
KYB ERNET IK A — VO LUME 4 9 ( 2 0 1 3 ) , NUMBER 2 , PAGES 2 1 6 – 2 2 3

COMPLEXITY OF TESTING MORPHIC PRIMITIVITY

Štěpán Holub and Vojtěch Matocha

We analyze an algorithm that decides whether a given word is a fixed point of a nontrivial
morphism. We show that it can be implemented to have complexity in O(m · n), where n is
the length of the word and m the size of the alphabet.

Keywords: fixed points, morphic primitivity, complexity

Classification: 68R15

1. INTRODUCTION

The word u = abaaba satisfies f(u) = u where f maps b to aba and cancels a. Such words,
which are fixed points of a nontrivial morphism, are called morphically imprimitive. On
the other hand, the word u′ = abba can be easily verified to be morphically primitive,
which means that the only morphism satisfying f(u′) = u′ defined on {a, b}∗ is the
identity.

Fixed points of word morphisms and morphically (im)primitive words are studied in
[2, 3, 6, 5]. In [4], the first polynomial algorithm is presented (called MorphicFactor-
ization) that decides whether a given word w is morphically primitive. Moreover, given
the input word w, it finds a corresponding morphism satisfying f(w) = w with minimal
number of letters mapped to a nonempty word (that is, not cancelled).

The complexity of MorphicFactorization is estimated as O(m + log n) · n in [4].
Here we provide a more detailed analysis of the algorithm and improve the estimate to
O(|E| · n), where E is the set of those letters x for which f(x) is nonempty.

2. DEFINITIONS

Let alph(w) denote the set of letters occurring in w and |w| the length of w. For a set
S ⊂ alph(w), denote by |w|S the number of all occurrences of letters from S in w; we
shorten |w|{a} as |w|a.

Each morphism f , satisfying f(w) = w, induces a factorization of w, called a morphic
factorization. The morphic factorization consists of a set E and a sequence (w1, w2, . . . ,
wk) such that

� w = w1w2 · · ·wk,
� |wi|E = 1 for each i = 1, 2, . . . , k, and
� if |wi|e = |wj |e = 1 for some e ∈ E, then wi = wj .



Complexity of testing morphic primitivity 217

It is shown in [2] that we can suppose, without loss of generality, that f is idempotent,
that is, f(a) = f(f(a)) for each a ∈ alph(w). (It is enough to iterate a general f
sufficient number of times in order to obtain its idempotent version.) Throughout the
paper, we shall therefore assume that f is idempotent. The relation between f and the
corresponding morphic factorization is then as follows: for each i = 1, . . . , k, we have
wi = f(e), where e is the unique letter from E occurring in wi, and f(a) = ε if a /∈ E
(where ε denotes the empty word). Letters in E are called expanding. We say that E
is a minimal set of expanding letters if no proper subset of E is the set of expanding
letters for a morphism f ′ satisfying f ′(w) = w. In [4], it is shown that all minimal sets
of expanding letters have the same cardinality.

Denote the ith letter of w by w[i] and write w[i . . . j], with i ≤ j, to denote the factor
w[i]w[i + 1] · · ·w[j] of w. We will also work with the set Cw of cuts, that is, of borders
between two consecutive letters (plus the beginning and the end of w). A word w has
|w| + 1 cuts and we represent them by integers 0, 1, . . . , |w|. The cut k is the border
following the prefix of length k. Note that cuts i, j delimit the factor w[i + 1 . . . j].

Given a word w and a morphism f such that f(w) = w, we say that a cut k is a
left cut if it lies in the image of an expanding letter on its left side. More formally,
the cut k is a left cut if |f(w[1 . . . k])| ≤ k. Similarly, we say that k is a right cut if
|f(w[1 . . . k])| ≥ k. Note that inequalities are not strict, therefore a cut k can be both
left and right, which happens if and only if |f(w[1 . . . k])| = k. Note that cuts that are
both left and right define the morphic factorization of w induced by f . We say that
w[i, j] is a stretch factor if i is a left cut and j is a right cut.

For example, the word abaccaba is a fixed point of the morphism

f : a 7→ ε, b 7→ aba, c 7→ c.

Left and right cuts are given by the following figure:

a b a c c a b a0 1 2 3 4 5 6 7 8

L L L L L L L

R R R R R R R

An important and natural notion is the neighborhood of a letter a in w, denoted by na.
The neighborhood of a is the longest extension of a that is possible for all occurrences of
a in w. More precisely, let ara be the longest common prefix of all suffixes of w starting
with a. Similarly, let laa be the longest common suffix of all prefixes of w ending with
a. Then na = laara. It is easy to see that the word na contains exactly one occurrence
of a. (See Example 3.1 below for an illustration.)

