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MEMORYLESS SOLUTION TO THE OPTIMAL CONTROL
PROBLEM FOR LINEAR SYSTEMS
WITH DELAYED INPUT

Francesco Carravetta, Pasquale Palumbo and Pierdomenico Pepe

This note investigates the optimal control problem for a time-invariant linear systems with
an arbitrary constant time-delay in in the input channel. A state feedback is provided for the
infinite horizon case with a quadratic cost function. The solution is memoryless, except at an
initial time interval of measure equal to the time-delay. If the initial input is set equal to zero,
then the optimal feedback control law is memoryless from the beginning. Stability results are
established for the closed loop system, in the scalar case.
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1. INTRODUCTION

The optimal control problem for linear systems with delayed input is a challenging
research topic which has received much attention in the literature in both the discrete
and the continuous time cases. A time-delay in the input is frequently encountered in
many engineering frameworks, such as network control systems and process control, for
instance, due to communication of the input signals (see, e. g. [8, 9, 30]). The reader
can refer to the recent book [20] for many problems and solutions concerning the control
of systems with delay in the input.

For the optimal control problem in the discrete time case, the reader can refer to the
pioneering works [10, 29, 32] or to the more recent one [33], where the optimal control
problem is set in the general framework of multiple input, multiple time-varying delays.

As far as the continuous time case is concerned, the optimal control problem of linear
time-invariant systems with input delays has been treated by [11, 15, 22, 27]. In these
papers, the system is rewritten on a suitable Banach or Hilbert space and the solution
to the optimal control problem is provided by means of operators on infinite dimensional
spaces. Thus, in general, this solution is not directly implementable. Approximation
methods are then developed in order to obtain a suboptimal solution (see, for instance,
[16, 17] and references therein).

A finite dimensional solution to the finite horizon optimal control of systems with
input delays can be found in [1, 2, 3, 4]. Time-varying systems with multiple inputs
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and multiple time-varying delays are dealt with. The solution is found by means of a
suitable Riccati differential equation (see 4.3, 4.4, p. 132, in [1]).

In [33] the finite horizon optimal control of time-varying linear systems with multiple
inputs (each channel with a constant time delay), has been treated. The optimal control
input is given as the sum of a feedback of the state (euclidean) variable and of an integral
in the delay interval of the control input itself (see Theorem 5 in [33]). In [23] the H2-
optimal control of time-invariant linear systems with multiple constant input/output
delays is studied. In [19] the same problem is investigated in an H∞ control setting.
In [31] it is shown that a suitable state feedback control which involves the integral
of the past control law solves the infinite horizon optimal control problem for linear
time-invariant systems with single input time-delay.

As well known, the implementation of control laws involving distributed delays is not
an easy task and can arise instability problems (see [24] and references therein). To this
aim, a memoryless, asymptotically stabilizing, predictive control law is found in [34], for
linear systems, with eigenvalues in the closed left half plane, with single, time-varying,
delay in the input channel.

To our knowledge, an exact (i. e. not approximated), memoryless solution to the
infinite horizon optimal control problem, for linear time-invariant systems with input
delay, is not yet available in the literature.

In this paper we provide the finite dimensional, implementable, solution of the in-
finite horizon optimal control problem for linear time-invariant systems with a single,
arbitrarily large, time-delay in the input channel. The solution is memoryless, thus the
easiest possible as far as implementable problems are concerned.

A preliminary version of this paper has been published in [7].

2. PROBLEM SETTING

Let us consider the following linear time-invariant system

ẋ(t) = Ax(t) +Bu(t− h), t ≥ 0,
x(0) = x0,

u(θ) = u0(θ), θ ∈ [−h, 0), (1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rp is the delayed control input, h is
a positive constant and u0 ∈ C([−h, 0); Rp) (the space of the continuous and bounded
functions mapping [−h, 0) into Rn). We assume that the pair (A,B) is stabilizable.

