃i)L

α))U
α

}
, 0
}

,

and

(
√̃

nD+
n )U

α = inf
β≥α

√
n max

{
max

1≤i≤n

{
i/n− (F̃ 0((x̃i)U

β ))L
β

}
, 0
}

,

=
√

n max
{

max
1≤i≤n

{
i/n− (F̃ 0((x̃i)U

α ))L
α

}
, 0
}

.

Remark 5.3. If the observed fuzzy random sample X̃1, X̃2, . . . , X̃n reduce to the crisp
random sample X1, X2, . . . , Xn, then, for every α ∈ (0, 1],

(
√̃

nD+
n )L

α =
√̃

nD+
n )U

α =
√

n max
{

max
1≤i≤n

{
i/n− F 0

X(Xi)
}

, 0
}

,

which is the classical Kolmogorov–Smirnov one-sample test statistic (see Appendix).
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Now we define the fuzzy p-value for testing fuzzy hypothesis (9) (i. e. (10)).

Definition 5.4. A fuzzy p-value for the Kolmogorov–Smirnov for testing (9) (equiva-
lently (10)) based on a fuzzy random sample is given by

µep−value(x) = sup
α∈[0,1]

αI(x ∈ [(p̃− value)L
α, (p̃− value)U

α ]), (12)

where

(p̃− value)L
α = inf

{
PHLβ

0
((
√

nD+
n )Lβ ≥ d) : β ≥ α, d ∈

√̃
nd+

n [β]
}

,

(p̃− value)U
α = sup

{
PHUβ

0
((
√

nD+
n )Uβ ≥ d) : β ≥ α, d ∈

√̃
nd+

n [β]
}

,

√̃
nd+

n denotes the observed fuzzy statistic
√̃

nD+
n and

HLβ
0 :

(
F̃ eX
)L

β
=
(
F̃ 0
)L

β
, HUβ

0 :
(
F̃ eX
)U

β
=
(
F̃ 0
)U

β
,

(√
nD+

n

)Lβ =
√

n max
{

max
1≤i≤n

{
i/n− (F̃ eX((X̃i)U

β ))L
β

}
, 0
}

,

(√
nD+

n

)Uβ =
√

n max
{

max
1≤i≤n

{
i/n− (F̃ eX((X̃i)L

β ))U
β

}
, 0
}

.

It is noticeable that for any β ∈ (0, 1], PHLβ
0

((
√

nD+
n )Lβ≥(

√
nd+

n )Lβ) (PHUβ
0

((
√

nD+
n )Uβ

≥ (
√

nd+
n )Uβ)) is the classical p-value for testing the null hypothesis HLβ

0 : (F̃ eX)L
β =

(F̃ 0)L
β (HUβ

0 : (F̃ eX)U
β = (F̃ 0)U

β ) based on a crisp random sample (X̃1)L
β , (X̃2)L

β , . . . ,

(X̃n)L
β ((X̃1)U

β , (X̃2)U
β , . . . , (X̃n)U

β ). Therefore p̃ − value is a natural extension of the
classical p-value (see Appendix) for Kolmogorov–Smirnov one-sample test with fuzzy
observations and fuzzy hypothesis.

Remark 5.5. Based on Remark 3.8, for every β ∈ (0, 1], note that the distribution
of (

√
nD+

n )Lβ ((
√

nD+
n )Uβ) under the null hypothesis HLβ

0 (HUβ
0 ) is the same as the

distribution
√

nD+
n under H0 : FX(x) = FX0(x). Therefore, the membership function

of p̃-value reduces to

µep−value(x) = sup
α∈[0,1]

αI

(
x ∈

[
PH0

(√
nD+

n ≥
(√̃

nd+
n

)U
α

),PH0

(√
nD+

n ≥
(√̃

nd+
n

)L
α

)])
.

(13)

Remark 5.6. It is easy to show that the fuzzy p-value is a fuzzy number on [0, 1]. In
addition, if the fuzzy random sample X̃1, X̃1, . . . , X̃n reduce to the crisp random sample,
then the fuzzy p-value reduces to the classical p-value.
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5.1. Method of decision making

Finally, a decision is made to accept or reject the hypothesis of interest, by comparing
the observed fuzzy p-value with the given significance level. Since the p-value is defined
as a fuzzy set, it is natural to consider the significance level as a fuzzy set, too. Based
on [16], any set δ̃ on (0, 1) can be considered as a fuzzy significance level.

