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GOODNESS-OF-FIT TEST FOR THE ACCELERATED
FAILURE TIME MODEL BASED ON MARTINGALE
RESIDUALS

Petr Novák

The Accelerated Failure Time model presents a way to easily describe survival regression
data. It is assumed that each observed unit ages internally faster or slower, depending on
the covariate values. To use the model properly, we want to check if observed data fit the
model assumptions. In present work we introduce a goodness-of-fit testing procedure based on
modern martingale theory. On simulated data we study empirical properties of the test for
various situations.
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1. INTRODUCTION

Let us observe survival data representing time which passes from beginning of an ex-
periment until some pre-defined failure. We suppose that the data may be incomplete
in a way that some objects may be removed from the observation prior to reaching the
failure, which we call right censoring. We want to model the dependence of the time
to failure on available covariates. The Accelerated Failure Time model (AFT, see [2])
presents an alternative to the most widely used and well described Cox proportional
hazard model (see [3]). In the AFT model, we assume the log-linear dependence

log T ∗i = −ZT
i β0 + εi,

where T ∗i , i = 1, . . . , n, are the real failure times, Zi = (Zi1, . . . , Zip)T covariates, β0 the
vector of real parameters and εi are iid random variables with an unknown distribution.
Denote Ci the censoring times, Ti = min(T ∗i , Ci) the times of the end of observation
and ∆i = I(T ∗i ≤ Ci) noncensoring indicators. Suppose that T ∗i and Ci are independent
for all i given Zi, and that the censoring distribution does not depend on the regression
parameters. We observe independent data (Ti,∆i, Zi), i = 1, . . . , n.

We assume T ∗i to have a continuous distribution. Denote Fi(t) = P (T ∗i ≤ t) their
distribution function, fi(t) density, Si(t) = 1 − Fi(t) the survival function, αi(t) =
limh↘0 P (t ≤ T ∗i < t + h|T ∗i ≥ t)/h = fi(t)/Si(t) the hazard function and Ai(t) =



Goodness-of-fit test for the AFT model based on martingale residuals 41

∫ t

0
αi(s) ds the cumulative hazard. For the AFT model, we have

αi(t) = α0(exp(ZT
i β0)t) exp(ZT

i β0).

The baseline hazard α0(t) is the hazard rate of exp(εi), is completely unknown and will
be estimated nonparametrically.

The data may be represented as counting processes, denote Ni(t) = I(Ti ≤ t, ∆i = 1),
Yi(t) = I(t ≤ Ti), intensities λi(t) = Yi(t)αi(t) and cumulative intensities Λi(t) =∫ t

0
λi(s) ds. All functions and processes are studied on an interval t ∈ [0, τ ], where τ < ∞

is some point beyond the last observed survival time. It can be shown, that under the
model assumptions, Λi(t) are the compensators of corresponding processes Ni(t) with
respect to Ft = σ {Ni(s), Yi(s),Zi, 0 ≤ s ≤ t, i = 1, . . . , n} (see [5]). Therefore Mi(t) :=
Ni(t) − Λi(t) are Ft-martingales (Doob-Meyer decomposition). The log-likelihood for
the data can be then rewritten with the help of the counting processes as

l(t) =
n∑

i=1

∫ t

0

(log(αi(s)) dNi(s)− Yi(s)αi(s) ds) ,

and by taking the derivative with respect to model parameters we get the score process
U(t, β). For estimation of the parameters we solve the equations U(β) ≡ U(τ,β) = 0.

To obtain reliable estimates, the model assumptions must be met. However, the data
can deviate from the model, for example if the dependence is different than log-linear or
if we neglected one or more covariates. To check if the model holds, one must consider
some goodness-of-fit testing procedure. In section 2, we present a goodness-of-fit statistic
for the AFT model based on martingale approach and resampling techniques.

The model can also be generalized to accommodate time-varying covariates. In sec-
tion 3 we explore the approach proposed by Cox and Oakes [4] and further studied by
Lin and Ying [9] and we present a generalization of the goodness-of-fit test statistic. On
simulated examples we study the empirical properties of the test in various situations
for both time-invariant and time-dependent covariates in section 4.

2. THE TEST STATISTIC – TIME-INVARIANT COVARIATES

In the case of fixed covariates, it is possible to employ methods based on classic linear re-
gression. One can compute the residuals ri = log Ti +ZT

i β̂ (for uncensored observations,
some adjustment is needed for censored data, see Buckley and James [2]), divide into
subsets i. e. by the values of one of the covariates and check the equality of the means
of these subsets with t-test or Wilcoxon test. This method is very straightforward and
one can easily get an idea whether the dependence on each covariate is well described
by the AFT model. The downside is that the residuals are neither independent nor
identically distributed, and therefore the mentioned two-sample tests do not yield exact
results. Also it cannot be adapted outright to accommodate time-varying covariates but
one must take into account the type of dependence.
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Bagdonavičius and Nikulin [1], p. 234, present a method for testing the model with
repeated observations under each (possibly stepwise) covariate setting. This is useful in
industrial testing, where the covariates often represent stress levels and can be set as
desired.

Goodness-of-fit procedures based on sums of martingale residuals were proposed by
Lin and Spiekerman [6] and Bagdonavičius and Nikulin [1], p. 252 for the AFT model
with parametric baseline hazard and by Lin et al (1993) [7] for the Cox proportional
hazards model. Here we propose a similar testing procedure also for the AFT model.

We use similar notation as Lin et al (1998) [8], using time-transformed counting
processes. Let

N∗
i (t, β) = Ni(te−ZT

i β), Y ∗
i (t, β) = Yi(te−ZT

i β), i = 1, . . . , n.