The optimal control problem here investigated is that of minimizing the following
infinite horizon cost functional

J =
∫ +∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt, (2)

where Q ∈ Rn×n is a symmetric nonnegative definite matrix, R ∈ Rp×p is a symmetric
positive definite matrix. The problem is to find the optimal control u(t), t ∈ [0,+∞),
such to minimize the functional J . In the next section we will provide the solution, as
a memoryless state feedback.
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Remark 2.1. Notice that, since x(t), t ∈ [0, h], depends only on the given initial con-
ditions (i. e. the initial input u0 and the initial state x0), the problem of minimizing the
functional (2) is equivalent to the problem of minimizing the functional∫ +∞

h

(
xT (t)Qx(t) + uT (t− h)Ru(t− h)

)
dt. (3)

3. MEMORYLESS STATE FEEDBACK SOLUTION

Theorem 3.1. The solution to the optimal control problem defined in Section 2 is given
by

u(t) =

{
−R−1BTPe(A−BR−1BT P )t

(
eA(h−t)x(t) +m(t)

)
, t ∈ [0, h),

−R−1BTPe(A−BR−1BT P )hx(t), t ∈ [h,+∞),

where m(t) =
∫ h

t
eA(h−τ)Bu0(τ − h) dτ , t ∈ [0, h), and P ∈ Rn×n is the solution to the

Algebraic Riccati Equation

ATP + PA− PBR−1BTP +Q = 0. (4)

Moreover, setting

x̃ = eAhx0 +
∫ h

0

eA(h−τ)Bu0(τ − h) dτ,

the optimal value of the functional J is equal to

x̃TPx̃+
∫ h

0

(
eAtx0 +

∫ t

0

eA(t−τ)Bu0(τ − h) dτ
)T

Q

·
(
eAtx0 +

∫ t

0

eA(t−τ)Bu0(τ − h) dτ
)

dt. (5)

P r o o f . As a preliminary step of the proof, notice that the control law designed in
(4) is well posed, since the stabilizability of the pair (A,B) ensures the existence of
the symmetric, positive semidefinite solution P to the Riccati equation (4). Moreover,
because of linearity, the closed loop system (1), (4) admits a unique solution defined in
the whole positive real set R+.

The Theorem is proven in the following two steps. First, the following Claim is proven
(Step 1), providing the state evolution x(t) of system (1), when the feedback control law
(4) is applied:

Claim: x(t) = e(A−BR−1BT P )(t−h)x(h), t ≥ h, (6)

where

x(h) = eAhx0 +
∫ h

0

eA(h−τ)Bu0(τ − h) dτ = x̃. (7)



Memoryless solution to the optimal control of linear systems with delayed input 571

Then (Step 2), we exploit Claim (6) to prove that the control law in (4) is the optimal
solution to the control problem, and that the optimal value of the functional J is given
by (5).

Step 1. Claim (6) is proven by induction, starting to show that it is true for [h, 2h].
Indeed, let t ∈ [h, 2h]. We have, by (1) and (4):

x(t) = eA(t−h)x(h) +
∫ t

h

eA(t−τ)Bu(τ − h) dτ

= eA(t−h)x(h)−
∫ t

h

eA(t−τ)BR−1BTPe(A−BR−1BT P )(τ−h)
(
eA(2h−τ)x(τ − h)

+
∫ h

τ−h

eA(h−θ)Bu0(θ − h) dθ

)
dτ. (8)

Since, for τ ∈ [h, t] ⊆ [h, 2h],

x(τ − h) = eA(τ−h)x0 +
∫ τ−h

0

eA(τ−h−θ)Bu0(θ − h) dθ, (9)

we obtain, from (8), (9),

x(t) = eA(t−h)

(
eAhx0 +

∫ h

0

eA(h−τ)Bu0(τ − h) dτ

)

−
∫ t

h

eA(t−τ)BR−1BTPe(A−BR−1BT P )(τ−h)

·

(
eAhx0 +

∫ τ−h

0

eA(h−θ)Bu0(θ − h) dθ +
∫ h

τ−h

eA(h−θ)Bu0(θ − h) dθ

)
dτ.(10)