Letters with minimal frequency in w that occur in a given factor play a special role
in the algorithm. Therefore, we define

α(i, j) = min{k | i < k ≤ j, |w|w[k] ≤ |w|w[k′] for all i < k′ ≤ j}.

In other words, α(i, j) is the leftmost position of a least frequent letter in w[i, j]. Note
that “least frequent” is measured with respect to whole w, not just with respect to
w[i, j].



218 Š. HOLUB, V. MATOCHA

3. DESCRIPTION OF THE ALGORITHM

The algorithm MorphicFactorization is based on the following characterization of
minimal expanding sets (for proofs and more details see [4]):

Let E be a minimal set of letters, and L,R minimal sets of cuts satisfying the following
stability conditions:

A. {0, |w|} ⊆ L, {0, |w|} ⊆ R.

B. Let w[k] = w[k′] = a with a ∈ E, Then

(a) k − 1 ∈ L and k ∈ R;

(b) k + |ra| ∈ L and k − |la| − 1 ∈ R;

(c) for each −|la| − 1 ≤ m ≤ ra we have that

� k + m ∈ L if and only if k′ + m ∈ L, and
� k + m ∈ R if and only if k′ + m ∈ R.

C. If i ∈ L, j ∈ R with i < j, then w[α(i, j)] ∈ E.

Then E is a minimal set of expanding letters. For a ∈ E, the image f(a) is defined as

f(a) = Image(a,E, L,R) := w[k − i, k + j],

where w[k] = a; i ≥ 0 is the smallest integer such that k − i − 1 ∈ R; and j ≥ 0 is the
largest integer such that

� k + j ∈ R, and

� k + j′ /∈ L holds for each j′ ≤ j.

Stability conditions guarantee that f(a) is well defined, in particular, it is independent
of the choice of k, and that the resulting morphism satisfies f(w) = w. Moreover, all cuts
in R are right cuts of the factorization, and cuts in L are left cuts. In view of the fact
that sets E, L and R represent expanding letters, left cuts and right cuts respectively,
stability conditions can be rephrased informally as follows:

A. the extremal cuts are both left and right;

B. (a) an expanding letter is delimited by a left and a right cut;

(b) neighborhood of an expanding letter is delimited by a right and a left cut
(the left border is a right cut and vice versa);

(c) neighborhoods of expanding letters are synchronized with respect to left and
right cuts;

C. the leftmost least frequent letter in each stretch factor is expanding.



Complexity of testing morphic primitivity 219

The core procedure of the algorithm MorphicFactorization consists in the con-
struction of sets E, L and R satisfying stability conditions. Given a subset E of alph(w),
we define subsets L(E) and R(E) of Cw as the smallest sets satisfying stability conditions
(A) and (B). Similarly, for two subsets L and R of Cw, we define E(L, R) as the small-
est subset of alph(w) satisfying the stability condition (C). We are looking for a set
E satisfying E = E(L(E), R(E)). If E 6= E(L, R), then there exist cuts i, j violating the
condition (C), that is, the letter w[α(i, j)] is not an element of E. Denote such a letter
by New(E, L, R). The algorithm is now described by the following simple pseudocode.

MorphicFactorization(w)
1 E← ∅; L← {0, |w|}; R← {0, |w|};
2 while E 6= E(L, R)
3 do E← E ∪ {New(E, L, R)};
4 L← L(E); R← R(E);
5 for each a ∈ alph(w)
6 do if a ∈ E
7 then f(a)← Image(a, E, L, R);
8 else f(a)← ε;
9 return f.

Several examples illustrating the work of the algorithm can be found in [4]. It can be also
tested and visualized on [7]. Here we add one more example. It can be also understood
as a replacement of Example 7 in [4], which is mistaken.

Example 3.1. Consider w = caabcaadeaabeaad, where na = a, nb = aab, nc = caa,
nd = aad and ne = eaa. Let us follow the run of the algorithm. At the beginning we
set E = ∅ and L = R = {0, 16}. Rounds of the while loop yield the following:

Round 1. � (C) implies New(E, L, R) = w[α(0, 16)] = w[1] = c;

c a a b c a a d e a a b e a a d0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L L

R R

nc nc

� since c ∈ E, (Ba) implies 0, 4 ∈ L, 1, 5 ∈ R, and (Bb) implies 3, 7 ∈ L, 0, 4 ∈ R;
the condition (Bc) is satisfied.

c a a b c a a d e a a b e a a d0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L L L L L

R R R R R



220 Š. HOLUB, V. MATOCHA

Round 2. � (C) implies New(E, L, R) = w[α(3, 4)] = w[4] = b;

c a a b c a a d e a a b e a a d0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L L L L L