S∗0 (t, β) =
n∑

i=1

Y ∗
i (t, β), S∗1 (t, β) =

n∑
i=1

Y ∗
i (t, β)Zi,

E∗(t, β) =
S∗1 (t, β)
S∗0 (t, β)

, Â0(t, β) =
∫ t

0

J(s)
S∗0 (t, β)

dN∗
• (s, β),

for J(s) = I(S∗0 (t, β) > 0). Â0(t, β) is the well-known Nelson–Aalen estimator of A0(t).
With some algebra, the score process may be rewritten as

U(t, β) =
n∑

i=1

∫ t

0

Q0(s)(Zi − E∗(s, β)) dN∗
i (s, β),

with Q0(s) = ( sα′0(s)
α0(s)

+ 1). The estimated parameters β̂ are taken as those minimizing
‖U(β)‖, because the score process is not continuous in β. It can be shown, that also
with other choices of Q(s, β), such as Q1 ≡ 1 or Q2(s, β) = 1

nS∗0 (s, β), the estimated
parameters are consistent and n

1
2 (β̂−β0) converge to a zero mean Gaussian process [8].

In further examples, we use simply Q1 ≡ 1. Denote the martingale residuals

M∗
i (t, β) = N∗

i (t, β)−
∫ t

0

Y ∗
i (s, β) dA0(s)

and their empirical counterparts

M̂∗
i (t, β) = N∗

i (t, β)−
∫ t

0

Y ∗
i (s, β) dÂ0(s, β).

When the model holds, the martingale residuals should fluctuate around zero, otherwise
they would deviate from zero systematically. The proposed test process is

W (t) = n−
1
2

n∑
i=1

wiM̂
∗
i (t, β̂),

where wi := f(Zi)I(Zi ≤ z) are weights with a bounded function f and a vector of
constants z. There are many possibilities how to choose the weights, most simple choice
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is to set f(Zi) = Zi or f(Zi) ≡ 1 and the elements zk of the vector z as quantiles of
corresponding covariates or no truncation (z = ∞). One can also try using the test with
various weights and compare the results, see 4.1.

The idea of the test is to measure the distance of the process from zero, which can
be done by computing

sup
t∈[0,τ ]

|W (t)| or sup
t∈[δ,τ ]

∣∣∣ W (t)√
v̂arW (t)

∣∣∣
with a suitable variance estimator and some small positive number δ to avoid possible
problems at the edges.

As we show later, under the null hypothesis, the asymptotic distribution of W (t) is
a zero mean Gaussian process with a covariance function which is difficult to obtain.
To assess whether the difference from zero is significant for given data, it is possible to
devise a process Ŵ (t) which has the same limiting distribution under the null hypothesis
and is easy to replicate. Denote

Sw(t, β) =
∑

i

wiY
∗
i (s, β), E∗

w(t, β) =
S∗w(t, β)
S∗0 (t, β)

fN (t) =
1
n

∑
i

∆iwif0(t)tZi, fY (t) =
1
n

∑
i

wig0(t)tZi, (1)

where f0(t) and g0(t) are the baseline densities of eεi and Tie
ZT

i β0 , respectively. Let
f̂N and f̂Y be their empirical counterparts with kernel estimates f̂0(t) and ĝ0(t). The
quantities exp(εi) can be consistently estimated by exp(ri), with ri being the modified
regression residuals of [2]. Or we can estimate their distribution by resampling from
F̂0(t) = 1 − e−Â0(t,β). Estimates for Tie

ZT
i β0 can be obtained by inserting the esti-

mated parameters β̂. As for the kernel estimate, it suffices to take Gaussian kernel with
Silverman’s commonly used bandwith 1.06σ̂n−1/5 (Silverman, 1986 [12]).

With some algebra, it can be shown that

U(t, β0) =
n∑

i=1

∫ t

0

Q(s, β0)(Zi − E∗(s, β0)) dM∗
i (s, β0).

Take Gi, i = 1, . . . , n as iid standard normals, let

UG
w (t, β) =

n∑
i=1

∫ t

0

Q(s, β)(wi − E∗
w(s, β)) dM̂∗

i (s, β)Gi,

UG(t, β) =
n∑

i=1

∫ t

0

Q(s, β)(Zi − E∗(s, β)) dM̂∗
i (s, β)Gi.
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Take β̂∗ as the solution of the equation

U(β) = UG(β̂).

It is of note, that n
1
2 (β̂ − β̂∗) has the same limiting distribution as n

1
2 (β̂ − β0) (see [8]),

which is useful for approximating the distribution of β̂. Now we have all the components
needed to introduce the main result:

Theorem 2.1. Under the assumptions (i) – (vi) from the Appendix, given the observed
data (Ni(t), Yi(t), Zi), i = 1, . . . , n, the process W (t) from above has asymptotically the
same distribution as

Ŵ (t) =
1√
n

UG
w (t, β̂)−

√
n

(
f̂N (t) +

∫ t

0

f̂Y (s) dÂ0(s, β̂)
)T

(β̂ − β̂∗)

− 1√
n

∫ t

0

Sw(s, β̂) d(Â0(s, β̂)− Â0(s, β̂∗)).

P r o o f . The proof is deferred into the Appendix. �

We can now compute W (t) for the studied data set and replicate Ŵ (t) many times.
The desired p-value p of the test is the proportion of cases, in which the statistics
computed from the replicated Ŵ (t) exceed the statistic computed from W (t). If p < α,
we reject the hypothesis that the data follow the AFT model. The variance for the
standardised variant can be computed directly from the resampled processes.

It is also possible to divide the interval [0, τ ] into k subintervals, i. e. quartiles, and
compute the statistic in each of the parts separately and obtain k p-values p1, . . . , pk.
One possibility is then to reject the hypothesis whenever we would reject in one of the
subintervals (if min(p1, . . . , pk) < α), which can lead to violating the general level of
significance of the test. Another possibility is to use a Bonferroni approximation for
multiple-testing and reject only if min(p1, . . . , pk) < α/k.