The Claim (6) holds true, for t ∈ [h, 2h], provided that the right-hand side of (10) is
equal to

e(A−BR−1BT P )(t−h)

(
eAhx0 +

∫ h

0

eA(h−τ)Bu0(τ − h) dτ

)
(11)

that is, provided that the following equality holds true:

−e−Ate(A−BR−1BT P )(t−h)

(
eAhx0 +

∫ h

0

eA(h−τ)Bu0(τ − h) dτ

)

+

(
x0 +

∫ h

0

e−AτBu0(τ − h) dτ

)

=
∫ t

h

e−AτBR−1BTPe(A−BR−1BT P )(τ−h)

(
eAhx0 +

∫ h

0

eA(h−θ)Bu0(θ − h) dθ

)
dτ.

Notice that equality (12) straightforwardly comes by equalling the right-hand side of
(10) to (11) and further premultiplying each term by the nonsingular matrix e−At. To
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prove that equality (12) holds true, define the following function:

Ξ(t) = −e−Ate(A−BR−1BT P )(t−h)

(
eAhx0 +

∫ h

0

eA(h−τ)Bu0(τ − h) dτ

)
, t ∈ [h, 2h],

(12)
so that the left-hand side of (12) becomes Ξ(t)−Ξ(h). Thus, equality (12) is proven by
showing that the right-hand side of (12) is:∫ t

h

dΞ(τ)
dτ

dτ. (13)

Indeed, this is true, since:

dΞ
dt

= Ae−Ate(A−BR−1BT P )(t−h)

(
eAhx0 +

∫ h

0

eA(h−τ)Bu0(τ − h) dτ

)

−e−At
(
A−BR−1BTP

)
e(A−BR−1BT P )(t−h)

(
eAhx0 +

∫ h

0

eA(h−τ)Bu0(τ − h) dτ

)

= e−AtBR−1BTPe(A−BR−1BT P )(t−h)

(
eAhx0 +

∫ h

0

eA(h−τ)Bu0(τ − h) dτ

)
and thus the Claim is proved for t ∈ [h, 2h].

Now, by induction, let the Claim (6) holds true for t ∈ [h, ih], i ≥ 2 positive integer.
We will prove that the Claim holds true for t ∈ [h, (i+ 1)h].

Let t ∈ [ih, (i + 1)h]. Since, by hypothesis, the Claim (6) holds true for t ∈ [h, ih],
the solution of (1), (4) is given, for t ∈ [ih, (i+ 1)h], by

x(t) = eA(t−ih)x(ih)−
∫ t

ih

eA(t−τ)BR−1BTPe(A−BR−1BT P )hx(τ − h) dτ

= eA(t−ih)e(A−BR−1BT P )(i−1)hx(h)

−
∫ t

ih

eA(t−τ)BR−1BTPe(A−BR−1BT P )he(A−BR−1BT P )(τ−2h)x(h) dτ

= eA(t−ih)e(A−BR−1BT P )(i−1)hx(h)

−
∫ t

ih

eA(t−τ)BR−1BTPe(A−BR−1BT P )(τ−h)x(h) dτ. (14)

The Claim (6) holds true, for t ∈ [h, (i+ 1)h], if the right-hand side of (14) is equal,
for t ∈ [ih, (i+ 1)h], to

e(A−BR−1BT P )(t−h)x(h) (15)

that is, if the following equality holds true:

−e−Ate(A−BR−1BT P )(t−h)x(h) + e−A(ih)e(A−BR−1BT P )(i−1)hx(h)

=
∫ t

ih

e−AτBR−1BTPe(A−BR−1BT P )(τ−h)x(h) dτ. (16)
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Also in this case, equality (16) comes by premultiplying each term by the nonsingular
matrix e−At. Again, in order to prove (16), define the following function

Θ(t) = −e−Ate(A−BR−1BT P )(t−h)x(h), t ∈ [ih, (i+ 1)h], (17)

so that the left-hand side of (16) becomes Θ(t)−Θ(ih), and equality (16) is proven by
showing that the right-hand side is: ∫ t

ih

dΘ
dτ

dτ. (18)

Indeed, this is true, since:

dΘ
dt

= Ae−Ate(A−BR−1BT P )(t−h)x(h)

−e−At
(
A−BR−1BTP

)
e(A−BR−1BT P )(t−h)x(h)

= e−AtBR−1BTPe(A−BR−1BT P )(t−h)x(h) (19)

and thus the Claim (6) is proved for t ∈ [h, (i + 1)h]. By mathematical induction, we
conclude that the Claim (6) holds true for t ∈ [h,+∞).

