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IMPULSIVE PRACTICAL SYNCHRONIZATION
OF N-DIMENSIONAL NONAUTONOMOUS SYSTEMS
WITH PARAMETER MISMATCH

Mihua Ma, Hua Zhang, Jianping Cai and Jin Zhou

This paper is concerned with impulsive practical synchronization in a class of n-dimensional
nonautonomous dynamical systems with parameter mismatch. Some simple yet general alge-
braic synchronization criteria are derived based on the developed practical stability theory on
impulsive dynamical systems. A distinctive feature of this work is that the impulsive control
strategy is used to make n-dimensional nonautonomous dynamical systems with parameter
mismatch achieve practical synchronization, where the parameter mismatch likewise exist in
both system parameters and external excitation ones, and the synchronization error bound can
be estimated by an analytical expression. Subsequently, the obtained results are applied to a
typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria
and the robustness of the control technique.
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1. INTRODUCTION

Since Pecora and Carroll [17] published their pioneering work on chaos synchronization,
synchronization of chaotic systems has received a great deal of interest among scientists
from various research fields [4, 12 – 14, 24]. Due to various environmental factors as
well as a variety of inevitable external disturbances, the synchronization of coupled
dynamical systems with parameter mismatch has become more and more significant
topic. In general, parameter mismatch is considered to have a detrimental effect on
the quality of synchronization between coupled identical chaotic systems. In some cases
it even results in the loss of synchronization [1, 11]. Therefore, the synchronization of
coupled dynamical systems with parameter mismatch has been an important topic in
theoretical research and practical applications [2, 3, 5, 10, 15, 16, 18 – 20, 22].

However, it is worth noting that most of existing synchronization schemes with pa-
rameter mismatch are predominantly concentrated on autonomous dynamical systems
[3, 10, 19, 22], or second-order nonautonomous systems [15, 16, 18, 20], due to the difficul-
ties in convergence analysis of invariant set for nonautonomous dynamical systems and
more complex computation for high-dimensional systems. The synchronization schemes
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with parameter mismatch for n-dimensional systems are studied in Refs. [2, 5]. Unfortu-
nately, only partial parameters mismatched are considered in Refs. [2, 5]. It is obvious
that such synchronization schemes previously proposed are quiet limited. In addition,
it is believed that many chaotic models developed in physics, mechanics, chemistry, and
biology are formulated in terms of n-dimensional nonautonomous dynamical systems
[6 – 8, 23]. Therefore, new techniques and methods should be explored and developed
to investigate synchronization for more general n-dimensional nonautonomous chaotic
systems with more parameters mismatched. On the other hand, from Ref. [21], we
know that the impulsive control is effective and easily realized, since it only needs to
use small impulses and it can endure continuous disturbance. By the impulsive control,
the slave system receives information from the master one only at discrete time instants,
which drastically reduces the amount of synchronization information transmitted from
the master system to the slave one, and makes this method more efficient in a great
number of practical applications. As far as we know, the impulsive control was not used
to investigate nonautonomous chaotic systems with parameter mismatch.

Motivated by the aforementioned comments, the impulsive control technique is used
to investigate practical synchronization for n-dimensional nonautonomous chaotic sys-
tems with parameter mismatch. More generality for parameter mismatch here, the
parameters both in the system and the external excitation can be mismatched. Some
simple yet general algebraic criteria are derived and an analytical expression is obtained
to estimate the synchronization error bound. It also can be shown that the synchroniza-
tion error can be controlled as small as possible by choosing control gain and impulse
interval properly. The obtained results are applied to a typical electromechanical gyro-
stat system, and simulations are provided to demonstrate the theoretical results.

The rest of this paper is organized as follows. In Section 2, model description and some
preliminaries are presented. Section 3 gives the main results of this paper. Application
example and simulations are presented in Section 4. Finally, conclusive remarks are
given in Section 5.

2. PROBLEM FORMULATIONS AND PRELIMINARIES

Consider a n-dimensional nonautonomous chaotic system described by{
ẋ = A(t)x + f(x) + m(t),
x(t0) = x0,

(1)

where x = (x1, x2, . . . , xn)T ∈ Rn is the state vector, A(t) ∈ Rn×n, f(x) ∈ Rn is a
continuous nonlinear function, and m(t) is the external excitation which is independent
of the system. We call system (1) as master system.