R R R R R

nb nb

� since b ∈ E, (Ba) implies 3, 11 ∈ L, 4, 12 ∈ R, and (Bb) implies 4, 12 ∈ L,
1, 9 ∈ R; the condition (Bc) is satisfied.

c a a b c a a d e a a b e a a d0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L L L L L L L

R R R R R R R

Round 3. � (C) implies New(E, L, R) = w[α(7, 9)] = w[8] = d;

c a a b c a a d e a a b e a a d0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L L L L L L L

R R R R R R R

nd nd

� since d ∈ E, (Ba) implies 7, 15 ∈ L, 8, 16 ∈ R, and (Bb) implies 8, 16 ∈ L,
5, 12 ∈ R; the condition (Bc) is satisfied.

c a a b c a a d e a a b e a a d0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L L L L L L L L L

R R R R R R R R R

Round 4. � (C) implies New(E, L, R) = w[α(8, 9)] = w[9] = e;

c a a b c a a d e a a b e a a d0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L L L L L L L L L

R R R R R R R R R

ne ne

� all conditions (B) are satisfied.

The remaining part of the algorithm MorphicFactorization defines

f : a 7→ ε, b 7→ aab, c 7→ c, d 7→ aad, e 7→ e.

Note that also

f : a 7→ ε, b 7→ ab, c 7→ ca, d 7→ ad, e 7→ ea,

and
f : a 7→ ε, b 7→ b, c 7→ caa, d 7→ d, e 7→ eaa

are possible morphisms with the same set of expanding letters.



Complexity of testing morphic primitivity 221

4. COMPLEXITY ANALYSIS

In this section, we show that the complexity of the algorithm is in O(m · n), where n is
the length of the analyzed word, and m is the number of its letters. More precisely, we
show that the complexity is in

O(|E| · n),

where E is a minimal set of expanding letters.
The core of the algorithm is the while loop. The condition E = E(L, R) is checked

|E|+1 times and the loop is performed |E| times since in each round one letter is added
to E. Therefore, we have to prove that each round of the loop can be performed in O(n).

It is convenient to calculate, during the initialization phase, the value of |w|a for each
a ∈ alph(w), and also an array Pos[a, i], which yields the position of the ith occurrence
of a in w. The preprocessing is linear: it is enough to read the input once.

4.1. Evaluation of the loop condition

Evaluation of the loop condition consists in checking whether the stability condition (C)
is satisfied. If it is not, then the evaluation also outputs the letter New(E, L, R).

The condition seems to require that a possibly quadratic number of pairs (i, j) is
checked. Here we describe how the verification can be done in linear time (which is
claimed but not proved in [4]).

Look through cuts l in L in increasing order and for each l find the smallest cut r ∈ R
strictly larger than l, and k = α(l, r). Here we exploit the preprocessing, which allows
to obtain |w|w[i] in constant time. If w[k] /∈ E, then we have found New(E, L, R) and start
the next round of the while loop. If l = n and no violation of (C) was detected, return
E = E(L, R).

Note that r and k can never decrease, therefore the procedure is in O(n). However,
not all factors w[i, j] with i ∈ L and j ∈ R are checked; hence it has to be shown that
the stability condition (C) is verified correctly.

Suppose, for a contradiction, that our procedure outputs E = E(L, R), although i ∈ L
and j ∈ R violate the stability condition (C). Assume that j − i is as small as possible.
Let j′ < j be the smallest cut in R strictly larger than i and let k′ = α(i, j′). Since
the stretch factor w[i, j′] has been checked by the procedure, we deduce w[k′] ∈ E (and
k′ = j′). On the other hand, by assumption, we have w[k] /∈ E, where k = α(i, j). Hence
k′ < k and |w|k < |w|k′ . The stability condition (Bb) implies i′ = k′+ |rw[k′]| ∈ L. From
|w|k < |w|k′ , it is easy to conclude that the letter w[k] is not in nw[k′] and therefore
i′ < k.

i j′ i′ j

L L

R R

w[k′] w[k]

nw[k′]

Clearly, k = α(i, j) = α(i′, j), whence the factor w[i′, j] violates (C) too, a contradiction
with minimality of j − i.



222 Š. HOLUB, V. MATOCHA

4.2. Construction of L and R

The construction of sets L and R in each round consists in checking the stability condition
(B) (the stability condition (A) is fulfilled by the first line of the algorithm).

The condition (Ba) says that, for a new letter a ∈ E, we have to add positions
immediately before occurrences of a to the set L, and positions immediately after its
occurrences to the set R. This can be done in O(|w|a).