3. THE TEST STATISTIC – TIME-VARYING COVARIATES

We can also work with time-dependent covariates Zi(t). Cox and Oakes [4] and Lin and
Ying [9] proposed representing the failure times via following time transformation:

eεi = hi(T ∗i , β0) =
∫ T∗

i

0

eZT
i (s)β0 ds,

where εi are (iid) and Zi(s) = (Zi1(s), . . . , Zip(s))T is a p-dimensional covariate process.
Take the transformed counting processes as

N∗+
i (t, β) = ∆iI(hi(Ti, β) ≤ t), Y ∗+

i (t, β) = I(hi(Ti, β) ≥ t).

We can then define the processes S∗+0 , S∗+1 , E∗+, Â+
0 , M̂∗+

i (t, β) and U+(t, β) in the
same way as their equivalents in the case with the fixed covariates, using N∗+

i and Y ∗+
i



Goodness-of-fit test for the AFT model based on martingale residuals 45

instead of N∗
i and Y ∗

i . Constructing the test is not entirely similar, because the weights
wi = f(Zi(t))I(Zi(t) ≤ z) would be time-dependent. For practical reasons, we work
here with time-invariant weights, but it could be also shown that it is possible to use
time-varying weights if they are predictable.

With appropriate weights and transformed counting processes we compute S∗+w , E∗+
w ,

UG+
w and UG+ in the same way as above. Because eZT

i (s)β is positive, hi(t, β) is increas-
ing in t. Therefore for each fixed β an inverse function h−1

i (t, β) can be found, for which
h−1

i (hi(t, β), β) = hi(h−1
i (t, β), β) = t. Let again f0 and g0 be the density functions of

hi(T ∗i , β0) and hi(Ti, β0), respectively. Denote

f+
N (t) =

1
n

∑
i

∆iwif0(t)
∂

∂β

(
− hi(h−1

i (t, β), β0)
)

β=β0

, (2)

f+
Y (t) =

1
n

∑
i

wig0(t)
∂

∂β

(
− hi(h−1

i (t, β), β0)
)

β=β0

(3)

and their empirical counterparts f̂+
N (t) and f̂+

Y (t) obtained by inserting β̂ and kernel
estimates f̂0 and ĝ0. Again, hi(Ti, β0) can be simply estimated by inserting β̂. The esti-
mation of eεi = hi(T ∗i , β0) can be done similarly as in the case with constant covariates
but is not as straightforward as one has to take into account the type of dependence, or
one can estimate the distribution by using F̂+

0 (t) = 1− e−Â+
0 (t,β)

Theorem 3.1. Suppose that (i) – (vi) rewritten for the modified variables and processes
and also the assumptions (C1) – (C3) for Zi(t) (Lin and Ying [9], see Appendix) hold.
Suppose that for fixed β the image of hi(t, β), t ∈ [0,∞] does not depend on β. Let
wi = f(Zi(t0))I(Zi(t0) ≤ z) for a fixed time-point t0.
Then given the data (Ni(t), Yi(t), Zi(t)), i = 1, . . . , n, the resampled process Ŵ+(t)
constructed in the same way as Ŵ (t) with modified components from above has asymp-
totically the same distribution as W+(t) = 1√

n

∑
wiM̂

∗+
i (t).

P r o o f . The proof is deferred into the Appendix. �

Now it is possible to perform the test in the same way as in the case with constant
covariates by computing the observed process W (t) and comparing with the replicated
processes Ŵ (t).

The simplest case would be, if the covariate represents an additional influence which
is added in given time si for each observed individual,

Zi(t) =
{

1 t > si

0 t ≤ si.

This means that at the time si the observed individual starts to age faster or slower.
The covariate processes have clearly bounded variation. We get

hi(t, β) = min(t, si) + eβ(t− si)+, h−1
i (t, β) = min(t, si) + e−β(t− si)+.
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The weights for W+(t) can be chosen as wi = I(si ≤ z) for some z, i. e. z = median(si)
etc. Or we can simply sum all the residuals (wi ≡ 1).

In this case, we have

∂

∂β

(
− hi(h−1

i (t, β), β0)
)

β=β0

= − ∂

∂β

(
min(t, si) + eβ0−β(t− si)+

)
β=β0

= (t− si)+,

therefore f+
N (t) and f+

Y (t) are easy to compute.

Also the model with constant covariates can be viewed as a special case, with

hi(t, β) = teZT
i β , h−1

i (t, β) = te−ZT
i β ,

therefore

∂

∂β

(
− hi(h−1

i (t, β), β0)
)

β=β0

= − ∂

∂β

(
teZT

i (β0−β)
)

β=β0

= tZT
i ,

and inserting into 2 and 3 we get fN (t) and fY (t) as in 1.

4. SIMULATION STUDY

We shall use the proposed test in various situations. We want to study whether the
test holds its level of significance and the empirical power of the test against certain
alternatives for various sample sizes. Each time we consider noncensored data and data
with about one quarter of the observations randomly and independently censored. As the
test statistic, we took sup |W (t)| and sup

∣∣∣ W (t)√cvarW (t)

∣∣ with the variance estimated from the

resampled processes. Both statistics were computed over the whole time interval and over
four separated subintervals divided by the quartiles of Tie

Ziβ̂ or hi(Ti, β̂) respectively.
The p-value is taken as the proportion of samples in which the replicated statistics exceed
the observed one. For the supremum over the whole interval, we reject the hypothesis
if the p-value is lower than the significance level of α = 5%. If we compute the p-values
over the quartiles separately, we reject firstly when min(p1, p2, p3, p4) < α/4, using the
Bonferroni correction. Each time, 500 samples were generated and for each sample, Ŵ (t)
was generated 200×. To examine the empirical power, we generate data from different
models and observe the proportion of rightfully rejected samples. To see if the tests hold
the significance level, we generate from the AFT model itself and observe the proportion
of wrongfully rejected samples.