Step 2. Notice that the value of x(h) depends of only the given initial conditions
of the system (1), i. e. x0 and u0. From Claim (6), it follows that x(t) obeys to the
equation

ẋ(t) = Ax(t) +Bv(t), t ≥ h,

x(h) = x̃, (20)

where v(t) = −R−1BTPx(t), that is, x(t), v(t) are the optimal state and optimal input,
respectively, to the problem of minimizing the cost functional∫ +∞

h

(
xT (t)Qx(t) + vT (t)Rv(t)

)
dt, (21)

under constraints described by (20). Hence, since Claim (6) holds true, the control law
(4) satisfies, for t ≥ h, the equality u(t− h) = v(t) = −R−1BTPx(t), thus yielding the
optimal solution to the problem stated in Section 2 (see also Remark 2.1). Moreover, the
value of the optimal functional is equal to the optimal value of the cost functional (21),
under constraints described by (20), i. e. x̃TPx̃, plus (see the expression of the functional
(2)) the quantity

∫ h

0
xT (t)Qx(t) dt. From the computation of x(t) in the interval [0, h]

(which depends of only x0 and u0), the value reported in (5) is obtained. So, the proof
of the Theorem is completed. �

Remark 3.2. Notice that, once an h-lengthy time interval has gone by, the optimal
control law is the same as in the delay free case, but just a prediction of the current
state, a time h ahead, replaces the current state. Such prediction is obtained by the free
evolution of the delay free system in closed loop with delay free optimal controller.
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Remark 3.3. Notice that, from h on, the optimal control law (4) is a memoryless
feedback of the state variable, whichever is the initial input u0. If u0 ≡ 0, the optimal
control law (4) is a memoryless state feedback from 0 on, i. e. from the beginning. If
u0 6= 0, then it is necessary to compute integrals of such initial input law. Indeed the
control law involves, for t ∈ [0, h], m(t), an integral (with suitable kernel) of the initial
input u0.

Remark 3.4. By Theorem 3.1, the optimal control law (4) yields, for the functional
reported in (3) (which does not consider the interval where the state evolves according
to initial state x0 and initial input u0) the value x̃TPx̃.

4. STABILITY RESULTS

Denote x̂(τ), τ ∈ [h, 2h], the optimal solution in [h, 2h], obtained by applying the optimal
control law (see 4)

u(t) = −R−1BTPe(A−BR−1BT P )t
(
eA(h−t)x(t) +m(t)

)
, t ∈ [0, h) (22)

to system (1). Clearly, x̂(τ) depends of the state and input initialization, x0 and u0,
respectively. Then, for t ≥ 2h, the closed loop system (1)-(4) reveals to be the following
system with delay in the state:

ẋ(t) = Ax(t)−BR−1BTPe(A−BR−1BT P )hx(t− h), t ≥ 2h
x(τ) = x̂(τ), τ ∈ [h, 2h].

(23)