Similarly, the condition (Bb) adds starting positions of na to R, and ending positions
to L, where a is a letter newly added to E. This requires to calculate na, which is done
as follows. In order to calculate |ra|, check, for growing k ≥ 1, whether all letters

w[Pos[a, i] + k], i = 1, 2, . . . , |w|a

agree, until a mismatch is encountered for k = |ra| + 1. Similarly, with decreasing
k ≤ −1, it is possible to calculate |la|. The notion of a neighborhood implies that
neighborhoods of different occurrences of the same letter cannot overlap too much; each
position lies in at most two distinct neighborhoods of the same letter: once in its left
part and once in its right part. The number of positions visited during the calculation
is therefore at most 2n. We conclude that the cost of calculating na and of satisfying
(Bb) is in O(n).

The stability condition (Bc) is the most complex one. It can be concisely described as
keeping all neighborhoods na of the same letter a from E synchronized. The underlying
structure is an undirected graph with vertices Cw satisfying the following condition:

cuts Pos[a, i] + k and Pos[a, i′] + k

are connected for each

a ∈ E, 1 ≤ i, i′ ≤ |w|a and −|la| − 1 ≤ k ≤ |ra|.

The condition (Bc) then requires that connected cuts either all are, or all are not elements
of L (of R resp.). In other words, being in L (in R resp.) is a property of a connected
component rather than of an individual cut. We shall represent this information as a
forest of rooted trees of height one. Each cut is linked to its parent, which is the root
representing the connected component. The root also keeps the information whether
the component is in sets L, R. Checking whether the cut is in L (in R resp.) therefore
requires constant time.

When a new letter a is added to E, new edges synchronizing neighborhoods of a have
to be added too, and the graph becomes more complex. To satisfy the condition (Bc)
as it is formulated in the previous paragraph, it is enough to add edges

(Pos[a, 1] + k, Pos[a, i] + k)

for i = 2, . . . , |w|a and −|la| − 1 ≤ k ≤ |ra|. The number of new edges can be bounded
by an argument similar to the one used above when calculating neighborhoods: each
cut is the second vertex of a new edge at most two times. This implies that the number
of new edges is less than 2n. After new edges have been added, the algorithm searches



Complexity of testing morphic primitivity 223

the whole graph and compresses the connected components back to the forest of height
one. Since the graph has at most n old vertices and at most 2n new ones, this can be
done in O(n).

The final definition of f is clearly in O(n), which completes the proof.

5. CONCLUSION

We have shown that morphic primitivity can be tested in linear time for a fixed alphabet.
This may be surprising compared with the fact that a similar problem, checking the
existence of a morphism between two distinct words, is NP-complete (cf. [1]).

If the alphabet is not fixed, the algorithm is at worst quadratic, consider for example
the family of morphically primitive words

wn = a1a2 · · · an−1ananan−1 · · · a2a1,

for which the main loop of the algorithm runs n/2 rounds. On the other hand, our
analysis implies that it can be checked in linear time that all letters in wn have triv-
ial neighborhoods, whence the morphic primitivity follows. Precise complexity in the
uniform case therefore remains unclear.

(Received July 20, 2012)

R E FER E NCE S

[1] A. Ehrenfeucht and G. Rozenberg: Finding a homomorphism between two words is NP-
complete. Inform. Process. Lett. 9 (1979), 86–88.

[2] T. Head: Fixed languages and the adult languages of OL schemes. Internat. J. Comput.
Math. 10 (1981/82), 103–107.

[3] T. Head and B. Lando: Fixed and stationary ω-words and ω-languages. In: The Book of
L (G. Rozenberg and A. Salomaa, eds.), Springer-Verlag, Berlin –Heidelberg 1986, pp. 147–
156.

[4] Š. Holub: Polynomial algorithm for fixed points of nontrivial morphisms. Discrete Math.
309 (2009), 5069–5076.

[5] D. Reidenbach and J. C. Schneider: Morphically primitive words. Theoret. Comput. Sci.
410 (2009), 2148–2161.

[6] J. Shallit and M. W. Wang: On two-sided infinite fixed points of morphisms. Theoret.
Comput. Sci. 270 (2002), 659–675.

[7] http://www.karlin.mff.cuni.cz/∼holub/soubory/Vizual/stranka2.html

Štěpán Holub, Department of Algebra, Charles University, Sokolovská 83, 186 75 Praha 8.

Czech Republic.

e-mail: holub@karlin.mff.cuni.cz

Vojtěch Matocha, Department of Algebra, Charles University, Sokolovská 83, 186 75 Praha 8.

Czech Republic.

e-mail: matochav@volny.cz

http://www.karlin.mff.cuni.cz/~holub/soubory/Vizual/stranka2.html

	Introduction
	Definitions
	Description of the algorithm
	Complexity analysis
	Evaluation of the loop condition
	Construction of L and R

	Conclusion

