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LEFT AND RIGHT SEMI-UNINORMS
ON A COMPLETE LATTICE
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Uninorms are important generalizations of triangular norms and conorms, with a neutral
element lying anywhere in the unit interval, and left (right) semi-uninorms are non-commutative
and non-associative extensions of uninorms. In this paper, we firstly introduce the concepts of
left and right semi-uninorms on a complete lattice and illustrate these notions by means of some
examples. Then, we lay bare the formulas for calculating the upper and lower approximation
left (right) semi-uninorms of a binary operation. Finally, we discuss the relations between
the upper approximation left (right) semi-uninorms of a given binary operation and the lower
approximation left (right) semi-uninorms of its dual operation.
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1. INTRODUCTION

Uninorms, introduced by Yager and Rybalov [30], and studied by Fodor et al. [9], are
special aggregation operators that have proven useful in many fields like fuzzy logic,
expert systems, neural networks, aggregation, and fuzzy system modeling [10, 22, 27,
28, 29]. Uninorms are interesting because their structure is a special combination of
t-norms and t-conorms [9]. It is well known that a uninorm U can be conjunctive or
disjunctive whenever U(0, 1) = 0 or 1, respectively. This fact allows to use uninorms in
defining fuzzy implications and coimplications [3, 19, 20].

There are real-life situations when truth functions can not be associative or commu-
tative. By throwing away the commutativity from the axioms of uninorms, Mas et al.
[17, 18] introduced the concepts of left and right uninorms on [0, 1], Wang and Fang
[25, 26] studied the residual operators and the residual coimplicators of left (right) uni-
norms on a complete lattice. By removing the associativity and commutativity from
the axioms of uninorms, Liu [15] introduced the concept of semi-uninorms on a com-
plete lattice. In this paper, motivated by these generalizations, we will generalize the
concepts of both left (right) uninorms and semi-uninorms, introduce a new concept,
called the left (right) semi-uninorm, illustrate these notions by means of some examples
and lay bare the formulas for calculating the upper and lower approximation left (right)
semi-uninorms of a given binary operation on a complete lattice.
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This paper is organized as follows. In section 2, we introduce the concepts of left
and right semi-uninorms on a complete lattice and illustrate these concepts by means
of some examples. In section 3, we give out the formulas for calculating the upper and
lower approximation left (right) semi-uninorms of a binary operation. In section 4, we
discuss the relations between the upper approximation left (right) semi-uninorms of a
given binary operation and the lower approximation left (right) semi-uninorms of its
dual operation.

The knowledge about lattices required in this paper can be found in [5].
Throughout this paper, unless otherwise stated, L always represents any given com-

plete lattice with maximal element 1 and minimal element 0; J stands for any index
set.

2. LEFT AND RIGHT SEMI-UNINORMS

Noting that the commutativity and associativity are not desired for aggregation opera-
tors in a lot of cases. In this section, based on [15, 17, 25, 26], we introduce the concepts
of left and right semi-uninorms on a complete lattice and illustrate these notions by
means of some examples.

Definition 2.1. A binary operation U on L is called a left (right) semi-uninorm if it
satisfies the following two conditions:

(U1) there exists a left (right) neutral element, i. e., an element eL ∈ L (eR ∈ L)
satisfying U(eL, x) = x (U(x, eR) = x) for all x ∈ L,

(U2) U is non-decreasing in each variable.

For any left (right) semi-uninorm U on L, U is said to be left-conjunctive (right-
conjunctive) if U(0, 1) = 0 (U(1, 0) = 0). U is said to be conjunctive if both U(0, 1) = 0
and U(1, 0) = 0 since it satisfies the classical boundary conditions of AND. If U(1, 0) = 1
(U(0, 1) = 1), then we call U left-disjunctive (right-disjunctive). We call U disjunctive
if both U(1, 0) = 1 and U(0, 1) = 1 by a similar reason.

If a left (right) semi-uninorm U is associative, then U is the left (right) uninorm (see
[25, 26]).