Remark 2.1. It should be noted that Eq. (1), as a representative n-dimensional nonau-
tonomous dynamical system, can well formulate practical architectures of many chaotic
models developed in physics, mechanics, chemistry, and biology, et al., such as horizontal
platform system [8], FHN neuron oscillator [23], loudspeaker system [6], electromechan-
ical gyrostat system [7] and so on.

It is known to all, parameters both in the system and the external excitation may
be disturbed. Thus, a system with parameter mismatch and a sequence of impulses at
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time instants {tk} is constructed as ẏ = Ã(t)y + f̃(y) + m̃(t), t 6= tk,
∆y|t=tk

= −Bk(x(tk)− y(tk)), t = tk,
y(t+0 ) = y0, t0 ≥ 0, k = 1, 2, . . . ,

(2)

where y = (y1, y2, . . . , yn)T ∈ Rn is the state vector, Bk ∈ Rn×n denotes the control
gain to be designed later, and ∆y|t=tk

= y(t+k )− y(tk) is the change of the state vector
at the instant tk, in which y(t+k ) = limt→t+k

y(t). The set of discrete instants satisfies
0 < t1 < t2 < · · · < tk < tk+1 < · · · , tk →∞ as k →∞. Due to parameter perturbation,
the parameters in the functions Ã(t), f̃(y) and m̃(t) can be slightly different from A(t),
f(y) and m(t) respectively. It implies that the parameters both in the system and the
external excitation can be mismatched. System (2) is often called as slave system. To
this end, we need two hypothesises.

Hypothesis 2.2. The parameter mismatch does not destroy the chaotic behavior of the
chaotic system (1). Thus, due to the bounds of the chaotic signals, there exist positive
constants Mj such that |xj | ≤ Mj , |yj | ≤ Mj , j = 1, 2, . . . , n.

Hypothesis 2.3. There exists a bounded matrix M(x, y) such that

f̃(x)− f̃(y) = M(x, y)(x− y), (3)

where the elements of M(x, y) are dependent on x and y.

Remark 2.4. Fortunately, due to the bounds of the chaotic signals, such a matrix
M(x, y) exists in many practical chaotic systems, such as systems mentioned in Re-
mark 2.1.

Let ∆A(t) = A(t)− Ã(t), ∆f(x) = f(x)− f̃(x), and ∆m(t) = m(t)− m̃(t). Defining
an error variable e = x − y, for t ∈ (t+k , tk+1], the synchronization error system can be
obtained from systems (1) and (2) ė = (Ã(t) + M(x, y))e + ∆A(t)x + ∆f(x) + ∆m(t), t 6= tk,

∆e|t=tk
= Bke(tk), t = tk,

e(t+0 ) = x0 − y0, t0 ≥ 0, k = 1, 2, . . . .
(4)

Before proceeding, we give some necessary preliminaries in the following.
Let an impulsively controlled nonautonomous chaotic system be

ż = F (t, z, u(t)), t 6= tk,
∆z|t=tk

= U(k, z), t = tk,
z(t+0 ) = z0, t0 ≥ 0, k = 1, 2, . . . ,

(5)

where z ∈ Rn is the state vector, F : R+ × Rn × Rm → Rn is continuous function, R+

denotes [0,+∞), u : R+ → Rm is the external excitation, and U(k, z) = z(t+k )− z(tk) is
the change of the state vector at the instant tk. For system (5), we have the following
definition.
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Definition 2.5. (see Yang [21]) Comparison system. Let V ∈ ν0 and assume that{
D+V (t, z) ≤ g(t, V (t, z), v(t)), t 6= tk,
V (t, z + U(k, z)) ≤ Ψk(V (t, z)), t = tk,

(6)

where g : R+×R+×R+ → R is continuous and Ψk : R+ → R+ is nondecreasing. Then
the system 

ω̇ = g(t, ω, v(t)), t 6= tk,
ω(t+k ) = Ψk(ω(tk)), t = tk,
ω(t+0 ) = ω0 ≥ 0,

(7)

is the comparison system of (5). The definitions of ν0 and D+V (t, z) can be seen in
Ref.[21].