4.1. Constant covariates

First, we generated data from the AFT model itself, with lognormal baseline hazard
LN(µ = 5, σ2 = 1), β = 1 and one covariate Zi generated as (iid) from N(3, 1).
Censoring was generated independently in the same way with baseline LN(6.5,1). We
compare weights with f(Zi) as either Zi or equal to 1 and z as either the sample median
of Zi or infinity (no observations left out). Each time, 500 samples of 1000 observations
were tested (Table 1).
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Test [0, τ ] Quartiles – Bonferroni
Statistic sup |W (t)| sup

∣∣ W (t)√cvarW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√cvarW (t)

∣∣
Censoring NC C NC C NC C NC C

The proportion of wrongfully rejected samples from the AFT model:
Zi median 0 0 0.01 0.006 0 0 0.006 0.004
Zi ∞ 0 0 0 0 0 0 0 0
1 median 0 0 0.006 0.002 0 0.002 0.002 0.004
1 ∞ 0 0 0 0 0 0 0 0

The proportion of rightfully rejected samples from the Cox model:
Zi median 0 0 0.784 0.636 0.654 0.464 0.746 0.574
Zi ∞ 0 0 0.872 0.65 0.044 0.016 0.674 0.456
1 median 0 0 0.918 0.738 0.746 0.574 0.858 0.688
1 ∞ 0 0 0 0 0 0 0 0

Tab. 1. The empirical level of significance of the test and empirical

power against the alternative of the Cox model for various weights wi.

C – censoring, NC – without censoring.

Next, we generated data from the Cox model αi(t) = eZiβα0(t) with the same baseline
hazard, parameter and covariates as above and the censoring in the same way with
lognormal baseline distribution LN(5.7,1). To see which weights yield the highest power
against this alternative, we compare the results for the four types of weights used above
(Table 1).

We can see, that the empirical level of significance tends to be very low, in some
cases even with no rejected samples whatsoever. This indicates that the test is overly
conservative, leading possibly to a loss of power. In further examples, we will try to over-
come this problem by removing the Bonferroni correction, thus rejecting the hypothesis,
whenever we would reject in one of the quartiles. One has to be careful, because the
removal of the correction may lead to exceeding the level of significance. Regarding the
empirical power against the alternative of the Cox model, we may see that the weights
wi = I(Zi ≤ median(Zj)) yield the best empirical power.

We now use these weights for testing samples of size ranging from 100 to 2000 (Ta-
ble 2). The results below indicate that with increasing sample size the empirical power
gets higher, however, for a reasonable power a large number of observations is still
needed. Standardising with the deviation process and dividing into quartiles adds some
power. With censoring, the power diminishes greatly. If we do not use the Bonferroni
correction for the division in quartiles, the empirical level of significance stays below
0.05 by not much for the large samples, for the smaller, the test still seems to be too
conservative.

On Figure 1 we see the test process W (t) for one case generated from the Cox model
with n = 200 and its 50 replications Ŵ (t) under the hypothesis of the AFT model.
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Test [0, τ ] Quartiles
Statistic sup |W (t)| sup

∣∣ W (t)√cvarW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√cvarW (t)

∣∣
Censoring NC C NC C NC C NC C

The proportion of wrongfully rejected samples from the AFT model:
100 0 0 0 0.004 0 0.002 0.002 0.008
200 0 0 0.004 0.004 0.006 0.002 0.014 0.006
500 0 0 0 0 0 0.01 0.014
1000 0 0 0.006 0.002 0.004 0.004 0.026 0.018
2000 0 0 0.004 0.004 0.002 0.004 0.022 0.026

The proportion of rightfully rejected samples from the Cox model:
100 0 0 0.016 0.004 0.026 0.018 0.036 0.014
200 0 0 0.112 0.042 0.124 0.056 0.202 0.100
500 0 0 0.476 0.302 0.558 0.376 0.688 0.444
1000 0 0 0.918 0.738 0.928 0.82 0.968 0.848
2000 0 0 1 0.998 1 0.988 1 1

Tab. 2. The empirical level of significance and the empirical power

against the Cox model for various sample sizes.

Around the time index 100, the observed process tends to exceed the resampled values,
which suggests that the model does not fit the data. The variance of the resampled
processes increases with time, however in the displayed case the observed process is
well between the resampled ones at the end of the time interval. Therefore the non-
standardised statistic may not detect the deviation from the AFT model because the
supremum of the resampled processes is near the end where the variance is larger. Vari-
ance standardising and division into quartiles helps to overcome this problem.

4.2. Time-varying covariates

Consider data with a single jump in one covariate, Zi(t) = I(t > si). First, we generated
data from the AFT model itself, with lognormal baseline distribution LN(5, 1) and β =
1. The jump times si were generated as (iid) LN(4, 1). Censoring times were generated
independently with the same distribution of jumps and baseline distribution LN(6, 1).
We applied the test of the AFT model with weights wi = I(si ≤ median(sj)), with the
plain supremum statistic, variance-adjusted version and the supremum computed over
the quartiles using the Bonferroni correction. For results, see Table 3. As we see, the
test holds its level of significance is in all cases below 5%, but sometimes, especially for
the smaller samples, is again overly conservative.

