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CHAOTIC BEHAVIOR AND MODIFIED FUNCTION
PROJECTIVE SYNCHRONIZATION OF A SIMPLE
SYSTEM WITH ONE STABLE EQUILIBRIUM

Zhouchao Wei and Zhen Wang

By introducing a feedback control to a proposed Sprott E system, an extremely complex
chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic
and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show
that chaos also can be generated via a period-doubling bifurcation when the system has one
and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law
and the parameter update law are derived to achieve modified function projective synchronized
between the extended Sprott E system and original Sprott E system. Numerical simulations
are presented to demonstrate the effectiveness of the proposed adaptive controllers.

Keywords: chaotic attractors, stable equilibrium, Shilnikov theorem, Lyapunov exponent,
synchronization
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1. INTRODUCTION

Since Lorenz found the first chaotic attractor in a smooth 3D autonomous system [2],
searching for new chaotic attractors has been intensively considered in the past three
decades within the scientific, engineering and mathematical communities. Many Lorenz-
like or Lorenz-based chaotic systems were proposed and investigated. In 2004, Lü, Chen
and Cheng discussed the important problems of classification and normal form of three-
dimensional quadratic autonomous chaotic systems [4]. Some classical 3D autonomous
chaotic systems have three particular fixed points: one saddle and two unstable saddle-
foci [1, 3, 7, 20, 22]. The other 3D chaotic systems have two unstable saddle-foci [16, 17].
In 2008, Yang and Chen found another 3D chaotic system with three fixed points:
one saddle and two stable equilibria [23]. Note that the aforementioned methods for
generating multi-scroll attractors in autonomous systems are based on the fundamental
work of Shilnikov [14, 15] and its subsequent embellishment and slight extension [10].
However, Shilnikov criteria is sufficient but certainly not necessary for the emergence of
chaos. Creating a chaotic system with a more complicated topological structure such as
chaotic attractors with only one stable equilibrium or several stable equilibria, therefore,
becomes a desirable task and sometimes a key issue for many engineering applications.

In the investigation of chaos theory and applications, it is very important to generate
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new chaotic systems or to enhance complex dynamics and topological structure based
on the existing chaotic attractors. In this endeavor, in 2010, an unusual 3D autonomous
quadratic Lorenz-like chaotic system with only two stable node-foci was proposed by
Yang, Wei and Chen [24]. In 2011, a chaotic system with no equilibria was proposed by
Wei [21], which was illustrated in the case of a period-doubling sequence of bifurcations
leading to a Feigenbaum-like strange attractor. In 2012, Wang and Chen obtained a
kind of chaotic attractors with only one stable node-focus by adding a simple constant
control parameter to Sprott E system [19]. However, based on a classification condition
formulated by Vanecek and Celikovsky [18], these chaotic systems satisfy a12a21 > 0,
a12a21 < 0 or a12a21 = 0. In addition, according to another classification developed in
[23], they are classified into the Lorenz system group if a11a22 > 0 and the Chen system
group if a11a22 < 0, or the Yang–Chen system (transition system) group if a11a22 = 0.
Concerning the conditions on the signs of a11a22, a nature question is these signs are
essential to the system dynamics, and whether can we construct a chaotic system meets
two or three conditions of a11a22 > 0, a11a22 < 0 and a11a22 = 0. In particular, Sprott
embarked up on an extensive search for autonomous 3D chaotic systems with less than
seven terms in the right hand side of the model equations [11-13]. From the above point
of view, we can see that the study of constructing a chaotic system with only one stable
equilibrium or several stable equilibriums, and with less than seven terms in the right
hand side, also satisfies two or three conditions of a11a22 > 0, a11a22 < 0 or a11a22 = 0
is of high practical importance.

In the qualitative theory of polynomial differential systems, people always find the
global structure of the system, the number and distribution of limit cycles etc by polyno-
mial perturbation technique [8, 26]. Following this idea, and motivated by Ref.[19], this
paper introduces another generalized system, and utilizes a nonlinear function to create
chaotic attractors with only a stable equilibrium, and satisfies two conditions a11a22 > 0
and a11a22 = 0, respectively, depending on suitable values of the system’s parameters.
We analyze the complicated dynamics by theoretical analysis, numerical simulation and
Lyapunov exponent spectrum. The evolution processes of this system and dynamics
behaviors will be presented when parameters vary.