In this situation we need a method for comparing the obtained fuzzy p-value with a
given fuzzy significance level. There are several ways to carry out this comparison (see,
e. g. [5, 36]). We use a method for ranking fuzzy numbers based on the fuzzy preference
relation [38], and then, by inception of the work by Parchami et al. [28], a method will
be defined to test the hypothesis of interest.

Definition 5.7. Let FC(R) be the class of fuzzy numbers with continuous membership
functions. For Ã, B̃ ∈ FC(R), let

∆ eA eB =
∫

α: eAU
α > eBL

α

(ÃU
α − B̃L

α ) dα +
∫

α: eAL
α> eBU

α

(ÃL
α − B̃U

α ) dα. (14)

Then the degree of truth of “Ã is greater than B̃”, is defined to be

∆(Ã � B̃) =
∆ eA eB

∆ eA eB + ∆ eB eA . (15)

The relation ∆ is called the fuzzy preference relation.

Proposition 5.8. (a) The fuzzy preference relation ∆ is reciprocal, i. e., for two fuzzy
numbers Ã and B̃

∆(B̃ � Ã) = 1−∆(Ã � B̃),

and especially
∆(Ã � Ã) = 0.5.

(b) The fuzzy preference relation ∆ is transitive, in the sense that for three fuzzy numbers
Ã, B̃, and C̃, if ∆(Ã � B̃) ≥ 0.5 and ∆(B̃ � C̃) ≥ 0.5, then ∆(Ã � C̃) ≥ 0.5.

Definition 5.9. Consider the problem of testing fuzzy hypothesis(9) based on a fuzzy
random sample. Then, at fuzzy significance level of δ̃, the fuzzy test is defined to be a
fuzzy set as follows

ϕ̃eδ[x̃1, . . . , x̃n] =
{

ϕ̃eδ(1)
1

,
ϕ̃eδ(0)

0

}
, (16)

where ϕ̃eδ(1) = ∆(p̃ − value � δ̃) is called the degree of acceptance of H̃0 and ϕ̃eeδ(0) =

1− ϕ̃eδ(1) is the degree of rejection of H̃0.

Remark 5.10. If the decision maker is willing to do the test at the exact significance
level, then equation (14) reduces as follows

∆ eAδ =
∫

α: eAU
α >δ

(ÃU
α − δ) dα +

∫
α: eAL

α>δ

(ÃL
α − δ) dα. (17)
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To demonstrate the application of the proposed method, we provide a practical ex-
ample using a real data set given in [37].

Example 5.11. A tire and rubber company is interested in the quality of a tire it has
recently developed. Only 24 new tires were tested because the tests were destructive
and took considerable time to complete. Six cars, all the same model and brand, were
used to test the tires. Car model and brand were alike so that the car effects were not
considered. Since, under some unexpected situations, we cannot measure the tire lifetime
precisely, we can just mention the tire lifetime using terms of approximate. Therefore,
the tire lifetimes are taken to be triangular fuzzy numbers as shown in Table 2.

ex1 = (33262, 33978, 34889)T ex13 = (32093, 32617, 33255)Tex2 = (32585, 33052, 33787)T ex14 = (31720, 32611, 33497)Tex3 = (32806, 33418, 33908)T ex15 = (31977, 32455, 33034)Tex4 = (33065, 33463, 34131)T ex16 = (31943, 32466, 33212)Tex5 = (30743, 31624, 32460)T ex17 = (32169, 33070, 33968)Tex6 = (32415, 33127, 34072)T ex18 = (32900, 33543, 34335)Tex7 = (32687, 33224, 33908)T ex19 = (30327, 30881, 31455)Tex8 = (32185, 32597, 33186)T ex20 = (31187, 31565, 32237)Tex9 = (33423, 34036, 34771)T ex21 = (33208, 34053, 34876)Tex10 = (31639, 32584, 33542)T ex22 = (30945, 31838, 32739)Tex11 = (31511, 32290, 33064)T ex23 = (31934, 32800, 33445)Tex12 = (33060, 33844, 34449)T ex24 = (33464, 34157, 34974)T

Tab. 2. Data set in Example 5.11.