Next, we generated from the Cox model αi(t) = exp(Zi(s)β)α0(t) with the same
setting and censoring generated the same way from LN(6, 1). For the obtained empirical
power see Table 4. Without standardising or dividing into quartiles, the empirical power
is surprisigly zero – this fact is discussed later. Observing the nonstandardised statistic
in the quartiles separately yields better results, the power increases with the sample
size. With the standardising, the power is even higher, and for each sample size stays
approximately the same regardless of dividing into quartiles or censoring.
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Fig. 1. The statistic W(t) (bold) with its 50 replications under the

AFT model, non-standardised and variance-standardised version.
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Test [0, τ ] Quartiles – Bonferroni
Statistic sup |W (t)| sup

∣∣ W (t)√cvarW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√cvarW (t)

∣∣
Censoring NC C NC C NC C NC C
100 0 0 0.01 0.004 0.004 0 0.004 0.004
200 0 0 0.014 0.02 0.006 0.01 0.004 0.01
500 0 0 0.022 0.02 0.002 0.004 0.014 0.016
1000 0 0 0.028 0.008 0 0.004 0.016 0.004
2000 0 0 0.048 0.028 0.012 0.012 0.036 0.028

Tab. 3. The empirical level of significance when generating from the

AFT model with a time-varying covariate.

Test [0, τ ] Quartiles – Bonferroni
Statistic sup |W (t)| sup

∣∣ W (t)√cvarW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√cvarW (t)

∣∣
Censoring NC C NC C NC C NC C
100 0 0 0.238 0.218 0.132 0.128 0.178 0.16
200 0 0 0.754 0.704 0.38 0.298 0.662 0.584
500 0 0 1 0.998 0.846 0.808 0.996 0.996
1000 0 0 1 1 1 0.998 1 1
2000 0 0 1 1 1 1 1 1

Tab. 4. The empirical power against the Cox model with a

time-varying covariate.

Finally, we generated data from the AFT model with one confounding covariate,
with T ∗i satisfying eεi =

∫ T∗
i

0
eZi(s)β1+Xiβ2 ds with Zi(s) = I(s > si) same as above, Xi

independent, generated from N(3, 1) and β1 = β2 = 1. We test whether the model holds
if we try fitting it using just the covariate Zi(t). For results, see Table 5. For reasons
discussed below, using the plain statistic without standardising or dividing into quartiles,
the power is very low. However, if we standardise by the standard deviation process or
observe the statistic in the quartiles separately, the empirical power is reasonably high.
Also censoring does not reduce the power much.

For checking why the test does not reject the alternative with the plain statistic,
we want to visualize the observed and resampled processes. For one generated data
set of n = 200 with the confounding covariate we can see the test process W (t) and
its 50 replications under the hypothesis of the AFT model on Figure 2. The observed
process lies between the replicated processes only for larger time values but exceeds them
otherwise. We may therefore suppose that the model does not fit the data well.

Again, the variance of the processes increases with time. This is the reason for low
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Test [0, τ ] Quartiles – Bonferroni
Statistic sup |W (t)| sup

∣∣ W (t)√cvarW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√cvarW (t)

∣∣
Censoring NC C NC C NC C NC C
100 0.012 0.062 0.25 0.21 0.256 0.2 0.266 0.2
200 0.002 0.012 0.404 0.376 0.422 0.394 0.426 0.398
500 0 0 0.848 0.754 0.852 0.776 0.868 0.776
1000 0 0 0.996 0.972 0.996 0.98 0.996 0.98
2000 0 0 1 1 1 1 1 1

Tab. 5. The empirical power against the AFT model with an

ommited covariate.

rejection using the plain supremum statistic, because the supremum of each replicated
process lies near the end of the observed interval. The observed process, however,
deviates from the model notably from the beginning to the middle of the time interval,
where the supremum is smaller. This can be overcome by using the variance-standardised
processes or disregarding the last quartile of the data.

5. CONCLUSION

In present work we introduced a new goodness-of-fit test for the accelerated failure time
model, based on martingale residuals and resampling techniques. Both the classic case
with constant covariates and the generalization with time-dependent covariates were
explored. Using simulated data we estimated the empirical properties of the test in
various situations. In some cases, a large number of observations was needed to obtain
a reasonable empirical power. As seen in the example situations, one has to consider
more types of weights, work with the test process only on a part of the time interval or
use the variance standardised statistic to detect possible deviation from the model.

The empirical power of the test against other important alternatives could be further
studied, i. e. considering different baseline or covariate distributions or the alternative
of an entirely different model. Also a more detailed analysis of which weights work best
in each case as seen in the section 4.1 could be conducted. Moreover, the generalization
for time-dependent covariates provides a broad range of applications which may yet be
explored.

6. APPENDIX

We now prove the asymptotic equivalency of W (t) and Ŵ (t). First we work with fixed
covariates and then we generalize the proof also for time-dependent covariates.

6.1. Preliminaries

We will treat the covariates Zi as random variables. Suppose, that:

(i) Zi are bounded,
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Fig. 2. The statistic W(t) (bold) with its 50 replications under the

AFT model, non-standardised and variance-standardised version.
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(ii) (N∗
i , Ci, Zi) are (iid),

(iii) Q, E∗, E∗
w and 1

nSw have bounded variation and converge almost surely to contin-
uous functions q, e, ew and sw, respectively,

(iv) C∗
i = Cie

ZT
i β0 have a uniformly bounded density and A0(t) has a bounded second

derivative,

(v) fN (t) = 1
n

∑
i ∆iwif0(t)tZi and fY (t) = 1

n

∑
i wig0(t)tZi have bounded variation

and converge almost surely to f0
N (t) and f0

Y (t), respectively,

(vi) The kernel estimates f̂0 and ĝ0 have a bounded variation and converge in probability,
uniformly in t ∈ [0, τ ], to f0 and g0, respectively.