2. THE NOVEL CHAOTIC SYSTEM FROM SPROTT E SYSTEM

2.1. Chaotic attractor

Based on the Sprott E system, a new chaotic system ẋ = yz + h(x)
ẏ = x2 − y
ż = 1− 4x

(1)

is proposed. Here h(x) = ex2 + fx + g and e, f, g are real parameters. This system
(1) has one equilibrium E =

(
1
4 , 1

16 ,−e− 4f − 16g
)
. In particular, if e = f = g = 0,

system (1) is the Sprott E system [11]; if e = f = 0, system (1) is the changed Sprott E
system [19].

Note that for e = −0.14 and f = g = 0, system (1) is chaotic and displays a chaotic
attractor like two-scroll, as shown in Figures 1(a) and 1(b). Interestingly, the chaotic
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Fig. 1. Parameters values (e, f, g) = (−0.14, 0, 0) of system (1): (a) chaotic attractor in 3-D

space; (b) chaotic attractor projected in y-z plane.

attractor is different from that of the Lorenz system or any existing systems, because
the only one equilibrium E is stable, whose characteristic values are λ1 = −1.0572,
λ2,3 = −0.0064 ± 0.4862i. Therefore, system (1) has no homoclinic orbits joining E.
The Lyapunov exponents of system (1) are L1 = 0.1020, L2 = 0, L3 = −1.1719, and
the Lyapunov dimension is DL = 2.0870 for initial value (-0.6, 0.9, -1.7). Figure 2(a)
shows the Poincaré mapping on the plane z = 0. Figure 2(b) displays the times series
of state variable z(t) of system (1). Furthermore, when f = 0.03 and e = g = 0,
system (1) also can displays a chaotic attractor with one and only one stable equilibrium
E = (0.25, 0.0625,−0.12), as shown in Figures 3(a) and 3(b).
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Fig. 2. (a) Poincaré mapping on y = 1 section; (b) times series of state variable z(t).

Remark 2.1. In addition to the choice f(x) = g [19], we can also get this result ob-
tained by Wang and Chen if the function f(x) = ex2 or fx. In other words, the following
two simple systems both generate chaotic attractors when the following system (2) and
system (3) have one and only one stable equilibrium, respectively. ẋ = yz + ex2

ẏ = x2 − y
ż = 1− 4x,

(2)

 ẋ = yz + fx
ẏ = x2 − y
ż = 1− 4x.

(3)
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Fig. 3. Parameters values (e, f, g) = (0, 0.03, 0) of system (1): (a) chaotic attractor in 3-D

space; (b) chaotic attractor projected in y-z plane.

2.2. Some basic properties of the new system (1)

By linearization around the equilibrium E, the Jacobian matrix of system (1) is given
by

J(E) =

 e
2 + f −e− 4f − 16g 1

16
1
2 −1 0
−4 0 0

 . (4)

Obviously, the characteristic equation about the equilibrium E is :

det (λI − J(E)) = λ3 +
(
1− f − e

2

)
λ2 +

(
1
4

+ f + 8g

)
λ +

1
4

= 0. (5)
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According to the Routh–Hurwitz criterion, the real parts of all the roots λ are negative
if and only if

∆1 = 1− f − e

2
> 0,

∆2 =
(
1− f − e

2

) (
1
4

+ f + 8g

)
− 1

4
> 0.

From these inequalities, there are

f < 1− e

2
, e <

2(3f − 4f2 + 32g − 32fg)
1 + 4f + 32g

. (6)

Therefore, the equilibrium E is asymptotically stable when the above conditions are
met.

3. ANALYSIS OF HOPF BIFURCATION FOR F = 0

In this section, we deal with another kind of bifurcation at the E of system (1) using an
analytical method.

Suppose the characteristic equation (5) has pure imaginary roots λ1,2. It is easy to
show that when g = g0 = e

32(2−e) and e < 2, the Jacobian matrix of system (1) has a
pair of imaginary eigenvalues and one negative real eigenvalue, i. e.

λ1,2 = ±i

√
1

4− 2e
, λ3 =

e− 2
2

,

with the corresponding eigenvectors (denoting w = 4− 2e)

v1 =
(

1,

√
w

2i + 2
√

w
, 4i
√

w

)
,

v2 =
(

1,

√
w

−2i + 2
√

w
,−4i

√
w

)
,

v3 =
(

1,− 2
−4 + w

,
16
w

)
.

