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DEGENERATE HOPF BIFURCATIONS
AND THE FORMATION MECHANISM OF CHAOS
IN THE QI 3-D FOUR-WING CHAOTIC SYSTEM

Hongtao Liang, Yanxia Tang, Li Li, Zhouchao Wei and Zhen Wang

In order to further understand a complex 3-D dynamical system proposed by Qi et al,
showing four-wing chaotic attractors with very complicated topological structures over a large
range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result
of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis
and simulations demonstrate the rich dynamics of the system.
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1. INTRODUCTION

Chaos theory is a field of study in applied mathematics, and it has applications in several
disciplines including physics, economics, biology and philosophy. The now-classic Lorenz
system [3] has motivated a great deal of interest and investigation of 3-D autonomous
chaotic systems with simple nonlinearities (see, for instance, those found in [16-18]). In
the continuous case, however, intentionally constructing a new chaotic system is still a
challenging task.

Many 3-D chaotic systems have been found in recent years. In 2004, Lü, Chen and
Cheng discussed the important problems of classification and normal form of three-
dimensional quadratic autonomous chaotic systems [1]. It is noted that some classical
3-D autonomous chaotic systems have three particular fixed points: one unstable node
and two unstable saddle-foci (for example, Lorenz system [3], Chen system [1], Lü system
[4], the conjugate Lorenz-type system [5] et. al.). The other 3-D chaotic systems, such
as the original Rölsser system [12], DLS [20], Burke–Shaw system [13], have two unstable
saddle-foci. Yang and Chen found another 3-D chaotic system with three fixed points:
one saddle and two stable node-foci [27]. In 2010, Yang, Wei and Chen [28] introduced
and analyzed a new 3-D chaotic system with six terms including only two quadratic
terms in a form very similar to the Lorenz, Chen, Lü and Yang-Chen systems, but it has
only two fixed points: two stable node-foci. Some questions about periodic, homoclinic
and heteroclinic orbits and classification of chaos, are related to the dynamics of some
dynamical systems. Recently, Wei and Yang [28] proposed a new 3-D chaotic system with
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six terms including only one exponential quadratic nonlinear term, which can generate
a double-scroll chaotic attractor when all of equilibria are stable. Many theoretical
analysis and numerical simulation about this kinds of systems are showed in [21–23].

On the other hand, the topic on generating multi-wing chaotic attractors from a 3-
D smooth autonomous quadratic system deserves further detailed investigation. Qi et
al. proposed a new 3-D quadratic autonomous system [11] ranging from one or more
stationary points to periodic motion and even four-wing chaotic attractor with very
complicated topological structures over a large range of parameters. The chaotic system
is described by  ẋ = a(y − x) + eyz

ẏ = cx + dy − xz
ż = −bz + xy,

(1)

where a, b, d are all real positive constant parameters and c, e are real constant pa-
rameters. The four-wing chaotic attractor and its projection are shown in Figure 1,
respectively.
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Fig. 1. Parameter values (a, b, c, d, e) = (16, 102.8,−16.6, 20.52, 0.5)

and initial values (0.001, 0.001, 0.001): (a) Four-wing chaotic attractor

of system (1) in z-x-y space; (b) Four-wing chaotic attractor of system

(1) in y-x-z space; (c) Projection of (a) into y − z plane; (d)

Projection of (a) into x− z plane.
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As far as we know, the simplest way of the regime about the existence of a periodic
orbit is through the Hopf bifurcations. The analysis of the codimension one Hopf bifur-
cation about equilibrium O = (0, 0, 0) using the center manifold theorem are presented
in [18]. In this paper, we study the complicated dynamics as degenerate Hopf bifurca-
tions in the Qi 3-D four-wing system. It exhibits the result of a period-doubling cascade
to chaos from a Hopf bifurcation point. The influence of system parameters on other
bifurcations are also investigated. The theoretical analysis and simulations demonstrate
the rich dynamics of the system. By using the calculation of the Lyapunov coefficients
associated to the Hopf bifurcations, we study all possible bifurcations (generic and de-
generate ones) which occur at the equilibrium O of system (1). In this way the analysis
presented in [19] are extended. More precisely, for the equilibrium O, the Hopf surface
is obtained in the space of parameters and the first Lyapunov coefficient l1 is calculated.
It is shown that this coefficient vanishes along a curve on the Hopf surface, giving rise
to codimension two bifurcations, and the second Lyapunov coefficient l2 is calculated.
In particular, we obtain the result of a period-doubling cascade from a Hopf bifurcation
point.