If a left (right) semi-uninorm U with left (right) neutral element eL (eR) has a right
(left) neutral element eR (eL), then eL = U(eL, eR) = eR. Let e = eL = eR. Here,
U is the semi-uninorm (see [15]). In particular, if the neutral element e = 1, then the
semi-uninorm U becomes a t-seminorm (see [21]) or a semi-copula (see [4, 8]); if the
neutral element e = 0, then the semi-uninorm U becomes a t-semiconorm (see [7]).

Clearly, U(0, 0) = 0 and U(1, 1) = 1 hold for any left (right) semi-uninorm U on L.
Moreover, the left (right) neutral elements need not to be unique. In fact, the projection
operator given by U(x, y) = x for all x, y ∈ L is such that any element in L is a right
neutral element. But, left (right) neutral elements are all idempotent (see [2]) because
U(eL, eL) = eL (U(eR, eR) = eR) for any left (right) neutral element eL (eR) of U .
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Definition 2.2. (Wang and Fang [26]) A binary operation U on L is called left (right)
infinitely ∨-distributive if

U
( ∨

j∈J

xj , y
)

=
∨
j∈J

U(xj , y)
(
U

(
x,

∨
j∈J

yj

)
=

∨
j∈J

U(x, yj)
)

∀x, y, xj , yj ∈ L;

left (right) infinitely ∧-distributive if

U
( ∧

j∈J

xj , y
)

=
∧
j∈J

U(xj , y)
(
U

(
x,

∧
j∈J

yj

)
=

∧
j∈J

U(x, yj)
)

∀x, y, xj , yj ∈ L.

If a binary operation U is left infinitely ∨-distributive (∧-distributive) and also right
infinitely ∨-distributive (∧-distributive), then U is said to be infinitely ∨-distributive
(∧-distributive).

Noting that the least upper bound of the empty set is 0 and the greatest lower bound
of the empty set is 1 (see [6]), we have that

U(0, y) = U
( ∨

j∈∅

xj , y
)

=
∨
j∈∅

U(xj , y) = 0
(
U(x, 0) = U

(
x,

∨
j∈∅

yj

)
=

∨
j∈∅

U(x, yj) = 0
)

for any x, y ∈ L when U is left (right) infinitely ∨-distributive and

U(1, y) = U
( ∧

j∈∅

xj , y
)

=
∧
j∈∅

U(xj , y) = 1
(
U(x, 1) = U

(
x,

∧
j∈∅

yj

)
=

∧
j∈∅

U(x, yj) = 1
)

for any x, y ∈ L when U is left (right) infinitely ∧-distributive.

When L = [0, 1], a binary function f on [0, 1]2 is infinitely sup-distributive if and
only if, for any x0, y0 ∈ [0, 1], f(x, y0) and f(x0, y) are left-continuous and increasing
and f(x, 0) = f(0, y) = 0 for any x, y ∈ [0, 1]; and f is infinitely inf-distributive if and
only if, for any x0, y0 ∈ [0, 1], f(x, y0) and f(x0, y) are right-continuous and increasing
and f(x, 1) = f(1, y) = 1 for any x, y ∈ [0, 1] (see [11]).

For the sake of convenience, we introduce the following symbols:

UeL
s (L): the set of all left semi-uninorms with left neutral element eL on L;

UeR
s (L): the set of all right semi-uninorms with right neutral element eR on L;

UeL
s∨ (L): the set of all right infinitely ∨-distributive left semi-uninorms with left neutral

element eL on L;

UeR
∨s (L): the set of all left infinitely ∨-distributive right semi-uninorms with right neu-

tral element eR on L;

UeL
s∧ (L): the set of all right infinitely ∧-distributive left semi-uninorms with left neutral

element eL on L;

UeR
∧s (L): the set of all left infinitely ∧-distributive right semi-uninorms with right neu-

tral element eR on L.
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Now, we illustrate the notions of left (right) semi-uninorms by means of some examples.