Notice that a generic initialization of x(τ) 6= x̂(τ), τ ∈ [h, 2h] for system (23) does not
provide the optimal solution, that occurs only by correctly applying u(τ) in [0, h] as
in (22). In other words, given the initial conditions x0, u0 for (1), the optimal control
characterizes the initial condition x̂(τ) for (23) according to which the solution of the
system (23) is the optimal solution. As a matter of fact, because of the optimality,
the correct initialization of (23) ensures also the convergence to zero of the state of the
system. That means: the optimal control law tells us how to set a proper initialization for
x̂(τ) according to which the solution of (23) converges to zero, but it does not ensure the
stability of system (23), i. e. it does not ensure the state convergence to zero whichever is
the initial condition in [h, 2h]. Therefore, it deserves interest to investigate the stability of
the delayed system (23), because of unavoidable computation or implementation errors.
It may well happen, for instance, that u(t), t ∈ [0, h), is not computed exactly, since
an integral is involved and numerical approximations may be necessary. Also, actuator
errors may appear so that the control law (4) may be corrupted by some bounded
disturbance (see Proposition 2.5 in [28] for equivalence between asymptotic stability
and input-to-state stability). In these cases, if the closed loop system (23) is un-stable,
then, besides loosing the optimality, the solution of the closed loop system (1), (4), with
the optimal control law not exactly implemented, can well diverge to infinity.

In order to check the stability of the state delay system (23) efficient LMI method-
ologies available in the literature can be used, providing sufficient conditions to ensure
the asymptotic stability (see [5, 12, 13, 14, 25] and references therein).
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In this Section we will investigate in details the scalar case, that is x(t) ∈ R, according
to which conditions on the length of the delay h will be given to ensure stability. Thus,
in the following we will use scalars a, b, q, r, p instead of matrices A,B,Q,R, P so that
the DDE closed loop equation (23) becomes

ẋ(t) = ax(t)− b2p

r
e(a−b2p/r))hx(t− h), t ≥ 2h (24)

where p is the positive solution to the Riccati equation (4) which, in the scalar case, is
easily computed as

p =
a+

√
∆

(b2/r)
, ∆ = a2 + b2q/r. (25)

Then, the closed loop system (24) becomes:

ẋ(t) = ax(t)− (a+
√

∆)e−
√

∆hx(t− h), t ≥ 2h. (26)

Theorem 4.1. Consider the time-delay system (26). If a ≤ 0, then, for any given delay
h ≥ 0, the origin is asymptotically stable. If a > 0, then the origin is asymptotically
stable for 0 ≤ h < h, and unstable for h > h, where

h =
1√
∆

ln

(
a+

√
∆

a

)
. (27)

P r o o f . In order to investigate the stability of the time-delay, linear system (26),
compute the characteristic function:

d(λ) = λ− a+ (a+
√

∆)e−
√

∆he−λh. (28)

Notice that for h = 0, (28) reduces to the first order polynomial

d(λ) = λ− a+ (a+
√

∆) = λ+
√

∆ (29)

which admits the unique negative real solution λ = −
√

∆, that means asymptotic sta-
bility is ensured for h = 0. Thus, the stability analysis is investigated by taking into
account whether by increasing the delay parameter h there appear roots with positive
real part. According to the established literature, such a case can only happen for roots
with negative real part, crossing the imaginary axis as h increases its value (see e. g.
[25, 26]).

To this aim, consider a generic pair of purely imaginary roots for (28), λ = ±jω, so
that:

d(jω) = jω − a+ (a+
√

∆)e−
√

∆he−jωh = 0 (30)

that means: {
−a+ (a+

√
∆)e−

√
∆h cos(ωh) = 0

ω − (a+
√

∆)e−
√

∆h sin(ωh) = 0
(31)
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and so:  cos(ωh) = a
a+
√

∆
e
√

∆h

sin(ωh) = ω
a+
√

∆
e
√

∆h.
(32)

Notice that for a ≤ 0 the trivial solution ω = 0 satisfies only the second equation of (32),
therefore it is not a solution of the whole system (32). On the other hand, for positive
values of a, the trivial solution ω = 0 satisfies both the equations of (32), provided that
h = h. In any case, no other purely imaginary roots occur. Indeed consider the second
equation of (32) and search for nontrivial (i. e. different than ω = 0) positive real roots
of the following nonlinear function:

ψ(ω) =
ω

a+
√

∆
e
√

∆h − sin(ωh) (33)

for a given positive h. To this aim, compute the derivative:

ψ′(ω) =
dψ

dω
=

e
√

∆h

a+
√

∆
− h cos(ωh). (34)