The paper is organized as follows. In Section 2, we present the outline of the Hopf
bifurcation methods about codimension one, two and three Hopf bifurcations, in particu-
lar, how to calculate the Lyapunov coefficients related to the stability of the equilibrium
O = (0, 0, 0). In Section 3, we obtain the main results of this paper, described in Theo-
rems 3.1-3.3. In Section 4, numerical simulations demonstrate the rich dynamics of the
system. Finally, in Section 5, we make some concluding remarks.

2. LINEAR ANALYSIS AND AN OUTLINE OF THE HOPF BIFURCATION
METHODS

System (1) has the equilibrium O = (0, 0, 0), which exists for any parameter values. The
Jacobian matrix of system (1) at the equilibrium O is

J(O) =

 −a a 0
c d 0
0 0 −b

 ,

and its corresponding characteristic equation

(λ + b)[λ2 + (a− d)λ− a(c + d)] = 0. (2)

According to the Routh–Hurwitz criterion and a, b, d are all real positive parameters, the
characteristic polynomial (2) has three roots with negative real parts under the following
condition:

d > a > 0, c < −d. (3)

Suppose that the characteristic equation of system (1) has a pair of pure imaginary roots
±iω (ω ∈ R+). It is easy to show that when d = d0 = a, (2) yields

λ1 = −b < 0, λ2,3 = ±
√
−a(a + c) i,

where a + c < 0. For convenience, we mark k = −(a + c). Summarizing, we have the
following proposition.
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Proposition 2.1. Define

T = {(a, b, d, e, k)|a > 0, b > 0, d = d0 = a, e ∈ R, k > 0},

then Jacobian matrix of system (2) at O(0, 0, 0) has one negative real eigenvalue −b and
a pair of purely imaginary eigenvalues ±

√
ak i.

Taking d as the Hopf bifurcation parameter, the transversally condition

Re(λ′(d0))|λ=
√

aki =
1
2

> 0

is also satisfied. Therefore, we have the following theorem.

Theorem 2.1. (Existence of Hopf bifurcation) If (a, b, d, e, k) ∈ T and d varies and
passes through the critical value d0 = a, system (1) undergoes a Hopf bifurcation at the
equilibrium O(0, 0, 0).

The rest of this section is showing the projection method described in [2,14,19] for
the calculation of the first, second and third Lyapunov coefficients associated to the
Hopf bifurcations, denoted by l1, l2, and l3 respectively. The method has been applied
in some systems [10,14,15]. Consider the differential equation

Ẋ = f(X, µ), (4)

where X ∈ R3 and µ ∈ R5 are respectively vectors representing phase variables and
control parameters. Assume that f is a class of C∞ in R3 × R5. Suppose that (4) has
an equilibrium point X = X0 at µ = µ0, and denoting the variable X −X0 also by X,
write

F (X) = f(X, µ0), (5)

as

F (X) = AX +
1
2
B(X, X) +

1
6
C(X, X, X) +

1
24

D(X, X, X,X) (6)

+
1

120
E(X, X, X,X,X) +

1
720

K(X, X, X,X,X,X) (7)

+
1

5040
L(X, X, X,X,X,X,X) + O(‖ X ‖8), (8)

where A = fx(0, µ0) and, for i = 1, 2, 3,

B(X, Y ) =
3∑

j, k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣
ξ=0

XjYk, C(X, Y, Z) =
3∑

j, k, l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣
ξ=0

XjYkZl,
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and so on for Di, Ei,Ki and Li. Suppose that A has a pair of complex eigenvalues on the
imaginary axis: λ2, 3 = ±iw0 (w0 > 0), and these eigenvalues are the only eigenvalues
with Reλ = 0. Let T c be the generalized eigenspace of A corresponding to λ2, 3. Let
p, q ∈ C3 be vectors such that

Aq = iw0q, AT p = −iw0p, 〈p, q〉 = 1, (9)

where AT is the transposed of the matrix A. Any vector y ∈ T c can be represented as
y = wq + w̄q̄, where w = 〈q, y〉 ∈ C. The two-dimensional center manifold associated
to the eigenvalues λ2, 3 can be parameterized by w and w̄, by means of an immersion of
the form X = H(w, w̄), where H : C2 → R3 has a Taylor expansion of the form