Example 2.3. Let L = {0, a, b, c, d, 1} be a lattice, where 0 < a < b < d < 1, 0 < a <
c < d < 1, b ∧ c = a and b ∨ c = d. Define two binary operations U1, U2 on L as follows:

U1 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 a c c 1
b 0 a b c d 1
c 0 a c d d 1
d 0 a d d d 1
1 0 1 1 1 1 1

U2 0 a b c d 1
0 0 0 0 0 0 1
a 0 0 a 0 c 1
b 0 a b c d 1
c 0 0 c 0 c 1
d 0 d d d d 1
1 1 1 1 1 1 1

Obviously, U1 and U2 are neither commutative nor associative. It is easy to verify that
U1 is a conjunctive infinitely ∨-distributive semi-uninorm with the neutral element b and
U2 is a disjunctive infinitely ∧-distributive semi-uninorm with the neutral element b.

Example 2.4. Let L = {0, a, b, c, 1} be a lattice, where 0 < a < b < 1, 0 < a < c < 1,
b ∧ c = a and b ∨ c = 1. Define a binary operation U on L as follows:

U 0 a b c 1
0 0 0 0 0 0
a 0 0 a c 1
b 0 a b c 1
c 0 a b c 1
1 0 1 1 1 1

Clearly, U is a conjunctive left semi-uninorm with two left neutral elements b and c.
But, U has no right neutral element. It is easy to see that U is neither commutative
nor associative. Moreover, U is neither left infinitely ∨-distributive (∧-distributive) nor
right infinitely ∨-distributive (∧-distributive).

Example 2.5. Let eL ∈ L,

UeL

sW (x, y) =

{
y if x ≥ eL,

0 otherwise,
UeL

sM (x, y) =

{
y if x ≤ eL,

1 otherwise,

UeL

sW
∗(x, y) =


1 if y = 1,

y if x ≥ eL, y 6= 1,

0 otherwise,
UeL

sM
∗(x, y) =


0 if y = 0,

y if x ≤ eL, y 6= 0,

1 otherwise,

where x and y are elements of L. Then UeL

sW and UeL

sM are, respectively, the smallest and
greatest elements of UeL

s (L); UeL

sW and UeL

sM
∗ are, respectively, the smallest and greatest

elements of UeL
s∨ (L); UeL

sW
∗ and UeL

sM are, respectively, the smallest and greatest elements
of UeL

s∧ (L).
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Example 2.6. Let eR ∈ L,

UeR

sW (x, y) =

{
x if y ≥ eR,

0 otherwise,
UeR

sM (x, y) =

{
x if y ≤ eR,

1 otherwise,

UeR

sW
∗(x, y) =


1 if x = 1,

x if y ≥ eR, x 6= 1,

0 otherwise,
UeR

sM
∗(x, y) =


0 if x = 0,

x if y ≤ eR, x 6= 0,

1 otherwise,

where x and y are elements of L. Then UeR

sW and UeR

sM are, respectively, the smallest and
greatest elements of UeR

s (L); UeR

sW and UeR

sM
∗ are, respectively, the smallest and greatest

elements of UeR
∨s (L); UeR

sW
∗ and UeR

sM are, respectively, the smallest and greatest elements
of UeR

∧s (L).

3. THE UPPER AND LOWER APPROXIMATION LEFT (RIGHT)
SEMI-UNINORMS OF A BINARY OPERATION

Constructing logic operators is an interesting work. Recently, Jenei and Montagna
[12, 13, 14] introduced several new types of constructions of left-continuous t-norms
and Wang [24] laid bare the formulas for calculating the smallest pseudo-t-norm that
is stronger than a binary operation. In this section, we continue the work in [24] and
give out the formulas for calculating the upper and lower approximation left (right)
semi-uninorms of a binary operation.

For any nonempty subfamily {Tj | j ∈ J} of LL×L, the least upper bound ∨j∈JTj

and the greatest lower bound ∧j∈JTj of Tj ’s, respectively, define by( ∨
j∈J

Tj

)
(x, y) =

∨
j∈J

Tj(x, y) and
( ∧

j∈J

Tj

)
(x, y) =

∧
j∈J

Tj(x, y) ∀x, y ∈ L.

It is easy to verify that (LL×L,≤,∨,∧) is a complete lattice. Moreover, we have the
following two theorems.