It will be shown that ψ′(ω) > 0 for any ω ≥ 0, so that ψ(ω) is monotonically increasing
for ω ≥ 0, that means ψ(ω) never vanishes, besides the trivial case ψ(0) = 0. Consider
the following inequality:

ψ′(ω) ≥ ξ =
e
√

∆h

a+
√

∆
− h (35)

and investigate whether there exist values of the delay h > 0 according to which ξ = 0.
To this aim, consider ξ as a function of h, so that:

ξ(0) =
1

a+
√

∆
> 0, lim

h7→+∞
ξ(h) = +∞ (36)

and

ξ′(h) =
dξ

dh
=
√

∆e
√

∆h

a+
√

∆
− 1 ≥ 0 ⇐⇒ h ≥ K =

1√
∆

ln

(
a+

√
∆√

∆

)
. (37)

Notice that, if a ≤ 0, then K ≤ 0 and, therefore, ξ′(h) ≥ 0 for any positive h. That
means ξ(h) > 0 for any positive h, and so:

ϕ′(ω) ≥ ξ > 0 ∀h ≥ 0. (38)

On the other hand, consider the case of a > 0. Then, K > 0 and there exists a minimum
for ξ(h) at h = K, so that ξ(h) > 0 for any h ≥ 0 if, and only if, ξ(K) > 0. After some
computations, it comes:

ξ(K) =
1√
∆
− 1√

∆
ln

(
a+

√
∆√

∆

)
> 0 ⇐⇒ a+

√
∆√

∆
< e⇐⇒ ∆ >

a2

(e− 1)2
. (39)

Finally, since ∆ = a2 + b2q/r, it is:

ξ(K) > 0 ⇐⇒ b2q

a2r
≥ 1

(e− 1)2
− 1. (40)
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The right-hand side of this last inequality is trivially verified because 1/(e−1)2 < 1 and
so ξ(K) > 0.

In summary, for a ≤ 0 there is no crossing of the imaginary axis whatever is set the
delay h, and so the roots of the characteristic equation never become with positive real
part: there is no loss of stability. On the other hand, if a > 0, there exists a unique
value for the delay h (h = h, actually) according to which λ = 0 is a solution of the
characteristic equation. In order to investigate whether there is actually a crossing of the
imaginary axis, according to the established literature [25, 26], the sign of the derivative
of the real part of the eigenvalues with respect to h, when crossing the imaginary axis,
has to be computed. To this aim, the following equation [26] will be suitably exploited:

sign
{
d(Reλ)
dh

}
= sign

{
Re
(
dλ

dh

)−1
}
. (41)

Rewrite the characteristic function by using the following slightly abuse of notation:

ϕ(h) = d
(
λ(h), h

)
(42)

according to which:
dϕ

dh
=
∂d

∂λ

dλ

dh
+
∂d

∂h
= 0 (43)

and so: (
dλ

dh

)−1

=
1− h(a+

√
∆)e−

√
∆h · e−λh

(a+
√

∆)(λ+
√

∆)e−
√

∆h · e−λh
. (44)

By computing (44) for λ = j0 and h = h it becomes:

[(
dλ

dh

)−1
]

λ=j0
h=h

=
1− h(a+

√
∆)e−

√
∆ h

(a+
√

∆)
√

∆ · e−
√

∆ h
=

1− ah

a
√

∆
=

1− a√
∆

ln
(
1 +

√
∆
a

)
a
√

∆
. (45)

Then,

sign

{
d(Reλ)
dh

∣∣∣∣
λ=j0
h=h

}
> 0 ⇐⇒

√
∆
a

> ln

(
1 +

√
∆
a

)
. (46)

Since X > ln(1 + X) for any X > 0, the above inequality holds true for any set of
parameters such that a > 0: by increasing the delay there will come a value h according
to which there will be a root crossing the imaginary axis in j0 towards the positive real
complex half plane. No more imaginary axis crossing is permitted to the roots of the
characteristic function, and stability is lost. �

A way to design a control law for system (1) is by disregarding the delay of the control
input. In this way, we have the solution of the optimal control law in the delay-free case,
that is

u(t) = −R−1BTPx(t). (47)
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Instead of the optimal control law given by Theorem 3.1, we can try to apply the control
law (47) to system (1). Of course, when closing the loop the delay affects the input, so
that the closed loop system becomes

ẋ(t) = Ax(t)−BR−1BTPx(t− h), t ≥ h. (48)

In the following it will be shown, for the scalar case, that the stability conditions obtained
in Theorem 4.1 are less restrictive than the ones required by the closed loop system (48)
that, in the scalar case, becomes:

ẋ(t) = ax(t)− (a+
√

∆)x(t− h), t ≥ h. (49)

Theorem 4.2. Consider the time-delay system (49). If a ≤ −|b|
√
q/(3r), then, for any

given delay h ≥ 0, the origin is asymptotically stable. If a > −|b|
√
q/(3r), then the

origin is asymptotically stable for 0 ≤ h < h̃, and unstable for h > h̃, where

h̃ =
1
ω̃

arctan
(
ω̃

a

)
, ω̃ = ∆

1
4

√
2a+

√
∆. (50)

P r o o f . Consider the characteristic function of system (49):

d̃(λ) = λ− a+ (a+
√

∆)e−λh. (51)

Notice that for h = 0 it reduces to a first order polynomial

d̃(λ) = λ+
√

∆ (52)

which admits the unique negative real solution λ = −
√

∆, that means asymptotic sta-
bility. Again, the stability analysis is investigated by taking into account whether by
increasing the delay parameter h there appear roots with positive real part. In this
case, we may apply existing theorems investigating the roots placement of transcenden-
tal equations like (51): indeed, the Theorem is completed by trivially exploiting Thm.
2.1 in [18]. �

Remark 4.3. It has to be stressed that, besides the loss of optimality, the control law
designed in eq.(47) also weakens the stability result, for the scalar case. Indeed, stability
is no more ensured for negative values of parameter a, since there is a bound for h also for
−|b|

√
q/(3r) < a ≤ 0. Furthermore, the bound h̃ is smaller than the bound h in eq.(27)

whatever are chosen the model parameter with a > 0. To prove this last statement, we
need to show that, for any (positive) a, ∆ it is:

1

∆
1
4

√
2a+

√
∆

arctan

(
∆

1
4

√
2a+

√
∆

a

)
<

1√
∆

ln

(
a+

√
∆

a

)
. (53)

To this aim, note that, denoting σ =
√

∆/a > 1 the left-hand side of (53) can be written
as

arctan(
√

2σ + σ2)
a
√

2σ + σ2
, (54)
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whilst the right-hand side can be written as

ln(1 + σ)
aσ

. (55)

Thus the point is to show that:

arctan(
√

2σ + σ2)√
2σ + σ2

<
ln(1 + σ)

σ
, ∀σ > 1. (56)

Indeed, inequality (56) is true, as can be seen by visual inspection from Figure 1.

Fig. 1. Plot of the l.h.s. (dotted line) and r.h.s. (full line) of the

eq.(56) versus variable σ > 1.

5. SIMULATION RESULTS

In this section we consider the following system

ẋ(t) =
[

0 1
−1 2

]
x(t) +

[
0
1

]
u(t− h), x(0) =

[
1
−1

]
. (57)

We have taken the input signal equal to zero in [−h, 0). We have chosen the matrix Q as
the identity in R2×2 and R = 1. We have computed the solution to the Riccati equation
up to an error smaller than 10−12, and applied the optimal control law. We have made
simulations by means of third order Runge–Kutta method, with fixed integration step
T = 0.0001secs. Simulations show convergence to 0 of the state variables, up to h = 0.33.
For h = 0.34, a simulation on a time interval of 50 secs starts showing divergence of the
state variables. For h > 0.34, simulations show clearly that the state variables diverge.
This is not in contradiction with the optimality of the control law, since, given that the
closed loop system may become unstable, numerical errors deviate the solution from
the optimal one and thus the divergence effect appears. For the cases with h = 0.27,
h = 0.33, h = 0.35, the plot of the state variables is reported in Figure 2, Figure 4,