Letting the set Ω be

Ω = {u(t) ∈ Rm|Γ(t, u(t)) ≤ Υ(t), t ≥ t0},

where Γ ∈ C[R+ ×Rm, R+] and Υ(t) is the maximal solution of the comparison system
(7), the definition of practical stability of system (5) is presented as follows.

Definition 2.6. (see Yang [21]) Practical stability. System (5) is said to be practically
stable with respect to (ξ, ε) if, given ξ > 0, and ε > 0, we have that ‖z0‖ < ξ implies
that ‖z(t)‖ < ε, t ≥ t0, for some t0 ∈ R+ and every u ∈ Ω, where ‖ · ‖ refers to the
Euclidean vector norm.

Usually, the master-slave system (1) – (2) is difficult to achieve complete synchro-
nization because of parameter mismatch. Therefore, based on the concept of practical
stability mentioned above, a concept of practical synchronization is introduced as below.

Definition 2.7. The synchronization scheme (1) – (2) is said to achieve practical syn-
chronization if, for given any initial values of system (4), there exist constants ε > 0 and
t0 ∈ R+ such that the state error

e ∈ Bε
def= {e ∈ Rn

∣∣ ‖e‖ < ε}, (8)

for all t > t0.

In the above definition, the synchronization scheme (1) – (2) achieves practical syn-
chronization, meaning that error system (4) achieves practical stability. Accordingly, ε
is often referred to as desired synchronization error bound.

To study the practical stability of error system (4), the following necessary lemma is
given, which will play an important role in the proof of the main results.

Lemma 2.8. Let the comparison system (7) be described by
g(t, ω, v(t)) = βω + α2, β > 0, α > 0, t 6= tk,
Ψk(ω(tk)) = γ2ω, γ > 0, t = tk,
ω(t+0 ) = ω0 ≥ 0, k = 1, 2, . . . .

(9)
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For given (ξ, ε), ξ > 0, and ε > 0, if

ln(γ2) + δβ < 0, (10)

and
α2(eβδ − 1)
β(1− γ2eβδ)

< ε, (11)

where δ = tk+1 − tk, 0 < δ < +∞, then system (5) is practically stable with respect to
(ξ, ε) for any ξ < +∞.

P r o o f . Taking β = φ, α2 = θ, γ2 = d, the comparison system (9) can be rewritten as
ω̇ = φω + θ, t 6= tk,
ω(t+k ) = dω, t = tk,
ω(t+0 ) = ω0 ≥ 0, k = 1, 2, . . . .

(12)

Since the comparison system (12) has the same form as that of mentioned in Theorem
6.7.1 [21], the rest of the proof is similar to that of Theorem 6.7.1. Hence it is omitted
here. The proof of Lemma 2.8 is completed. �

3. SYNCHRONIZATION CRITERIA AND ERROR ANALYSIS

Based on Lemma 2.8, some criteria are derived to make the synchronization scheme
(1) – (2) achieve practical synchronization with desired error bound ε.

Theorem 3.1. Let Bk = diag{γ − 1, γ − 1, . . . , γ − 1} ∈ Rn×n with γ > 0, and the
sequence of impulses be equidistant and separated by an interval δ. Namely, tk+1− tk =
δ. Given (ξ, ε), ξ > 0, and ε > 0, ‖e(t+0 )‖ < ξ, if there exist positive scalars β and α,
such that the following conditions hold

(i) Q(t) = Ã(t) + M(x, y) + (Ã(t) + M(x, y))T + I − βI ≤ 0; (13)
(ii) ‖∆A(t)x + ∆f(x) + ∆m(t)‖ ≤ α; (14)
(iii) both inequalities (10) and (11) are satisfied;

then the master-drive systems (1) – (2) can achieve practical synchronization with desired
error bound ε, for any ξ < +∞.