Theorem 3.1.

1. UeL
s (L) is a complete sublattice of LL×L with UeL

sW and UeL

sM as its minimal and
maximal elements, respectively.

2. UeR
s (L) is a complete sublattice of LL×L with UeR

sW and UeR

sM as its minimal and
maximal elements, respectively.

Theorem 3.2.

1. UeL
s∧ (L) is a complete sublattice of LL×L with UeL

sW
∗ and UeL

sM as its minimal and
maximal elements, respectively.
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2. UeR
∧s (L) is a complete sublattice of LL×L with UeR

sW
∗ and UeR

sM as its minimal and
maximal elements, respectively.

3. UeL
s∨ (L) is a complete sublattice of LL×L with UeL

sW and UeL

sM
∗ as its minimal and

maximal elements, respectively.

4. UeR
∨s (L) is a complete sublattice of LL×L with UeR

sW and UeR

sM
∗ as its minimal and

maximal elements, respectively.

P r o o f . We only prove that statement (1) holds.
Suppose that Uj ∈ UeL

s∧ (L) (j ∈ J) and J 6= ∅. Then it follows from Theorem 3.1
that ∧j∈JUj ∈ UeL

s (L). Moreover, we have( ∧
j∈J

Uj

)(
x,

∧
k∈K

yk

)
=

∧
j∈J

Uj

(
x,

∧
k∈K

yk

)
=

∧
j∈J

∧
k∈K

Uj(x, yk)

=
∧

k∈K

∧
j∈J

Uj(x, yk) =
∧

k∈K

( ∧
j∈J

Uj(x, yk)
)

=
∧

k∈K

(( ∧
j∈J

Uj

)
(x, yk)

)
,

where K is any index set, and x and yk (k ∈ K) are any elements of L. Hence,
∧j∈JUj ∈ UeL

s∧ (L). Noting that fact UeL

sM ∈ {U ∈ UeL
s∧ (L) | Uj ≤ U ∀j ∈ J}, let

U∗ = ∧{U ∈ UeL
s∧ (L) | Uj ≤ U ∀j ∈ J}, then U∗ ∈ UeL

s∧ (L) and U∗ = ∨j∈JUj . Thus,
UeL

s∧ (L) is a complete sublattice of LL×L with UeL

sM and UeL

sW
∗ as its maximal and minimal

elements, respectively. �

For a binary operation A on L, if there exists U ∈ UeL
s (L) such that A ≤ U , then

it follows from Theorem 3.1 that
∧
{U | A ≤ U,U ∈ UeL

s (L)} is the smallest left
semi-uninorm that is stronger than A on L, we call it the upper approximation left
semi-uninorm of A and written as [A)eL

s ; if there exists U ∈ UeL
s (L) such that U ≤ A,

then
∨
{U | U ≤ A,U ∈ UeL

s (L)} is the largest left semi-uninorm that is weaker than A
on L, we call it the lower approximation left semi-uninorm of A and written as (A]eL

s .

Similarly, we introduce the following symbols:

[A)eR
s : the upper approximation right semi-uninorm of A;

(A]eR
s : the lower approximation right semi-uninorm of A;

(A]eL
s∧: the right infinitely ∧-distributive lower approximation left semi-uninorm of A;

(A]eR
∧s: the left infinitely ∧-distributive lower approximation right semi-uninorm of A;

[A)eL
s∨: the right infinitely ∨-distributive upper approximation left semi-uninorm of A;

[A)eR
∨s: the left infinitely ∨-distributive upper approximation right semi-uninorm of A.

Now we consider how to construct the upper and lower approximation left (right)
semi-uninorms of a binary operation.
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Definition 3.3. Let A ∈ LL×L. Define the upper approximation Au and the lower
approximation Al of A as follows:

Au(x, y) =
∨
{A(u, v) | u ≤ x, v ≤ y}, Al(x, y) =

∧
{A(u, v) | u ≥ x, v ≥ y} ∀x, y ∈ L.