Lin et al [8] shows, that under i-iv for dn → 0:

sup
‖β−β0‖<dn

‖U(β)− U(β0) + nA(β − β0)‖/(n
1
2 + n‖β − β0‖) = oP (1), (4)

sup
t∈[0,τ ],‖β−β0‖<dn

∣∣n 1
2 (Â0(t, β)− Â0(t, β0))− bT (t)n

1
2 (β − β0)

∣∣ = oP (1), (5)

where A =
∫ τ

0
q(t)E[Y ∗

1 (t, β0)(Z1 − e(t))⊗2] d(α0(t)t) and b(t) = −
∫ t

0
e(s) d(α0(s)s).

6.2. Convergence for sums of N∗
i and Y ∗

i

First, we need to show the asymptotic properties of fN and fY :

Lemma 6.1. Conditional on Zi, under (i) – (vi) for dn → 0:

sup
t∈[0,τ ],‖β−β0‖<dn

∣∣n− 1
2

∑
wi(N∗

i (t, β)−N∗
i (t, β0)) + fT

N (t)n
1
2 (β − β0)

∣∣ = oP (1), (6)

sup
t∈[0,τ ],‖β−β0‖<dn

∣∣n− 1
2

∑
wi(Y ∗

i (t, β)− Y ∗
i (t, β0))− fT

Y (t)n
1
2 (β − β0)

∣∣ = oP (1), (7)

with fN and fY defined in 1.

P r o o f . In this proof we treat Zi as fixed values. We have

n−
1
2

∑
wi(N∗

i (t, β)−N∗
i (t, β0))

= n−
1
2

∑
wi∆i[I(T ∗i eZT

i β ≤ t)− I(T ∗i eZT
i β0 ≤ t)]

= n−
1
2

∑
wi∆i[I(T ∗i ≤ te−ZT

i β)− I(T ∗i ≤ te−ZT
i β0)]

= n−
1
2

∑
wi∆i[I(te−ZT

i β0 < T ∗i ≤ te−ZT
i β)− I(te−ZT

i β < T ∗i ≤ te−ZT
i β0)].

From Lemma 1 of Lin and Ying [9] it follows that uniformly in t ∈ [0, τ ]:

sup
‖β−β0‖<dn

˛̨
n−

1
2

X
wi(N

∗
i (t, β)−N∗

i (t, β0))− n−
1
2 E

X
wi(N

∗
i (t, β)−N∗

i (t, β0))
˛̨
= oP (1)
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and analogically for Y ∗. Hence, it suffices to compute the expectation of the sum of
indicators. For summand i we have E[wi∆i[I(·)− I(·)]] = E[wi∆iE[I(·)− I(·)|∆i]]. The
inner expectation equals to

E[I(te−ZT
i β0 < T ∗i ≤ te−ZT

i β)− I(te−ZT
i β < T ∗i ≤ te−ZT

i β0)]

= P (t < T ∗i eZT
i β0 ≤ teZT

i (β0−β))− P (teZT
i (β0−β) < T ∗i eZT

i β0 ≤ t).

Either the first or the second probability is zero, because the cases are mutually exclusive.
Assume first, that teZT

i (β0−β) > t, which is equivalent with ZT
i β0 > ZT

i β. Because
T ∗i eZT

i β0 are (iid) with the distribution function F0, we have

P (t < T ∗i eZT
i β0 ≤ teZT

i (β0−β)) = F0(teZT
i (β0−β))− F0(t)

= f0(t)t(eZT
i (β0−β) − 1) + oP (1) = f0(t)tZT

i (β0 − β) + oP (1).

We used the Taylor expansion for β → β0 twice. For ZT
i β0 < ZT

i β we get the same
result, because

−P (teZT
i (β0−β) < T ∗i eZT

i β0 ≤ t) = −(F0(t)− F0(teZT
i (β0−β))).

Therefore we get the desired result with an conditional expectation with ∆i, we have

n−
1
2

∑
wi(N∗

i (t, β)−N∗
i (t, β0)) = E[(

1
n

∑
wi∆if0(t)tZi)T (β0 − β)n

1
2 ] + oP (1).

Because the censoring is independent, due to SLNN we can replace the expectation with
the observed quantity:

= (
1
n

∑
wi∆if0(t)tZi)T (β0 − β)n

1
2 + oP (1) = −n

1
2 fT

N (t)(β − β0) + oP (1).

For the sums of Y ∗
i , we have

n−
1
2

∑
wi(Y ∗

i (t, β)− Y ∗
i (t, β0)) = n−

1
2

∑
wi[I(Ti ≥ te−ZT

i β)− I(Ti ≥ te−ZT
i β0)]

= n−
1
2

∑
wi[I(t > min(T ∗i eZT

i β0 , Cie
ZT

i β0) ≥ teZT
i (β0−β))

− I(teZT
i (β0−β) > min(T ∗i eZT

i β0 , Cie
ZT

i β0) ≥ t)].

We assumed that C∗
i = Cie

ZT
i β0 have a bounded density and therefore Tie

ZT
i β0 =

min(T ∗i , Ci)eZT
i β0 can be assumed to have a density g0. Computing again the expectation

and using the Taylor expansion, we get

n−
1
2

∑
wi(Y ∗

i (t, β)− Y ∗
i (t, β0)) = (n−1

∑
wig0(t)tZi)T (β − β0)n

1
2 + oP (1)

= n
1
2 fT

Y (t)(β − β0) + oP (1).

�
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6.3. The convergence of the statistic W (t) and Ŵ (t)

P r o o f o f T h e o r e m 2.1 . We show the asymptotic equivalence by proving the con-
vergence of finite-dimensional distributions and tightness, with the help of multivariate
functional central limit theorem given by Pollard (see [10]).