P r o o f . Choose a quadratic Lyapunov function

V (t, e) = eT e. (15)

Obviously, V (t, e) in Eq. (15) belongs to class ν0. The derivative of V (t, e) with respect
to time t ∈ (t+k , tk+1] along the solution of error system (4) is

V̇ (t, e) = eT [Ã(t) + M(x, y) + (Ã(t) + M(x, y))T ]e + 2eT [∆A(t)x + ∆f(x) + ∆m(t)]
≤ eT [Ã(t) + M(x, y) + (Ã(t) + M(x, y))T ]e + eT e

+‖∆A(t)x + ∆f(x) + ∆m(t)‖2

≤ eT [Ã(t) + M(x, y) + (Ã(t) + M(x, y))T + I − βI]e + βV (t, e)
+‖∆A(t)x + ∆f(x) + ∆m(t)‖2. (16)
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From conditions (i) and (ii), one can obtain

V̇ (t, e) ≤ βV (t, e) + α2. (17)

At the impulse points, we have

V (t+k , e + ∆e) = V (tk, (I + Bk)e(tk)) = γ2V (tk, e(tk)). (18)

Hence, according to Definition 2.5, the comparison system of error system (4) is
ω̇ = βω + α2, t 6= tk,
ω(t+k ) = γ2ω, t = tk,
ω(t+0 ) = ω0 ≥ 0, k = 1, 2, . . . .

(19)

Based on the result of Lemma 2.8, if condition (iii) holds, then the synchronization
error system (4) is practically stable with respect to (ξ, ε) for any ξ < +∞. Thus, the
synchronization scheme (1) – (2) achieves practical synchronization with desired error
bound ε. This completes the proof of the theorem. �

Remark 3.2. Usually, α and β in Theorem 3.1 are related to the values of parameter
mismatch. More reasonably, the values of parameter mismatch can be uncertain. It
only needs to know their bounds. It can be seen clearly from example for more details
in Section 4.

From inequality (10), we can get

0 < γ2 < 1, δ < − 1
β

ln(γ2). (20)

Besides, for given a desired synchronization error bound ε, δ can be further obtained
from inequality (11) as

δ <
1
β

ln
( α2 + εβ

α2 + γ2εβ

)
. (21)

Thus, given 0 < γ2 < 1, if δ is chosen to satisfy

δ < min
{ 1

β
ln

( α2 + εβ

α2 + γ2εβ

)
, − 1

β
ln(γ2)

}
, (22)

then the real error ‖e‖ is smaller than or equal to the desired synchronization error
bound ε.

In the following, we will give an analytical expression to estimate synchronization
error bound. If the synchronization scheme (1) – (2) achieves practical synchronization
with error bound ε, then there exist constants ε > 0 and t0 > 0 such that the state error
‖e‖ < ε for all t > t0. Thus, the estimated synchronization error bound can be taken
as σ = εmin, where εmin denotes the minimum value of ε. The minimum value of ε can
be clearly seen from inequality (11). Hence, the estimated synchronization error bound
equals

σ =
α2(eβδ − 1)
β(1− γ2eβδ)

. (23)
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It means that we can estimate the synchronization error bound by analytical expression
(23) for given α, β, δ, γ2.

Due to Bk = diag{γ − 1, γ − 1, . . . , γ − 1} ∈ Rn×n, we can call k = γ − 1 as the
control gain. Therefore, analytical expression (23) can be rewritten as

σ =
α2(eβδ − 1)

β[1− (k + 1)2eβδ]
, (24)

with k ∈ (−2, −1)∪ (−1, 0) since 0 < γ2 < 1. It can be seen from analytical expression
(24) that the estimated synchronization error bound σ is monotonic increasing function
with respect to α and the impulse interval δ, respectively. It also can be shown that the
estimated error bound σ is monotonic decreasing function in the interval (−2, −1), and
monotonic increasing function in the interval (−1, 0), with respect to the control gain
k. Thus, the synchronization error can be controlled as small as possible by choosing
the proper values of the impulse interval δ and the control gain k, respectively.

Remark 3.3. It seems that the estimated synchronization error bound σ can reach the
minimum value when k → −1. However, if we take k = −1, then y(t+k ) must be taken as
y(t+k ) = x(tk) in slave system (2). Obviously, it is hard to be implemented in practice.

Remark 3.4. If the synchronization scheme without parameter mismatch is considered,
then σ = 0 will be obtained from Eq. (23) or (24), which is obviously originated from
α = 0. In this case, complete synchronization of n-dimensional nonautonomous systems
without parameter mismatch is recovered.