Theorem 3.4. Let A,B ∈ LL×L. Then the following statements hold:

1. Al ≤ A ≤ Au.

2. (A ∨B)u = Au ∨Bu and (A ∧B)l = Al ∧Bl.

3. Au and Al are non-decreasing in its each variable.

4. If A is non-decreasing in its each variable, then Au = Al = A.

P r o o f . Clearly, statements (1) and (2) hold.

3. We only prove that Al is non-decreasing in its first variable.
If x1 ≤ x2, then

{A(u, v) | u ≥ x1, v ≥ y} ⊇ {A(u, v) | u ≥ x2, v ≥ y}.

Thus Al(x1, y) ≤ Al(x2, y) for any y ∈ L by Definition 3.3, i. e., Al is non-decreasing in
its first variable.

4. If A is non-decreasing in its each variable, then

Al(x, y) =
∧
{A(u, v) | u ≥ x, v ≥ y} ≥

∧
{A(x, y) | u ≥ x, v ≥ y} = A(x, y) ∀x, y ∈ L

and hence Al ≥ A. Thus, it follows from statement (1) that Al = A.
Similarly, we can show that Au = A. �

As usual, the upper or lower approximation of a binary operation is neither a left
semi-uninorm nor a right semi-uninorm.

Example 3.5. Let

A(x, y) =

{
1
4y if x ≤ 1

2 ,

1 otherwise.

Then A ≤ U
( 1
2 )

L

sM and Au = A. Clearly, Au is not a left semi-uninorm. Let

U(x, y) =


1
4y if x < 1

2 ,

y if x = 1
2 ,

1 otherwise.

It is easy to see that U is the upper approximation left semi-uninorm with left neutral
element 1

2 of A.



Left and right semi-uninorms on a complete lattice 955

The following two theorems give out the formulas for calculating the upper and lower
approximation left (right) semi-uninorms of a binary operation.

Theorem 3.6. Let A ∈ LL×L and eL ∈ L.

1. If A ≤ UeL

sM , then [A)eL
s = UeL

sW ∨Au.

2. If UeL

sW ≤ A, then (A]eL
s = UeL

sM ∧Al.

3. If A ≤ UeL

sM
∗ and A is non-decreasing in its first variable and right infinitely ∨-

distributive, then [A)eL
s∨ = UeL

sW ∨A.

4. If UeL

sW
∗ ≤ A and A is non-decreasing in its first variable and right infinitely ∧-

distributive, then (A]eL
s∧ = UeL

sM ∧A.

P r o o f . We only prove the statements (1) and (3) hold.

1. Let U = UeL

sW ∨ Au. Clearly, U ≥ A and UeL

sW ≤ U ≤ UeL

sM . Thus, U(eL, x) = x
for all x ∈ L. By Theorem 3.4(3) and the monotonicity of UeL

sW , we see that U is non-
decreasing in its each variable. So, U ∈ UeL

s (L). If A ≤ U1 and U1 ∈ UeL
s (L), then

U1 = (U1)u ≥ Au and U1 ≥ UeL

sW ∨Au = U . Therefore, [A)eL
s = UeL

sW ∨Au.

3. Let U∗ = UeL

sW ∨ A. If A is non-decreasing in its first variable and right infinitely
∨-distributive, then A is non-decreasing in its each variable and so Au = A. Noting
that UeL

sW and A are all right infinitely ∨-distributive, we can see that U∗ is also right
infinitely ∨-distributive. By the proof of statement (1), we have that [A)eL

s∨ = UeL

sW ∨A.
�

In Theorem 3.6(3), A(x, 0) = 0 for any x ∈ L when A is right infinitely ∨-distributive.
Thus, A ≤ UeL

sM
∗ can be replaced by A ≤ UeL

sM .
Similarly, UeL

sW
∗ ≤ A can be replaced by UeL

sW ≤ A in Theorem 3.6(4).
Analogous to Theorem 3.6, we have the following theorem.

Theorem 3.7. Let A ∈ LL×L and eR ∈ L.

1. If A ≤ UeR

sM , then [A)eR
s = UeR

sW ∨Au.