Now, suppose that we wish to test fuzzy hypothesis (9) in which F̃ 0 denotes the c.d.f.
of the normal distribution with the following fuzzy parameters

µ̃ = (30000, 32000, 34000)T , σ̃2 = ((1500)2, (2000)2, (2500)2)T .

To compute p̃-value, we should calculate the α-cuts of fuzzy test statistic for every
α ∈ (0, 1]. For example, at level of α = 0.5, from Equation (11),(√̃

nd+
n

)L

0.5

=
√

n max
{

max
1≤i≤n

{
i/n− (F̃ 0((x̃i)L

0.5))
U
0.5

}
, 0
}

,

(√̃
nd+

n

)U

0.5

=
√

n max
{

max
1≤i≤n

{
i/n− (F̃ 0((x̃i)U

0.5))
L
0.5

}
, 0
}

,

in which

(F̃ 0(x))L
0.5 = inf

µ∈eµ[0.5],σ2∈eσ2[0.5]
Fµ,σ2(x) = Φ

x− µ̃U
0.5√

σ̃2
U

0.5

 ,

(F̃ 0(x))U
0.5 = sup

µ∈eµ[0.5],σ2∈eσ2[0.5]

Fµ,σ2(x) = Φ

x− µ̃L
0.5√

σ̃2
L

0.5

 ,



978 G. HESAMIAN AND S.M. TAHERI

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
g

re
e
 o

f 
m

e
m

b
e
rs

h
ip

p̃-valueδ̃

Fig. 9. Fuzzy p-value and fuzzy significance level in Example 5.11.

where Fµ,σ2 denotes the c.d.f. of the normal distribution with mean µ and variance σ2

such that µ ∈ µ̃[0.5] = [31000, 33000], σ2 ∈ σ̃2[0.5] = [3125000, 5125000], and Φ denotes

the c.d.f. of the standard normal distribution. So, we obtain
√̃

nd+
n [0.5] = [0.274, 1.198],

and from (13) we obtain p̃ − value[0.5] = [0.047, 0.830]. By continuing this procedure
for other values of α, the membership function of the observed p̃ − value is drawn
point-by-point based on values of α ∈ {0.001, 0.002, . . . , 1} versus {(p̃ − value)L

α, (p̃ −
value)U

α} ⊆ [0, 1] as we observed in Figure 9. This function can be divided in two
functions, say left and right. So we may estimate them by two quadratic functions as
α = a((p̃−value)L

α)2 +b(p̃−value)L
α +c and α = a

′
((p̃−value)U

α )2 +b
′
(p̃−value)U

α +c
′
.

Among many different methods to evaluate the raw data to find the curve fitting model
parameters, we apply “polynomial method” using “MATLAB” software to estimate the
functional forms of the left and right. Finally, the membership function of p̃− value is
derived “about 0.355” with the following membership function

µep−value(x) =


0 0 ≤ x < 0.002,
−10.572x2 + 5.7313x + 0.297 0.002 ≤ x < 0.355,
−2.0049x2 + 1.405x + 0.753 0.355 ≤ x < 0.986,
0 0.986 ≤ x ≤ 1.

For the fuzzy significance level δ̃ = (0.05, 0.10, 0.15)T by (16) we get

ϕ̃eδ[x̃1, . . . , x̃24] =
{

0.02
1

,
0.98
0

}
.

Therefore, the null hypothesis of H̃0 is accepted with degree of acceptance 0.98.

Example 5.12. Consider the previous example. Assume that the significance level is
given by a crisp number δ = 0.10. Now using Remark 5.10 we obtain ∆(p̃ − value �
δ) = 1. So the fuzzy test is obtained as follows

ϕ̃δ[x̃1, . . . , x̃24] =
{

0
1
,
1
0

}
.
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Therefore, we accept the null hypothesis of H̃0 with degree of acceptance 1.