W (t) =n−
1
2

∑
i

wiM̂
∗
i (t, β̂)

=n−
1
2

∑
i

wiM
∗
i (t, β0) + n−

1
2

∑
i

wi(M̂∗
i (t, β̂)−M∗

i (t, β0))

=n−
1
2

∑
i

wiM
∗
i (t, β0) + n−

1
2

∑
i

wi(N∗
i (t, β̂)−N∗

i (t, β0))

− n−
1
2

∑
i

wi

∫ t

0

(
Y ∗

i (s, β̂) dÂ0(s, β̂)− Y ∗
i (s, β0) dA0(s)

)
.

Applying (6) and adding and subtracting Y ∗
i (s, β̂)dA0(s) and Y ∗

i (s, β0)dÂ0(s, β̂) we get

W (t) =n−
1
2

∑
i

wiM
∗
i (t, β0)− n

1
2 fT

N (t)(β̂ − β0)

− n−
1
2

∑
i

wi

∫ t

0

Y ∗
i (s, β0) d

(
Â0(s, β̂)−A0(s)

)
− n−

1
2

∑
i

wi

∫ t

0

(Y ∗
i (s, β̂)− Y ∗

i (s, β0)) dA0(s) + oP (1).

With the help of (4) and (5) we have

n
1
2 (Â0(s, β̂)−A0(s)) = n

1
2 (Â0(s, β0)−A0(s)) + bT (t)n

1
2 (β̂ − β0) + oP (1)

= n
1
2

∑
i

∫ t

0

dM∗
i (s, β0)

S∗0 (s, β0)
+ bT (t)n−

1
2 A−1U(β0) + oP (1).

We apply (7) on the last term of W (t) and then (4) for n
1
2 (β̂ − β0) = n−

1
2 A−1U(β0) +

oP (1):

W (t) = n−
1
2

∑
i

wiM
∗
i (t, β0)− n

1
2

(
fN (t) +

∫ t

0

fY (s) dA0(s)
)T

(β̂ − β0)

− n−
1
2

∑
i

∫ t

0

Sw(s, β0)
S∗0 (s, β0)

dM∗
i (s, β0)− n−

1
2

∫ t

0

Sw(s, β0) dbT (s)A−1U(β0) + oP (1)

= n−
1
2

∑ ∫ t

0

(wi − E∗
w(s, β0)) dM∗

i (s, β0)

− n−
1
2

(
fN (t) +

∫ t

0

fY (s) dA0(s) +
∫ t

0

1
n

Sw(s, β0) db(s)
)T

A−1U(β0) + oP (1).
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The limiting process can be found similarly as in [8]. Write

UM (t) = n−
1
2

∑
M∗

i (t, β0), UMZ(t) = n−
1
2

∑
ZiM

∗
i (t, β0),

UMW (t) = n−
1
2

∑
wiM

∗
i (t, β0).

For fixed t, each of the processes is a sum of iid zero-mean terms and therefore the
finite-dimensional convergence of (UM , UMZ , UMW ) follows from multivariate central
limit theorem. For each t, M∗

i (t, β0), ZiM
∗
i (t, β0) and wiM

∗
i (t, β0) can be written as

sums and products of monotone functions, and therefore are manageable in sense of
[10], p. 38. It then follows from the functional central limit theorem ([10], p. 53) that
(UM , UMZ , UMW ) is tight and converges weakly to a zero-mean Gaussian process, say
(WM ,WMZ ,WMW ). By the Skorokhod – Dudley – Wichura theorem ([11], p. 47), an
equivalent process (UM , UMZ , UMW ) in an alternative probability space can be found,
in which the convergence becomes almost sure. Because Q(t, β0), E∗(t, β0), E∗

w(t, β0),
1
nSw(t, β0), fN (t) and fY (t) have bounded variation and converge almost surely to q, e,
ew, sw, f0

N (t) and f0
Y (t), respectively, then W (t) converges in D[0, τ ] to∫ t

0

dWMW (s)−
∫ t

0

ew(s, β0) dWM (s)− cT (t)
( ∫ τ

0

q(s) dWMZ −
∫ τ

0

q(s)e(s, β0) dWM

)
,

where c(t) = f0
N (t) +

∫ t

0
f0

Y (s) dA0(s) +
∫ t

0
sw(s, β0) db(s), which has zero mean and

covariance function

σ(t1, t2) =E
“h Z t1

0
(w1 − ew(s, β0)) dM∗

1 (s, β0)− cT (t1)A−1

Z τ

0
q(s)[Z1 − e(s, β0)] dM∗

1 (s, β0)
i

×
h Z t2

0
(w1 − ew(s, β0)) dM∗

1 (s, β0)− cT (t2)A−1

Z τ

0
q(s)[Z1 − e(s, β0)] dM∗

1 (s, β0)
i”

.

For Ŵ (t), we have

Ŵ (t) =n−
1
2 UG

w (t, β̂)− n
1
2

„
f̂N (t) +

Z t

0

f̂Y (s) dÂ0(s, β̂)

«T

(β̂ − β̂∗)

− n−
1
2

Z t

0

Sw(s, β̂) d(Â0(s, β̂)− Â0(s, β̂
∗))

=n−
1
2

X Z t

0

(wi − E∗
w(s, β̂)) dM̂∗

i (s, β̂)Gi

− n
1
2

„
f̂N (t) +

Z t

0

f̂Y (s) dÂ0(s, β̂)

«T

(β̂ − β̂∗)

− n
1
2

Z t

0

1

n
Sw(s, β̂) db(s)(β̂ − β̂∗) + oP (1)

=n−
1
2

X Z t

0

(wi − E∗
w(s, β̂)) dM̂∗

i (s, β̂)Gi

− n−
1
2

„
f̂N (t) +

Z t

0

f̂Y (s) dÂ0(s, β̂) +

Z t

0

1

n
Sw(s, β̂) db(s)

«T

A−1U(β̂∗) + oP (1).