By utilizing (x, y, z)′ = P (x1, y1, z1)′, where

P =

 1 0 1
w

2(1+w)

√
w

2(1+w) − 2
−4+w

0 −4
√

w 16
w

 , (7)

the real system (1) becomes

P =

 ẋ1

ẏ1

ż1

 = P−1JP

 x1

y1

z1

 + P−1

 ex2 + yz
x2

0

 ,
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or, equivalently 
ẋ1 = − 1√

w
y1 + f1

ẏ1 = 1√
w

x1 + f2

ż1 = −w
4 z1 + f3,

(8)

where

f1 = f11(64wx2
1 + 16w2x2

1 − 36w3x2
1 + 11w4x2

1 − w5x2
1 − 64w5/2x1x2

+16w7/2x1x2 − 16w9/2x1x2 + 4w11/2x1x2 − 64w2x2
2 + 16w3x2

2

−16w4x2
2 + 4w5x2

2 + 384wx1x3 − 32w2x1x3 − 8w3x1x3 + 6w4x1x3

−2w5x1x3 + 256
√

wx2x3 − 128w3/2x2x3 − 32w7/2x2x3 − 16w9/2x2x3

+256x2
3 + 320wx2

3 + 80w2x2
3 + 28w3x2

3 + 11w4x2
3 − w5x2

3),
f2 = f22(−16x2

1 − 12wx2
1 − 3w3x2

1 + w4x2
1 − 16w5/2x1x2 + 4w7/2x1x2

−16w2x2
2 + 4w3x2

2 − 32x1x3 + 40wx1x3 − 16w2x1x3 − 6w3x1x3

+2w4x1x3 + 64
√

wx2x3 − 32w3/2x2x3 − 16w5/2x2x3 + 48x2
3

+52wx2
3 − 3w3x2

3 + w4x2
3),

f3 = f33(−16x2
1 − 12wx2

1 − 3w3x2
1 + w4x2

1 − 16w5/2x1x2 + 4w7/2x1x2

−16w2x2
2 + 4w3x2

2 − 32x1x3 + 40wx1x3 − 16w2x1x3 − 6w3x1x3

+2w4x1x3 + 64
√

wx2x3 − 32w3/2x2x3 − 16w5/2x2x3 + 48x2
3

+52wx2
3 − 3w3x2

3 + w4x2
3)

and

f11 = − 2
(w − 4)w(1 + w)(16 + w3)

,

f22 = − 2√
w(1 + w)(16 + w3)

,

f33 = − w

2(1 + w)(16 + w3)
.

According to the center manifold theorem, there exists a center manifold for Eq. (8),
which could be represented locally by

Wc = {(x1, y1, z1) ∈ R3|z1 = h(x1, y1), |x1| < δ, |y1| < δ, h(0, 0) = 0, Dh(0, 0) = 0}

where |δ| is sufficiently small. We assume that

z1 = h(x1, y1) = Ax2
1 + Bx1y1 + Cy2

1 + · · ·

Comparing the coefficients of the first equation and second equation of Eq. (8), we
obtain

A = −2(−4 + w)(128 + 128w + 160w2 + 36w3 − 12w4 + w5 + w6)
(1 + w)(4 + w)(16− 4w + w2)(16 + w3)

,

B = −8(−4 + w)w3/2(8 + 8w − 6w2 + 2w3 + w4)
(1 + w)(4 + w)(16− 4w + w2)(16 + w3)

,

C = −8(−4 + w)(32 + 32w + 40w2 + 8w3 + 4w4 + w5)
(1 + w)(4 + w)(16− 4w + w2)(16 + w3)

.
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Hence, the system (8) restricted to the central manifold is given by:{
ẋ1 = − 1√

w
y1 + f1(x1, y1, h(x1, y1))

ẏ1 = 1√
w

x1 + f2(x1, y1, h(x1, y1)).
(9)

Now we calculate index number K by the following formula:

K =
1
16

[f1
x1x1x1

+ f1
x1y1y1

+ f2
x1x1y1

+ f2
y1y1y1

]

+
1

16ω0
[f1

x1y1
(f1

x1x1
+ f1

y1y1
)− f2

x1y1
(f2

x1x1
+ f2

y1y1
)− f1

x1x1
f2

x1x1
+ f1

y1y1
f2

y1y1
].