6. CONCLUSION

We extended the concepts of fuzzy distribution function and fuzzy empirical distri-
bution function at a crisp number and at a fuzzy number. Then, we extended the
Glivenko–Cantelli theorem to a fuzzy environment. Based on the obtained results, the
Kolmogorov–Smirnov one-sample test statistic was extended to the fuzzy environment.
Then, a new method was introduced to compute the so-called fuzzy p-value for testing
imprecise hypothesis. Finally, for evaluating the null hypothesis, we employ a fuzzy
preference to compare the observed fuzzy p-value and the given fuzzy significance level.

The problem of Kolmogorov–Smirnov two-sided test and other non-parametric Good-
ness-of-Fit tests in fuzzy environment are potential subjects for future research.

APPENDIX: KOLMOGOROV–SMIRNOV ONE-SAMPLE TEST

Let X1, X2, . . . , Xn be a random sample from a population with a continuous, but
unknown cumulative distribution function (c.d.f.) FX(x). The Kolmogorov–Smirnov
one-sample test statistic is based on the differences between the c.d.f. FX(x) and the
empirical distribution function (e.d.f.) F̂n(x). Due to the Strong Law of Large Numbers,
F̂n(x) → FX(x) with probability one for each x. Concerning the large sample behavior
of the F̂n(x), we have also the following (see, e. g. [9]).

Lemma 6.1. (Glivenko–Cantelli theorem)

P
(

lim
n→∞

sup
x∈R

|F̂n(x)− FX(x)| = 0
)

= 1.

In other words, with probability one, F̂n(x) → FX(x) uniformly in x.

So, as n increases, the step function F̂n(x) approaches to the true distribution FX(x)
for all x, so that for large n, | F̂n(x)−FX(x) | should be small for all values of x. If n is
large enough then the so-called Kolmogorov–Smirnov one-sample statistic is defined as

√
nDn =

√
n sup

x∈R
| F̂n(x)− FX(x) | (18)

In addition, the directional deviations defined as

√
nD+

n =
√

n sup
x∈R

[F̂n(x)− FX(x)] =
√

n max
{

max
1≤i≤n

{i/n− FX(Xi)}, 0
}

, (19)

√
nD−n =

√
n sup

x∈R
[FX(x)− F̂n(x)], (20)

are called the one-sided Kolmogorov–Smirnov test statistics. Obviously,
√

nDn =
max{

√
nD−n ,

√
nD+

n } and also
√

nD+
n and

√
nD−n have identical distributions because

of symmetry. The sampling distribution of
√

nDn is given below

P(
√

nDn <
1

2
√

n
+ c) =


0 v ≤ 0,
p(n) 0 < c < 2n−1

2
√

n
,

1 c ≥ 2n−1
2
√

n
,

(21)
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where

p(n) =
∫ 1/2n+ c√

n

1/2n− c√
n

. . .

∫ (2n−1)/2n+ c√
n

(2n−1)/2n− c√
n

f(u1, . . . , un) du1 . . . dun,

in which, f(u1, u2, . . . , un) = n! I(u1 < u2 < . . . un), and

P(
√

nDn ≤ c) = 1− 2
∞∑

i=1

(−1)i−1e−2i2c2
, c > 0, (22)

for large sample n ([7], p. 117). Moreover, the sampling distributions
√

nD+
n under H0

is given below

PH0(
√

nD+
n > c) =

 1 c ≤ 0,
h(c) 0 < c <

√
n,

0 c ≥
√

n,
(23)

where

h(c) = (1− c/
√

n)n+

(c/
√

n)
∑[n(1−c/

√
n)]

j=1

(
n
j

)
(1− c/

√
n− j

n )n−j(c/
√

n + j
n )j−1,

(24)

in addition,
PH0(

√
nD+

n < c) = 1− e−2c2
(25)

for c ≥ 0 as n →∞ (see [7], p. 119).
In Kolmogorov–Smirnov one-sample test, we wish to test H0 : FX(x) = F 0