4. APPLICATION EXAMPLE AND SIMULATION RESULTS

As an application of the above-derived theoretical criteria, the practical synchronization
problem of gyrostat system as a representative example of chaotic systems is worked
out in this section. The electromechanical gyrostat is one of the most interesting and
everlasting dynamic systems. The advantages of the electromechanical gyrostat systems
are that they can make the traditional mechanical system easier to be controlled and
used [7].

The gyrostat system is given by [7] ẋ1 = −x2x3 − 0.5(1 + 6.5 cos t)x2 + 0.4x3 − 0.002(x1 + x3
1),

ẋ2 = x1x3 − 0.4x3 + 0.5(1 + 6.5 cos t)x1 − 0.002(x2 + x3
2),

ẋ3 = −0.2x1 + 0.2x2 − 0.2x3 − 0.002(x3 + x3
3) + 1.625 sin t.

(25)

The gyrostat system exhibits chaos behavior, as shown in Figure 1.
Comparing with system (1), we have

A(t) =

 −0.002 −0.5(1 + 6.5 cos t) 0.4
0.5(1 + 6.5 cos t) −0.002 −0.4

−0.2 0.2 −0.202

 ,

f(x) =

 −x2x3 − 0.002x3
1

x1x3 − 0.002x3
2

−0.002x3
3

 , m(t) =

 0
0

1.625 sin t

 .
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Fig. 1. Chaotic attractor of gyrostat system (25).

For simplicity, we consider some of the representative parameters mismatched, which
are both in the system and the external excitation. The slave system for the gyrostat
system is constructed as

ẏ1 = (−1 + ∆1)y2y3 + (−0.5 + ∆2)(1 + 6.5 cos t)y2 + 0.4y3 − 0.002(y1 + y3
1), t 6= tk,

ẏ2 = y1y3 − 0.4y3 + 0.5(1 + 6.5 cos t)y1 + (−0.002 + ∆3)(y2 + y3
2), t 6= tk,

ẏ3 = −0.2y1+(0.2+∆4)y2−0.2y3−0.002(y3+y3
3)+(1.625+∆5) sin(t+∆6), t 6= tk,

∆y1 = −(γ − 1)(x1(tk)− y1(tk)), t = tk,
∆y2 = −(γ − 1)(x2(tk)− y2(tk)), t = tk,
∆y3 = −(γ − 1)(x3(tk)− y3(tk)), t = tk.

(26)
Corresponding to system (2), one can get

Ã(t) =

 −0.002 (−0.5 + ∆2)(1 + 6.5 cos t) 0.4
0.5(1 + 6.5 cos t) −0.002 + ∆3 −0.4

−0.2 0.2 + ∆4 −0.202

 ,

f̃(y) =

 (−1 + ∆1)y2y3 − 0.002y3
1

y1y3 + (−0.002 + ∆3)y3
2

−0.002y3
3

 , m̃(t) =

 0
0

(1.625 + ∆5) sin(t + ∆6)

 .

From function f̃(y), the matrix M(x, y) mentioned in Hypothesis 2.3 equals

M(x, y) =

 −0.002(x2
1+x1y1+y2

1) (−1+∆1)y3 (−1+∆1)x2

y3 (−0.002+∆3)(x
2
2+x2y2+y2

2) x1

0 0 −0.002(x2
3+x3y3+y2

3)

 .

Hence
Q(t) = Ã(t) + M(x, y) + (Ã(t) + M(x, y))T + I − βI =0.996−0.004(x2

1+x1y1+y2
1)−β ∆2(1+6.5 cos t)+∆1y3 0.2+(−1+∆1)x2

∆2(1+6.5 cos t)+∆1y3 0.996+2∆3+(−0.004+2∆3)(x
2
2+x2y2+y2

2)−β −0.2+∆4+x1

0.2+(−1+∆1)x2 −0.2+∆4+x1 0.596−0.004(x2
3+x3y3+y2

3)−β

 .
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In order to choose β to satisfy the condition (i) in Theorem 3.1, our object is to
choose β such that Q(t) is negative definite. To this end, we introduce the Gerschgorin
disc theorem.

Lemma 4.1. (see Horn and Johnson [9]) Let D = (dij) ∈ Rn×n and p1, p2, . . . , pn be
positive number, then all the eigenvalues of D lie in the region

n⋃
i=1

{
λ ∈ C :| λ− dii |≤

1
pi

n∑
j=1,j 6=i

pj | dij |
}

,

where C is the set of complex numbers.