Then

K = K(0, 0) =
2(512 + 1344w + 960w2 + 300w3 − 84w4 − 19w5 + 3w6)

(1 + w)(16 + w3)(64 + w3)
.

From Eq. (5), we have

λ′(g0) = − 8(2− e)2

2 + (2− e)3
< 0. (10)

Therefore, we have the theorem:

Theorem 3.1. If g = g0 = e
32(2−e) and e < 2, the system (1) undergoes a Poincare–

Anddronov–Hopf bifurcation (Hopf bifurcation) at the E =
(

1
4 , 1

16 ,−e− 4f − 16g
)
. In

addition, the periodic orbits that bifurcate from the equilibrium E for a in the neigh-
borhood of as, are stable if K < 0, and unstable if K > 0. The direction of bifurcation
are above (bellow) g0 if K > 0 (K < 0).

Remark 3.2. Denoting by ei (i = 1, 2) the only two roots of G(u) for which u > 0, we
find that e1 ≈ −1.65331 and e2 ≈ −0.65080. Moreover, the following results are also
obtained:

(i) When g = gh, e1 < e < e2, system (1) undergoes a transversal Hopf bifurcation
at a stable weak focus E for the flow restricted to the center manifold. Moreover, for
each g < gh(e1), but close to gh(e1), there exists a stable limit cycle near the unstable
equilibrium point E.

(ii) When g = gh, e < e1 or e2 < e < 2, system (1) undergoes a transversal Hopf
bifurcation at an unstable weak focus E for the flow restricted to the center manifold.
Moreover, for each g > gh(e2), but close to gh(e2), there exists a unstable limit cycle
near the stable equilibrium point E.

In order to justify the above theoretical analysis of the first Lyapunov coefficient for
the Hopf bifurcation of system (1), we chose one set of parameters with f = 0, e = −1.2
and g = −0.0142 < gh(e1). According to Theorem 3.1, a stable periodic solution should
be found near the unstable equilibrium point E. This is indeed the case, as shown
in Figure 4. For g > gh(e2), the equilibrium point E is asymptotically stable. Note
that for these parameter values, we have the bifurcation value g = gh(e2) ≈ −0.00767.
Therefore, the system (1) undergoes a Hopf bifurcation when the parameter g crosses
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the critical value gh(e2), and a unstable periodic orbit emerges from E with g > gh(e2).
Choosing f = 0, e = −0.4 and g = 0 > gh(e2), we take initial values (0.28, 0.032, 0.1)
near the equilibrium E, the solution of system (1) eventually close to 0. However, if
we take initial values (−0.6, 0.9,−1.7) ’outside’ the unstable periodic orbit (it does exist
from the Hopf bifurcation), a chaotic attractor exists near the unstable equilibrium E.
The results are shown in the Figure 4. Therefore, it seems when the parameter g moves
away from the critical value g = gh(e2), chaotic attractor is generated occurring from
the unstable limit cycle that arose in the Hopf bifurcation.
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Fig. 4. Attractors of system (1) with parameter values : (a) Parameters values

(f, g, e) = (0,−0.0142,−1.2), stable periodic solution in 3-D space for starting initial values

(0.28, 0.032, 0.1); (b) Parameters values (f, g, e) = (0, 0,−0.4), chaotic attractor for starting

initial values (−0.6, 0.9,−1.7).
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4. DYNAMICAL STRUCTURE OF THE NEW CHAOTIC SYSTEM

The basic dynamics of the new chaotic system can be summarized in the following
Lyapunov exponent spectrum, bifurcation diagrams, and so on. Here, we only consider
two cases: (1): fg 6= 0; (2) f = g = 0.

4.1. e increasing when f = −0.1, g = 0.02

Figure 5 (a) shows the bifurcation diagram of the state variable z(t) for initial value (-0.6,
0.9, -1.7) versus parameter e when f = −0.1, g = 0.02 and e ∈ [−0.4, 0.5]. Figure 5 (b)
shows the corresponding Lyapunov exponent spectra. According to the characteristic
polynomial (5) and condition (6), E is asymptotically stable. Obviously, the maximum
Lyapunov exponent is negative when e ∈ [−0.4,−0.303), implying that the new system
(1) is attracted into a sink. Symmetric dynamical behaviors can be clearly observed.
The forward bifurcation appears in the region (-0.303,-0.198), and the reverse bifurcation
appears in the region [0.267, 0.5]. From Figure 5 (a), it is clear that −0.015 ≤ e < 0.08
is a periodic window: −0.015 ≤ e < 0.029 is period-2 orbit region; 0.029 < e < 0.048
is period-4 orbit region. As e increases in the range of 0.048 < e < 0.08, system (1) is
chaotic. And we can see that the transition to chaos via period-doubling bifurcations.