X(x) for all
x, where F 0

X(x) is a specified continuous distribution function. If (
√

ndn), (
√

nd+
n ) and

(
√

nd−n ) denote the observed value of
√

nDn,
√

nD+
n and

√
nD−n , respectively, then for

the alternative
H1,+ : FX(x) > F 0

X(x) for some x,

we reject the null hypothesis, at significance level of δ, when p− value = PH0(
√

nD+
n >

(
√

nd+
n )) < δ, and for the alternative

H1,− : FX(x) < F 0
X(x) for some x,

we reject the null hypothesis when p− value = PH0(
√

nD−n > (
√

nd−n )) < δ, and for the
alternative

H1 : FX(x) 6= F 0
X(x) for some x,

we reject the null hypothesis when p− value = PH0(
√

nDn > (
√

nDn)Ob.) < δ ([7, 25]).

ACKNOWLEDGMENTS

The authors thank the referees for their constructive suggestions and valuable comments.

(Received June 4, 2011)



Fuzzy empirical distribution function: Properties and application 981

R E FER E NCE S

[1] M. Arefi and R. Viertl and S. M. Taheri: Fuzzy density estimation. Metrika 75 (2012),
5–22.

[2] A. Bzowski and M. K. Urbanski: Convergence, strong law of large numbers, and mea-
surement theory in the language of fuzzy variables. http://arxiv.org/abs/0903.0959

[3] T. Denoeux, M. H. Masson, and P.H. Herbert: Non-parametric rank-based statistics and
significance tests for fuzzy data. Fuzzy Sets and Systems 153 (2005), 1–28.

[4] D. Dubois and H. Prade: Operation on fuzzy numbers. Internat. J. System Sci. 9 (1978),
613–626.

[5] D. Dubois and H. Prade: Ranking of fuzzy numbers in the setting of possibility theory.
Inform. Sci. 30 (1983), 183–224.

[6] P. Filzmoser and R. Viertl: Testing hypotheses with fuzzy data: the fuzzy p-value.
Metrika 59 (2004), 21–29.

[7] J.D. Gibbons and S. Chakraborti: Non-parametric Statistical Inference. Fourth edition.
Marcel Dekker, New York 2003.

[8] M. A. Gil: Fuzzy random variables: Development and state of the art. In: Mathematics
of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11–15.

[9] Z. Govindarajulu: Non-parametric Inference. Hackensack, World Scientific 2007.

[10] P. Grzegorzewski: Statistical inference about the median from vague data. Control
Cybernet. 27 (1998), 447–464.

[11] P. Grzegorzewski: Two-sample median test for vague data. In: Proc. 4th Conf. European
Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621–626.

[12] P. Grzegorzewski: K-sample median test for vague data. Internat. J. Intelligent Systems
24 (2009), 529–539.

[13] P. Grzegorzewski: Distribution-free tests for vague data. In: Soft Methodology and Ran-
dom Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz,
and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495–502.

[14] P. Grzegorzewski: A bi-robust test for vague data. In: Proc. of the Twelfth International
Conference on Information Proc. and Management of Uncertainty in Knowledge-Based
Systems, IPMU’08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, eds.), Torremolinos
2008, pp. 138–144.

[15] G. Hesamian and S. M. Taheri: Linear rank tests for two-sample fuzzy data: a p-value
approach. J. Uncertainty Systems 7 (2013), 129–137.

[16] M. Holena: Fuzzy hypotheses testing in a framework of fuzzy logic. Fuzzy Sets and
Systems 145 (2004), 229–252.

[17] O. Hryniewicz: Goodman-Kruskal γ measure of dependence for fuzzy ordered categorical
data. Comput. Statist. Data Anal. 51 (2006), 323–334.

[18] O. Hryniewicz: Possibilistic decisions and fuzzy statistical tests. Fuzzy Sets and Systems
157 (2006), 2665–2673.

[19] C. Kahraman and C. F. Bozdag, and D. Ruan: Fuzzy sets approaches to statistical
parametric and non-parametric tests. Internat. J. Intelligent Systems 19 (2004), 1069–
1078.

http://arxiv.org/abs/0903.0959


982 G. HESAMIAN AND S.M. TAHERI

[20] E. P. Klement and M.L. Puri, and D. A. Ralescu: Limit theorems for fuzzy random
variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171–182.
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