According to the Gerschgorin disc theorem, the matrix Q(t) is negative definite if β
satisfies

β > max{H1,H2,H3}, (27)

with

H1 = 0.996− 0.004(x2
1 + x1y1 + y2

1) +
p2

p1
|∆2(1 + 6.5 cos t) + ∆1y3|

+
p3

p1
|0.2 + (−1 + ∆1)x2|, (28)

H2 = 0.996 + 2∆3 + (−0.004 + 2∆3)(x2
2 + x2y2 + y2

2) +
p1

p2
|∆2(1 + 6.5 cos t) + ∆1y3|

+
p3

p2
| − 0.2 + ∆4 + x1|, (29)

H3 = 0.596− 0.004(x2
3 + x3y3 + y2

3) +
p1

p3
|0.2 + (−1 + ∆1)x2|+

p2

p3
| − 0.2 + ∆4 + x1|.

(30)

Based on the Hypothesis 2.2, the bounds of H1, H2, H3 can be expressed as

H1 ≤ 0.996 + 0.004M2
1 +

7.5p2

p1
|∆2|+

p2

p1
|∆1|M3 +

0.2p3

p1

+
p3

p1
(1 + |∆1|)M2, (31)

H2 ≤ 0.996 + 2|∆3|+ 0.004M2
2 + 6|∆3|M2

2 +
7.5p1

p2
|∆2|

+
p1

p2
|∆1|M3 +

p3

p2
(0.2 + |∆4|+ M1), (32)

H3 ≤ 0.596+0.004M2
3 +0.2

(p1

p3
+

p2

p3

)
+

p1

p3
(1+|∆1|)M2+

p2

p3
(|∆4|+M1). (33)

On the other hand, we have

∆A(t) =

 0 −∆2(1 + 6.5 cos t) 0
0 −∆3 0
0 −∆4 0

 , ∆f(x) =

 −∆1x2x3

−∆3x
3
2

0

 ,
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and ∆m(t) = (0, 0, 1.625 sin t− (1.625 + ∆5) sin(t + ∆6))T . Hence, we can obtain

‖∆m(t)‖ = |1.625 sin t− (1.625 + ∆5) sin(t + ∆6)|
≤ |1.625 sin t− (1.625 + ∆5) sin t|+ |(1.625 + ∆5)(sin t− sin(t + ∆6))|
≤ |∆5|+ (1.625 + |∆5|)| sin t− sin(t + ∆6)|.

By the differential mean-value theorem, yields

‖∆m(t)‖ ≤ |∆5|+ (1.625 + |∆5|)|∆6|. (34)

Thus, we can get the following inequalities

||∆A(t)x + ∆f(x) + ∆m(t)||
≤ ‖∆A(t)x‖+ ‖∆f(x)‖+ ‖∆m(t)‖

= |x2|
√

∆2
2(1 + 6.5 cos t)2 + ∆2

3 + ∆2
4 + |x2|

√
∆2

1x
2
3 + ∆2

3x
4
2 + ‖∆m(t)‖

≤ M2

√
56.25∆2

2 + ∆2
3 + ∆2

4 + M2

√
∆2

1M
2
3 + ∆2

3M
4
2 + |∆5|

+(1.625 + |∆5|)|∆6|. (35)

From condition (ii) in Theorem 3.1, gives

α ≥ M2

√
56.25∆2

2+∆2
3+∆2

4+M2

√
∆2

1M
2
3 +∆2

3M
4
2 +|∆5|+(1.625+|∆5|)|∆6|. (36)

From Figure 1, we know that the bounds of the chaotic attractor are −3 < x1 < 2.4,
−3 < x2 < 2 and −2 < x3 < 1.4. Namely, M1 = 3, M2 = 3 and M3 = 2. Usually,
the values of ∆i can be uncertain, i = 1, 2, . . . , 6. Taking the bounds of the parameter
mismatch are |∆1| ≤ 0.2, |∆2| ≤ 0.02, |∆3| ≤ 0.0002, |∆4| ≤ 0.02, |∆5| ≤ 0.02 and
|∆6| ≤ 0.02, then α ≥ 1.707 is obtained from inequality (36). From inequalities (31) –
(33), it can be seen that the values of p1, p2 and p3 can adjust the magnitudes of H1, H2

and H3. In order to get the optimal value of β, taking p1 = 1.5p2 and p3 = 1.7p2, we
can further obtain H1 ≤ 5.705, H2 ≤ 5.518 and H3 ≤ 5.859 from inequalities (31) –
(33). Therefore, β > 5.859. For given a desired synchronization error bound ε = 0.01,
by taking γ2 = 0.2 < 1, together with the above data, we can get δ < 0.0026 from
inequality (22).