4.2. e increasing when f = 0, g = 0

Now we fix f = 0, g = 0 and vary e ∈ [−0.6, 0.3]. It is presented that two different
type of chaotic attractors coexist for certain parameter conditions. Figure 6 (a) shows
the bifurcation diagram of the state variable z(t). Figure 6 (b) shows the corresponding
Lyapunov exponent spectra in which E is asymptotically stable for e < 0. The maximum
Lyapunov exponent is negative when e ∈ (−0.6,−0.508), implying that the new system
(1) is attracted into a sink. When e passes through −0.508, topology structure of the
system changes dramatically and the maximum Lyapunov exponent rapidly becomes
positive. As e increases further in the region e > 0.087, the reverse bifurcation appears.

When e ∈ [−0.508, 0), the max Lyapunov exponent L1 > 0 and the novel system has
chaotic state with stable equilibrium. For e = 0, system (1) is also chaotic with a positive
Lyapunov exponent (see Figure 6 (b)) and corresponding equilibrium is non-hyperbolic.
Note that for any e > 0, E is unstable, but the chaotic attractor can also be obtained
in the range (0, 0.087].

5. MODIFIED FUNCTION PROJECTIVE SYNCHRONIZATION
BETWEEN SYSTEM (1) WITH SPROTT E SYSTEM

In this section, we will study the synchronization behavior between system (1) with
Sprott E system. The drive and response systems are described by the following equa-
tions, respectively,

 ẋ1 = y1z1 + ex2
1 + fx1 + g

ẏ1 = x2
1 − y1

ż1 = 1− 4x1,
(11)
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Fig. 5. Parameters values (f, g) = (−0.1, 0.02) of system (1): (a) Lyapunov exponent

spectrum with e ∈ [−0.4, 0.5]; (b) Bifurcation diagram of the variable z with e ∈ [−0.4, 0.5].

 ẋ2 = y2z2 + a + u1

ẏ2 = x2
2 − y2 + u2

ż2 = 1− 4x2 + u3,
(12)

where u1, u2, u3 are the nonlinear control laws such that two chaotic systems can be
synchronized in the sense that

lim
t→∞

|x2 −m1h(x)x1| = 0, (13)

lim
t→∞

|y2 −m2h(x)y1| = 0, (14)

lim
t→∞

|z2 −m3h(x)z1| = 0. (15)
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Fig. 6. Parameters values (f, g) = (0, 0) of system (1): (a) Lyapunov exponent spectrum

with e ∈ [−0.6, 0.3];(b) Bifurcation diagram of the variable z with e ∈ [−0.6, 0.3].

Now, define the error signals as
ėx = ẋ2 −m1h(t)ẋ1 −m1

˙h(t)x1

ėy = ẏ2 −m2h(t)ẏ1 −m2
˙h(t)y1

ėz = ż2 −m3h(t)ẏ1 −m3
˙h(t)z1,

(16)

where ex = x2−m1h(x)x1, ey = y2−m2h(x)y1 and ez = z2−m3h(x)z1. Therefore, the
error dynamical system

ėx = y2z2 + a + u1 −m1h(t)(y1z1 + ex2
1 + fx1 + g)−m1

˙h(t)x1

ėy = x2
2 − y2 + u2 −m2h(t)(x2

1 − y1)−m2
˙h(t)y1

ėz = 1− 4x2 + u3 −m3h(t)(1− 4x1)−m3
˙h(t)z1.

(17)
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Our aim is to find control laws ui, i = 1, 2, 3 for stabilizing the error variables of the
system at the origin. For this end, we propose following control law:

u1 = −y2z2 − a1 + m1h(t)(y1z1 + e1x
2
1 + f1x1 + g1) + m1

˙h(t)x1 − k1ex

u2 = −x2
2 + y2 + u2 + m2h(t)(x2

1 − y1) + m2
˙h(t)y1 − k2ey

u3 = −1 + 4x2 + m3h(t)(1− 4x1) + m3
˙h(t)z1 − k3ez,

(18)

and the update laws for the unknown parameters e1, f1, g1 and a1 are
ė1 = −exm1h(t)x2

1 − k4(e1 − e)
ḟ1 = −exm1h(t)x1 − k5(f1 − f)
ġ1 = −exm1h(t)− k6(g1 − g)
ȧ1 = ex − k7(a1 − a),

(19)

where ki > 0, i = 1, 2, . . . , 7.