2. If UeR

sW ≤ A, then (A]eR
s = UeR

sM ∧Al.

3. If A ≤ UeR

sM and A is non-decreasing in its second variable and left infinitely
∨-distributive, then [A)eR

∨s = UeR

sW ∨A.

4. If UeR

sW ≤ A and A is non-decreasing in its second variable and left infinitely
∧-distributive, then (A]eR

∧s = UeR

sM ∧A.

The following example shows that analogous to the above theorems may not hold for
calculating the right (left) infinitely ∧-distributive upper approximation left (right) semi-
uninorm and the right (left) infinitely ∨-distributive lower approximation left (right)
semi-uninorm of a binary operation.
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Example 3.8. Let L = {0, a, b, 1} be a lattice, where 0 < a < 1, 0 < b < 1, a ∨ b = 1
and a ∧ b = 0. Define two binary operations A and B on L as follows:

A 0 a b 1
0 0 0 0 0
a a 1 a 1
b 0 0 0 0
1 a 1 a 1

B 0 a b 1
0 0 b 0 b
a 1 1 1 1
b 0 b 0 b
1 1 1 1 1

Clearly, A ≤ U0L

sM , U1L

sW ≤ B, A is non-decreasing in its first variable and right in-

finitely ∧-distributive, and B is non-decreasing in its first variable and right infinitely
∨-distributive. Let U1 = U0L

sW

∗ ∨A and U2 = U1L

sM

∗ ∧B. Then

U1 0 a b 1
0 0 a b 1
a a 1 1 1
b 0 a b 1
1 a 1 1 1

U2 0 a b 1
0 0 0 0 b
a 0 a b 1
b 0 0 0 b
1 0 a b 1

It is easy to see that U1 is not right infinitely ∧-distributive and U2 is not right infinitely

∨-distributive. This shows that U1 is not the right infinitely ∧-distributive upper ap-
proximation left semi-uninorm of A and U2 is not the right infinitely ∨-distributive lower
approximation left semi-uninorm of B.

4. THE RELATIONS BETWEEN THE UPPER APPROXIMATION LEFT (RIGHT)
SEMI-UNINORMS OF A GIVEN BINARY OPERATION AND LOWER
APPROXIMATION LEFT (RIGHT) SEMI-UNINORMS OF ITS DUAL
OPERATION

In section 3, we give out the formulas for calculating the upper and lower approximation
left (right) semi-uninorms of a binary operation. In this section, we investigate the
relations between the upper approximation left (right) semi-uninorm of a given binary
operation and the lower approximation left (right) semi-uninorm of its dual operation.

We firstly review some basic concepts and properties which will be used in this section.

Definition 4.1. (Ma and Wu [16]) A mapping N : L → L is called a negation if

(N1) N(0) = 1 and N(1) = 0,

(N2) x ≤ y, x, y ∈ L ⇒ N(y) ≤ N(x).

A negation N is called strong if it is an involution, i. e., N(N(x)) = x for any x ∈ L.

Theorem 4.2. (Wang and Yu [23]) Let xj ∈ L (j ∈ J). If N is a strong negation on
L, then

N
( ∨

j∈J

xj

)
=

∧
j∈J

N(xj), N
( ∧

j∈J

xj

)
=

∨
j∈J

N(xj).
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Definition 4.3. (De Baets [1]) Consider a strong negation N on L. The N -dual oper-
ation of a binary operation A on L is the binary operation AN on L defined by

AN (x, y) = N−1
(
A(N(x), N(y))

)
∀x, y ∈ L.

Note that (AN )N−1 = (AN )N = A for any binary operation A on L.
The following theorem about N -dual is easily verified.

Theorem 4.4. Let A, B be two binary operations and N a strong negation on L. Then
the following statements hold:

1. (A ∧B)N = AN ∨BN and (A ∨B)N = AN ∧BN .

2. If A is left (right) infinitely ∨-distributive, then AN is left (right) infinitely ∧-
distributive.

3. If A is left (right) infinitely ∧-distributive, then AN is left (right) infinitely ∨-
distributive.

4. If A is increasing (decreasing) in its ith variable, then AN is increasing (decreasing)
in its ith variable (i = 1, 2).