Based on the above data, take α = 1.75, β = 5.86, δ = 0.002, ∆1 = 0.15, ∆2 =
0.015, ∆3 = 0.0001, ∆4 = 0.015, ∆5 = −0.01 and ∆6 = −0.015, which are chosen
within their bounds, respectively. We plot the time-response curve of the norm of the
synchronization error in Figure 2 with the initial values (x1(0), x2(0), x3(0)) = (1, 1, 1),
and (y1(0), y2(0), y3(0)) = (−1,−1,−1), which are taken arbitrarily. From Figure 2,
we can see that the real synchronization error bound is smaller than the desired one
ε = 0.01, which means the robustness of the synchronization for the parameter mismatch.
It further demonstrates the effectiveness of the presented control technique.

If we take γ2 = 0.1 and δ = 0.005 satisfying inequality (20), and the values of α and
β are the same as the above data, then σ = 0.017 is obtained from analytical expression
(23). In this case, the synchronization scheme (25) – (26) also can achieve practical
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Fig. 2. Synchronization error curves with γ2 = 0.2 and δ = 0.002 for

the master-slave system (25) – (26).

synchronization, as shown in Figure 3, and the initial values are the same as in Figure 2.
From Figure 3, we also can see that the real synchronization error bound is smaller than
the estimated one σ = 0.017, which also means the robustness of the synchronization
for the parameter mismatch. Therefore, the simulation results have a good agreement
with the theoretical analysis obtained in the paper.
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Fig. 3. Synchronization error curves with γ2 = 0.1 and δ = 0.005 for

the master-slave system(25) – (26).

For given γ2 = 0.3, α and β are the same as mentioned above, then δ < 0.205 is
obtained from inequality (20). In practice, we hope to get the synchronization error
as small as possible. Thus, we plot the estimated synchronization error bound σ in
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expression (23) with different values of the impulse interval δ only from 0.001 to 0.02,
as visualized by Figure 4. In addition, if for given δ = 0.001, α and β are the same
as mentioned above, then from inequality (20) or (10), γ2 < 0.994 is obtained. Thus,
one can get k ∈ (−1.997, −1) ∪ (−1, −0.003). Consider the practical significance,
we also plot part of the curve about the estimated synchronization error bound σ in
expression (24) with different values of control gain k ∈ (−1.9, −1) ∪ (−1, −0.1), as
shown in Figure 5. Subsequently, the relationship between γ2 and the impulse interval
δ is considered. For given a desired synchronization error ε = 0.01, from inequality
(21), the maximum value of impulse interval denoted by δmax versus γ2 can be shown
in Figure 6. According to Figs. 4 – 6, δ and k can be selected properly for purpose of
practical control strategy, respectively.
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Fig. 4. Synchronization error bound estimated by Eq. (24) increases

as the impulse interval gets bigger in the case of γ2 = 0.3.
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Fig. 5. Estimated synchronization error bound versus the control

gain k in the case of δ = 0.001.
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5. CONCLUSION

By using impulsive control, this paper has derived some general criteria to make n-
dimensional nonautonomous chaotic systems with parameter mismatch achieve robust
practical synchronization. The values of the parameter mismatch can be uncertain.
Furthermore, the synchronization error bound can be estimated by an analytical expres-
sion, which shows that the synchronization error can be controlled as small as possible
by selecting control gain and impulse interval properly. As a direct application of the
new theoretical results, a representative example is simulated and discussed in detail.
Numerical experiments verify the effectiveness and robustness of the proposed control
technique. It is believed that the presented technique may provide a valuable insight
into the underlying use of chaos synchronization in practical designs and engineering
applications.
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