580 F. CARRAVETTA, P. PALUMBO AND P. PEPE

Figure 6, and the plot of the optimal input signal is reported in Figure 3, Figure 5,
Figure 7, respectively. We have applied to the system also the control input obtained
by neglecting the time delay, that is

u(t) = −R−1BTPx(t), t ≥ 0. (58)

In Figure 8 and in Figure 9 the state variables and the control law signal are reported,
respectively. As can be seen, for h = 0.27, the state variables diverge to ∞. We observe
the convergence of the state to 0, though oscillations appear, by using the control law
(58), for h ≤ 0.25, as shown in Figure 10 and Figure 11, respectively. Thus, simulations
show that we can consider a delay h up to 0.25, with the control law (58), and a delay
h up to 0.33, with the control law (4). The improvement, as far as the allowed size of
the delay is concerned, is evident. For the case h = 0.33, we have computed numerically
the value of the functional J as 24.9343 (the functional (2) includes the values of the
state in free evolution, in the interval [0, h)). If we consider the functional (3), we have
computed numerically its value as 23.8407. In this case, the computation by Matlab of

x̃ = eAhx0 returns x̃ =
[

0.479

−2.3090

]
. The following value is computed for the matrix P ,

P =
[

5.4142 0.4142
0.4142 4.4142

]
. (59)

The term x̃TPx̃ returns the value 23.8408, thus validating what is stated in remark
3.4 (take into account that the value of the functional computed numerically, 23.8407,
besides numerical approximations, is underestimated because of the finite time interval
of the simulation). We have also made simulations perturbing the optimal control input.
Namely, at any integration step kT , k = 0, 1, 2, . . . , the computed optimal input u(kT )
is changed into u(kT ) + 2(rand − 0.5)u(kT ) (recall that rand is the Matlab command
generating a random variable with uniform probability density in (0, 1)). We always ob-
tained greater values of the functional, still observing boundedness of the state variables.
In Figure 12 and Figure 13, the state variables and the input signal are reported, respec-
tively, when the Matlab rand function is initialized with the command rand(′seed′, 0).
The value of the functional J is in this case computed as 33.1857.

6. CONCLUSIONS

In this paper we have provided a solution to the infinite horizon linear quadratic optimal
control problem for linear time-invariant systems with a known constant time-delay in
the input channel. Such a solution has the characteristic of being memoryless, except
at an initial time interval of measure equal to the time-delay. If the initial input is set
equal to zero, then the optimal feedback control law is memoryless from the beginning.
Stability results are established for the closed loop system, in the scalar case. Many
simulations have been performed, showing the effectiveness of the proposed optimal
controller. Moreover, it has been shown in simulations, for a two dimensional system,
that the maximum delay range, for which stability is guaranteed, is meaningfully im-
proved with respect to the one obtained with a controller built up by optimal control
formulas neglecting the delay.
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Fig. 2. State Variables, h = 0.27.
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Fig. 3. Optimal Input Signal, h = 0.27.
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Fig. 4. State Variables, h = 0.33.
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Fig. 5. Optimal Input Signal, h = 0.33.
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Fig. 6. State Variables, h = 0.35.
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Fig. 7. Optimal Input Signal, h = 0.35.
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Fig. 8. State Variables, h = 0.27, control law (58).
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Fig. 9. Input Signal, h = 0.27, control law (58).



Memoryless solution to the optimal control of linear systems with delayed input 585

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

S
ta

te
 V

ar
ia

bl
es

Fig. 10. State Variables, h = 0.25, control law (58).
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Fig. 11. Input Signal, h = 0.25, control law (58).
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Fig. 12. State Variables, h = 0.33, perturbed control law.
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Fig. 13. Input Signal, h = 0.33, perturbed control law.
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Future work will concern the infinite horizon linear quadratic optimal control problem
for time-varying systems with time-varying time-delay in the input channel, on the basis
of the results in [6].
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