5. The N -dual operation of a left (right) semi-uninorm with a left (right) neutral
element eL (eR) is a left (right) semi-uninorm with a left (right) neutral element
N(eL) (N(eR)).

6. (UeL

sW )N = U
N(eL)
sM , (UeL

sM )N = U
N(eL)
sW , (UeR

sW )N = U
N(eR)
sM and (UeR

sM )N = U
N(eR)
sW .

Theorem 4.5. If A is a binary operation and N a strong negation on L, then
(AN )u = (Al)N and (AN )l = (Au)N .

P r o o f . By Definition 4.3 and Theorem 4.2, we can see that

(AN )u(x, y) =
∨
{AN (u, v) | u ≤ x, v ≤ y}

=
∨
{N−1(A(N(u), N(v))) | u ≤ x, v ≤ y}

= N−1
( ∧

{A(N(u), N(v)) | u ≤ x, v ≤ y}
)

= N−1
( ∧

{A(u
′
, v

′
) | u

′
≥ N(x), v

′
≥ N(y)}

)
= N−1

(
Al(N(x), N(y))

)
= (Al)N (x, y) ∀x, y ∈ L.

Moreover, we have that (Au)N =
(
((AN )N )u

)
N

=
(
((AN )l)N

)
N

= (AN )l. �
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Below, we investigate the relations between the upper approximation left (right) semi-
uninorms of a given binary operation and lower approximation left (right) semi-uninorms
of its dual operation.

Theorem 4.6. Let A, N and eL be a binary operation, strong negation and fixed
element on L, respectively. Then the following statements hold:

1. If A ≤ UeL

sM , then [A)eL
s = ((AN ]N(eL)

s )N .

2. If UeL

sW ≤ A, then (A]eL
s = ([AN )N(eL)

s )N .

3. If A ≤ UeL

sM and A is non-decreasing in its first variable and right infinitely ∨-
distributive, then [A)eL

s∨ = ((AN ]N(eL)
s∧ )N .

4. If UeL

sW ≤ A and A is non-decreasing in its first variable and right infinitely ∧-
distributive, then (A]eL

s∧ = ([AN )N(eL)
s∨ )N .

P r o o f . We only prove the statements (1) and (3) hold.

1. If A ≤ UeL

sM , then [A)eL
s = UeL

sW ∨Au by Theorem 3.6 and AN ≥ (UeL

sM )N = U
N(eL)
sW

by Theorem 4.4. Thus, (AN ]N(eL)
s = U

N(eL)
sM ∧ (AN )l by Theorem 3.6. Moreover, by

virtue of Theorems 3.6, 4.4 and 4.5, we see that(
(AN ]N(eL)

s

)
N

=
(
U

N(eL)
sM ∧ (AN )l

)
N

=
(
U

N(eL)
sM ∧ (Au)N

)
N

= (UN(eL)
sM )N ∨

(
(Au)N

)
N

= UeL

sW ∨Au = [A)eL
s .

3. If A ≤ UeL

sM and A is non-decreasing in its first variable and right infinitely
∨-distributive, then Au = A by Theorem 3.4(4), [A)eL

s∨ = UeL

sW ∨ A by Theorem 3.6,
AN ≥ (UeL

sM )N = U
N(eL)
sW and AN is is non-decreasing in its first variable and right

infinitely ∧-distributive by Theorem 4.4. Thus, (AN ]N(eL)
s∧ = U

N(eL)
sM ∧AN by Theorem

3.6. Moreover, we see that [A)eL
s∨ = ((AN ]N(eL)

s∧ )N by the proof of statement (1). �

Analogous to Theorem 4.6, we have the following theorem.

Theorem 4.7. Let A, N and eR be a binary operation, strong negation and fixed
element on L, respectively. Then the following statements hold:

1. If A ≤ UeR

sM , then [A)eR
s = ((AN ]N(eR)

s )N .

2. If UeR

sW ≤ A, then (A]eR
s = ([AN )N(eR)

s )N .