H(w, w̄) = wq + w̄q̄ +
∑

2≤j+k≤5

1
j!k!

hjkwjw̄k + O(|w|6),

with hjk ∈ C3 and hjk = h̄kj . Substituting this expression into (5) we obtain the
following differential equation

Hww′ + Hww̄′ = F (H(w, w̄)),

where F is give by (5). The complex vectors hij are obtained solving the system of
linear equations defined by the coefficients of (5), taking into account the coefficients of
F , so that system (5), on the chart w for a central manifold, writes as follows

ẇ = iw0w +
1
2
G21w|w|2 +

1
12

G32w|w|4 + O(|w|6),

where Gij ∈ C. The first Lyapunov coefficient can be written as

l1 =
1
2
Re G21, (10)

where G21 = 〈p, C(q, q, q̄) + B(q̄, h20) + 2B(q, h11)〉. Defining H32 as

H32 = 6B(h11, h21) + B(h̄20, h30) + 3B(h̄21, h20) + 3B(q, h22)

+2B(q̄, h31) + 6C(q, h11, h11) + 3C(q, h̄20, h20) + 3C(q, q, h̄21)

+6C(q, q̄, h21) + 6C(q̄, h20, h11) + C(q̄, q̄, h30)

+D(q, q, q, h̄20) + 6D(q, q, q̄, h̄11) + 3D(q, q̄, q̄, h20)

+E(q, q, q, q̄, q̄)− 6G21h21 − 3Ḡ21h21

and G32 = 〈p,H32〉, the second Lyapunov coefficient l2 is given by

l2 =
1
12

Re G32. (11)

The third Lyapunov coefficient is defined by

l3 =
1

144
Re G43, (12)

where G43 = 〈p,H43〉. The expression for H43 is too large to be put in print and can be
found in [19].
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3. HOPF BIFURCATION OF SYSTEM (1)

In this section, we study the stability of O under the conditions d = d0. Then, using the
notation of the previous section, the multilinear symmetric functions can be written as

B(X, Y ) = (eX2Y3 + eX3Y2,−X1Y3 −X3Y1, X1Y2 + X2Y1), (13)
C(X, Y, Z) = (0, 0, 0). (14)

From (9), one has

q =
( √

a
√

a +
√

ki
, 1, 0

)
, p =

(
− a + k

2
√

ak
i,

1
2

(
1 +

√
a

k

)
, 0

)

The complex vectors h11 and h20 are

h11 =
(

0, 0,
2a

ab + k

)
, h20 =

(
0, 0,

2
√

a

(
√

a +
√

ki)(b + 2
√

aki)

)

The complex number G21 defined in (4) has the form

G21 =
u1(a, b, e, k)

(a + k)(b2 + 4ak)
+

√
au2(a, b, e, k)√

kb(a + k)(b2 + 4ak)
i,

where

u1(a, b, e, k) = 2a2 − ab + 2a2e + abe + 2aek + bek,

u2(a, b, e, k) = (3 + e)ab2 + (8a2 + 2ab)k + (8a2 − 2ab + 3b2)ek
+(8a− 2b)ek2.

Defining b0 = − 2a(ae+ek+a)
ae+ek−a and the following subsets of the Hopf surface T

U1 =
{

(a, b, d, e, k)|a > 0, b > 0, d = d0, e ≥
a

k + a
, k > 0

}
,

U2 =
{

(a, b, d, e, k)|a > 0, 0 < b < b0, d = d0, |e| <
a

k + a
, k > 0

}
,

S1 =
{

(a, b, d, e, k)|a > 0, b > b0, d = d0, |e| <
a

k + a
, k > 0

}
,

S2 =
{

(a, b, d, e, k)|a > 0, b > 0, d = d0, e ≤ − a

k + a
, k > 0

}
,

we have the following theorem.
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Theorem 3.1. Consider the five-parameter family of differential equations (1). The
first Lyapunov coefficient associated with the equilibrium O is given by

l1 =
2a2 − ab + 2a2e + abe + 2aek + bek

2(a + k)(b2 + 4ak)
. (15)

If

h(a, b, e, k) = 2a2 − ab + 2a2e + abe + 2aek + bek

is different from zero then the three-parameter family of differential equations (1) has a
transversal Hopf point at O for d = d0 = a and k = −(a + c) > 0. More specifically, if
(a, b, d, e, k) ∈ U1∪U2 then the Hopf point at O is unstable (weak repelling focus) and for
each d < d0, but close to d0, there exists an unstable limit cycle near the asymptotically
stable equilibrium O; if (a, b, d, e, k) ∈ S1∪S2 then the Hopf point at O is asymptotically
stable (weak attractor focus) and for each d > d0, but close to d0, there exists a stable
limit cycle near the unstable equilibrium O.