Theorem 5.1. For given constant scaling matrix M and scaling function h(t), the
MFPS between two systems (11) and (12) will occur by the control law (18) and update
law (19), and satisfy lim

t→∞
|e1−e| = 0, lim

t→∞
|f1−f | = 0, lim

t→∞
|g1−g| = 0, lim

t→∞
|a1−a| = 0.

P r o o f . Define a Lyapunov function,

V (e) =
1
2
(e2

x + e2
y + e2

z + e2
e + e2

f + e2
g + e2

a),

where
ee = e1 − e, ef = f1 − f, eg = g1 − g, ea = a1 − a.

Therefore, the time derivative of the Lyapunov function

˙V (e) = −k1e
2
x − k2e

2
y − k3e

2
z − k4e

2
e − k5e

2
f − k6e

2
g − k7e

2
a. (20)

It is clear that V (e) is positive definite and ˙V (e) is negative definite. According to the
Lyapunov stability theorem, the error system can converge to the origin asymptotically.
Therefore, the drive system (10) and the response system (10) can be synchronized in
the sense of MFPS. This completes the proof. �

We assume that the parameters (e, f, g) = (−0, 14, 0, 0) and a = 0.006 (see [19]),
the initial conditions of the drive system are (x1(0), y1(0), z1(0)) = (0.6, 0.9,−1.7),
and the initial conditions of the response system are (x2(0), y2(0), z2(0)) = (1, 1, 1)
(see [19]). Moreover, the initial conditions of the estimated parameters are chosen
as (e1(0), f1(0), g1(0), a1(0)) = (−0.3, 0.2,−0.2, 0). Let the scaling function be h(t) =
sin(0.2πt) and the scaling factors are chosen as m1 = 1,m2 = 3,m3 = 5. Furthermore,
the control gains are chosen as k1 = k2 = k3 = k4 = k5 = k6 = k7 = 2. Figure 7 (a)
displays the MFPS between systems (11) and (12). Figure 7 (b) show that the estimates
e1, f1, g1, a1 of the unknown parameters converge to e, f, g, a as t →∞.
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Fig. 7. (a) The behavior of the trajectories ex, ey, ez of the error system between chaotic

system (1) and Sprott E system for MFPS; (b) the estimates e1, f1, g1, a1 of the unknown

parameters converge to −0.14, 0, 0, 0.006 as t→ 10.

6. CONCLUSION

In this paper, a changed Sprott E system is constructed. The chaotic attractors coex-
isting with only one stable equilibrium is different from the other existing homoclinic
chaos or heteroclinic chaos. Some basic properties of the system have been investigated
in terms of chaotic attractors, equilibria, Lyapunov exponent spectrum, bifurcation dia-
gram and associated Poincaré map. However, the generation mechanism of chaos in the
system still needs further studying and investigating, such as finding new criteria for the
existence of chaos in some chaotic system with no homoclinic and heteroclinic orbits.
Using numerical mathematical analysis and simulations, we detected the coexistence of
limit cycles and chaotic attractors which verified rich dynamics of the extend Sprott E
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system. Moreover, we investigated modified function projective synchronization between
the extended Sprott E system and original Sprott E system. Numerical simulations were
provided to show the effectiveness of the proposed method. This special chaotic system
has great potential for communication and electronics, it deserves further investigation
in the near future.

In future works, we will use the proposed analysis method to investigate some complex
chaotic systems, such as the typical multi-scroll chaotic systems by some effective design
methods using piecewise-linear functions, cellular neural networks, nonlinear modulating
functions, circuit component design, switching manifolds, etc. [5, 6, 25]. It is expected
that more detailed theory analysis will be provided in a forthcoming paper.
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[5] J. H. Lü, F. L. Han, X. H. Yu, and G. R. Chen: Generating 3-D multi-scroll chaotic
attractors: A hysteresis series switching method. Automatica 40 (2004), 1677–1687.
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