3. If A ≤ UeR

sM and A is non-decreasing in its second variable and left infinitely
∨-distributive, then [A)eR

∨s = ((AN ]N(eR)
∧s )N .

4. If UeR

sW ≤ A and A is non-decreasing in its second variable and left infinitely
∧-distributive, then (A]eR

∧s = ([AN )N(eR)
∨s )N .
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5. CONCLUSIONS AND FUTURE WORKS

Uninorms are important generalizations of triangular norms and conorms, with a neu-
tral element lying anywhere in the unit interval. Noting that the associative binary
operators are often used to generate n-ary aggregation operators and the commutativity
is not desired for these aggregation operators in a lot of cases, Mas et al. [17, 18] intro-
duced the concepts of left and right uninorms on [0, 1] by eliminating the commutativity
from the axioms of uninorm, Wang and Fang [25, 26] studied the residual operations
and the residual coimplications of left (right) uninorms on a complete lattice, and Liu
[15] discussed the concept of semi-uninorms on a complete lattice by removing the as-
sociativity and commutativity from the axioms of uninorms. In this paper, motivated
by these generalizations, we introduce the concepts of left and right semi-uninorms on a
complete lattice, lay bare the formulas for calculating the upper and lower approxima-
tion left (right) semi-uninorms of a binary operation, and discuss the relations between
the upper approximation left (right) semi-uninorms of a given binary operation and the
lower approximation left (right) semi-uninorms of its dual operation.

In a forthcoming paper, we will investigate the relationships among left (right) semi-
uninorms, implications and coimplications on a complete lattice.
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[21] F. Suárez Garćıa and P. Gil Álvarez: Two families of fuzzy intergrals. Fuzzy Sets and
Systems 18 (1986), 67–81.

[22] A. K. Tsadiras and K. G. Margaritis: the MYCIN certainty factor handling function as
uninorm operator and its use as a threshold function in artificial neurons. Fuzzy Sets and
Systems 93 (1998), 263–274.

[23] Z. D. Wang and Y. D. Yu: Pseudo-t-norms and implication operators on a complete
Brouwerian lattice. Fuzzy Sets and Systems 132 (2002), 113–124.

[24] Z. D. Wang: Generating pseudo-t-norms and implication operators. Fuzzy Sets and
Systems 157 (2006), 398–410.

[25] Z. D. Wang and J. X. Fang: Residual operators of left and right uninorms on a complete
lattice. Fuzzy Sets and Systems 160 (2009), 22–31.

[26] Z. D. Wang and J. X. Fang: Residual coimplicators of left and right uninorms on a
complete lattice. Fuzzy Sets and Systems 160 (2009), 2086–2096.

[27] R. R. Yager: Uninorms in fuzzy system modeling. Fuzzy Sets and Systems 122 (2001),
167–175.

[28] R. R. Yager: Defending against strategic manipulation in uninorm-based multi-agent
decision making. European J. Oper. Res. 141 (2002), 217–232.

[29] R. R. Yager and V. Kreinovich: Universal approximation theorem for uninorm-based
fuzzy systems modeling. Fuzzy Sets and Systems 140 (2003), 331–339.



Left and right semi-uninorms on a complete lattice 961

[30] R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets and Systems
80 (1996), 111–120.

Yong Su, School of Mathematical Sciences, Yancheng Teachers University, Jiangsu 224002

and School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116. P.R.

China.

e-mail: yongsu1111@163.com

Zhudeng Wang, Corresponding author. School of Mathematical Sciences, Yancheng Teachers

University, Jiangsu 224002. P.R. China.

e-mail: zhudengwang2004@163.com

Keming Tang, College of Information Science and Technology, Yancheng Teachers University,

Yancheng 224002. P.R. China.

e-mail: tkmchina@126.com


	Introduction
	Left and right semi-uninorms
	The upper and lower approximation left (right)semi-uninorms of a binary operation
	The relations between the upper approximation left (right)semi-uninorms of a given binary operation and lowerapproximation left (right) semi-uninorms of its dualoperation
	Conclusions and future works