The sign of the first Lyapunov coefficient is determined by the sign of the numerator
of (9) since the denominator is positive. Observe that the first Lyapunov coefficient
vanishes on the straight line

D =
{

(a, b, d, e, k)|a > 0, b = b0, d = d0,−
a

k + a
< e <

a

k + a
, k > 0

}
.

In the following theorem we study the sign of the second Lyapunov coefficient on the
straight line D where the first coefficient vanishes.

Theorem 3.2. Consider the system (1). The second Lyapunov coefficient at O for
parameter values in D is given by

l2|D =
(ae + ek − a)2

16ak(a + k)2
.

As e 6= a
k+a then system (1) has a transversal Hopf point of codimension 2 at O for

parameters in D. Moreover, the Hopf point at O is unstable since l2 > 0. There are
two limit cycles, one stable and the other unstable, near the equilibrium O for suitable
values of the parameters. The bifurcation diagram at typical points P (on the straight
line D) is illustrated in Figure 2.

P r o o f . As the function B(X, Y ) and C(X, Y, Z) in (14), the second Lyapunov coeffi-
cient can be obtained for the parameters on the straight line D. One has

G21 = −3
√

a(ek + ea− a)
2
√

kb(a + k)
i,
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Fig. 2. Bifurcation diagrams of system (1) at typical points P on D.

The curves T correspond to the fold limit cycle bifurcations.

h21 =
(

(ek + ea− a)(3a2(1 + e)2 + 2ae(3e− 1)k + 3e2k2)
4
√

ak(a + k)(
√

a +
√

ki)(a + ae− ek − 2
√

akei)(ek + ea + a)
,

(ek + ea− a)(3a2(1 + e)2 + 2ae(3e− 1)k + 3e2k2)
4ak(

√
a +

√
ki)2(a + ae− ek − 2

√
akei)(ek + ea + a)

, 0
)

,

h30 =
(
− 3(ek + ea− a)(a + ae + 3ek − 2e

√
aki)

8
√

ak(
√

a +
√

ki)3(a + ae− ek − 2e
√

aki)
,

− 3(ek + ea− a)(a3/2(1 + e) +
√

aek + a(3 + e)
√

k + iek3/2)
8ak(

√
a +

√
ki)3(a + ae− ek − 2

√
akei)

, 0
)

,

h31 =
(

0, 0,
3(ek + ea− a)(5a3/2(1 + e)− 3

√
aek + iek3/2 + ia(1 + 9e)

√
k)

4k(
√

a +
√

ki)3(ek + ea + a)(a− i
√

ek)

)
,

h22 =
(

0, 0,− (ek + ea− a)2(3a2(1 + e)2 + 2ae(3e− 1)k + 3e2k2))
ak(1 + k)2(ek + ea + a)(a2(1 + e)2 + 2a(e− 1)ek + e2k2)

)
,

G32 =
3(ek + ea− a)2

4ak(a + k)2
+

3g1(a, e, k)
g2(a, e, k)

i,
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where

g1(a, e, k) = a6(1 + e)3[−41 + e2(41− 104k) + a2e4k4(−87 + 246e− 64ke

− 615e2 + 120e2k) + 20a7(−1 + e)(1 + e)5 − 41e6k6

+ 2ae5k5(41− 123e + 10ke) + e(−23 + 17k)]

+ 2a5e(1 + e)k[41− 34ek − 38e3k + e2(82 + 34k) + 3e4(−41 + 50k)]

+ a4e2k2[−87 + 92e− 4e3(41 + 16k) + 2e2(59 + 24k)

+ 5e4(−123 + 80k)] + 4a3e3k3[23 + e2(41− 44k) + 5e3(−41 + 15k)

+ e(41 + 64k) + e3(−41 + 120k)],

g2(a, e, k) = 16a3/2k3/2(a + k)2(a + ae + ek)2(a2(1 + e)2 + 2ae(e− 1)k + e2k2).

By the above theorem and calculation, one has

l1 =
1
2
ReG21 = 0, l2|D =

1
12

ReG32 =
(ek + ea− a)2

16ak(a + k)2
> 0.

Therefore, the theorem 3.2 is proved. �

The largest number of small periodic orbits which can be created via Hopf bifurcation
is determined by its codimension, which is directly related to the Lyapunov coefficients.
Thus, the codimension of a Hopf point plays a key role in determining the number of
small periodic orbits of the system.

4. NUMERICAL SIMULATIONS

In this section we present some numerical simulations of system (1) for several values
of the parameters. The main purpose is to illustrate the creation of stable limit cycles
through the Hopf bifurcations at the equilibrium O, proved to occur in the previous
sections, and demonstrate the existence of the four-wing chaotic attractor.

For a = 16, c = −16.6 (i. e. k=0.6), b = 102.8, e = 0.5, system (1) has three
equilibria and the origin O = (0, 0, 0) as its equilibrium. Note that for these parameter
values, we have the bifurcation value d0 = a = 16 and (a, b, d, e, k) ∈ S1. According
to Theorem 3.1, the system (1) undergoes a Hopf bifurcation when the parameter d
crosses the critical value d = d0, and a stable periodic orbit emerges from O with
d > a in the neighborhood d = a. Choosing initial values (0.001, 0.001, 0.001) near
the equilibrium O, we take d = d0 + 0.4 in Figure 3(a), a stable periodic orbit exists
near the unstable equilibrium O. Furthermore, we take d = d0 + 0.98 in Figure 3(b),
d = d0 +1.32 in Figure 3(c) and d = d0 +4.52 in Figure 3(d). To better characterize the
dynamic behavior of the system, we give the Poincaré mappings of the system about
these parameters values (Figures 4(a-d)). It shows that when the parameter d moves
away from the critical value d = d0, a cascade of period doubling bifurcations occurs
from the limit cycles that arose in the Hopf bifurcation. Finally, a four-wing chaotic
attractor is generated.

In the limit of this period doubling bifurcations, after this, these two attractors merge
into an strange attractor (see Figure 3(c)). This is one of the mechanisms through which
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Fig. 3. Orbits of system (1) with parameter values

(a, b, c, e) = (16, 102.8,−16.6, 0.5), starting initial values

(0.001, 0.001, 0.001): (a) d = 16 + 0.4; (b) d = 16 + 0.98;

(c) d = 16 + 1.32; (d) d = 16 + 4.52.

system (1) enters into chaotic regimes. Observe that it begins with the creation of the
limit cycles in the Hopf bifurcations which take place at the points O for the critical
parameter value d = d0. It is an interesting and a tough task to determinate of the
basins of attraction of strange attractor shown in Figure 3.

5. CONCLUSION

In this paper, we analyze the Lyapunov stability of the equilibrium O of system (1).
Through the analysis we obtain the surfaces for which the system presents Hopf bifur-
cations at the equilibrium. Then we make an extension of the analysis to the degener-
ate cases, happening in the locus on the Hopf surfaces where the Lyapunov coefficient
vanishs. The second Lyapunov coefficient makes possible the determination of the Lya-
punov stability. Moreover, numerical simulations were performed for several values of
the parameters, which illustrate and corroborate some of the analytical results stated.
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Fig. 4. Poincaré mapping on x = 0 of the solutions of system (1)

with parameter values (a, b, c, e) = (16, 102.8,−16.6, 0.5), starting

initial values (0.001, 0.001, 0.001): (a) d = 16 + 0.4; (b)

d = 16 + 0.98; (c) d = 16 + 1.32; (d) d = 16 + 4.52.

Cascade of period doubling bifurcations and the existence of four-wing attractors are in
some sense related to the Hopf bifurcations which occur at the equilibrium O.

In future works, we will use the proposed analysis method to investigate some complex
chaotic systems, such as the typical multi-scroll chaotic systems by some effective design
methods using piecewise-linear functions, cellular neural networks, nonlinear modulating
functions, circuit component design, switching manifolds, etc. [6,7,29]. It is expected
that more detailed theory analysis will be provided in a forthcoming paper.
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