We used (4) for
n

1
2 (β̂ − β̂∗) = n−

1
2 A−1U(β̂∗) + oP (1)



Goodness-of-fit test for the AFT model based on martingale residuals 57

and (5) for
n

1
2 (Â0(t, β̂)− Â0(t, β̂∗)) = bT (t)n

1
2 (β̂ − β̂∗) + oP (1).

The score process satisfies U(β̂∗) = UG(β̂) and therefore we see that Ŵ (t) consists of the
same parts as W (t), with β0, M∗

i (t, β0), fN (t) and fY (t) replaced with β̂, GiM̂
∗
i (t, β̂),

f̂N (t) and f̂Y (t). The resampled martingale residuals GiM
∗
i (t, β̂) have the same distri-

bution as their theoretical counterparts, and the kernel estimates of f0 and g0 converge
uniformly to the real densities. Therefore Ŵ (t) has the same limiting finite-dimensional
distributions as W (t). Tightness follows also by the same arguments as for W (t). �

6.4. Time-varying covariates

We can modify the assumptions (i) – (vi) to accommodate N∗+
i , Y ∗+

i and all derived
generalized processes. Suppose also, that following assumptions for Zi(t) of Lin and
Ying [9] hold:

(C1) ∀ i = 1, . . . , n, k = 1, . . . , p: Zik(t) have uniformly bounded total variation, i. e.
∃D : Zik(0) +

∫ τ

0
|dZik(s)| ≤ D.

Because of (C1), Zik can be decomposed into Zik(t) = Zik(0) + Z+
ik(t) − Z−

ik(t), where
Z±

ik(·) are increasing functions with Z±
ik(0) = 0.

(C2) There exist η0 > 0 and κ0 > 0, such that ∀ k = 1, . . . , p:

sup
|t−s|+‖β1−β2‖≤n−κ0

1
n

n∑
i=1

|Z±
ik(h−1(t, β1))− Z±

ik(h−1(s, β2))| = OP (n−
1
2−η0)

and for dn > 0, dn → 0 exists ε0, such that ∀ k = 1, . . . , p:

sup
|t−s|+‖β1−β2‖≤dn

1
n

n∑
i=1

|Z±
ik(h−1(t, β1))− Z±

ik(h−1(s, β2))| = oP (max(dε0
n , n−ε0)).

(C3) f0 and f ′0 are bounded,
∫ τ

0

(
f ′0(s)
f0(s)

)2

f(s) ds < ∞ and
∫ τ

0
xε0f(x) dx < ∞ for some

ε0 > 0.

Then the results (4) and (5) (due to Lin et al [8]) hold for the case of time-dependent
covariates, too. We can also extend (6) and (7):

Lemma 6.2. Suppose that for fixed β the image of hi(t, β), t ∈ [0,∞] does not depend
on β. Conditional on Zi, under the assumptions (i) – (vi) rewritten for the the modified
variables and processes and (C1) – (C3), for dn → 0:

sup
t∈[0,τ ],‖β−β0‖<dn

∣∣n− 1
2

∑
wi(N∗+

i (t, β)−N∗+
i (t, β0)) + (f+

N (t))T n
1
2 (β − β0)

∣∣ = oP (1),

sup
t∈[0,τ ],‖β−β0‖<dn

∣∣n− 1
2

∑
wi(Y ∗+

i (t, β)− Y ∗+
i (t, β0))− (f+

Y (t))T n
1
2 (β − β0)

∣∣ = oP (1),
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with f+
N and f+

Y defined in 2 and 3.

P r o o f o f T h e o r e m 2.1 . We proceed similarly as in the proof of Lemma 6.1:

n−
1
2

∑
wi(N∗+

i (t, β)−N∗+
i (t, β0))

= n−
1
2

∑
wi∆i[I(hi(T ∗i , β) ≤ t)− I(hi(T ∗i , β0) ≤ t)]

= n−
1
2

∑
wi∆i[I(T ∗i ≤ h−1

i (t, β))− I(T ∗i ≤ h−1
i (t, β0))]

= n−
1
2

∑
wi∆i[I(h−1

i (t, β0) < T ∗i ≤ h−1
i (t, β))− I(h−1

i (t, β) < T ∗i ≤ h−1
i (t, β0))].

Again, it can be shown that it suffices to compute the expectation of the sum of indicators
([9], Lemma 1). For each part, the inner conditional expectation is

E[I(h−1
i (t, β0) < T ∗i ≤ h−1

i (t, β))− I(h−1
i (t, β) < T ∗i ≤ h−1

i (t, β0))]

= P (t < hi(T ∗i , β0) ≤ hi(h−1
i (t, β), β0))− P (hi(h−1

i (t, β), β0) < hi(T ∗i , β0) ≤ t).

Both cases are mutually exclusive, suppose first that hi(h−1
i (t, β), β0) > t. Because

hi(T ∗i , β0) = eεi are (iid), we have

P (t < hi(T ∗i , β0) ≤ hi(h−1
i (t, β), β0)) = F0(hi(h−1

i (t, β), β0))− F0(t)

= f0(t)
( ∂

∂β

(
hi(h−1

i (t, β), β0)
)

β=β0

)T

(β − β0) + oP (1)

using Taylor expansion for β → β0. For hi(h−1
i (t, β), β0) < t we get again the same

result. Inserting into the sum and replacing the expectation with respect to ∆i with the
observed quantity we get

n−
1
2

∑
wi(N∗+

i (t, β)−N∗+
i (t, β0))

=
( 1

n

∑
wi∆if0(t)

∂

∂β

(
hi(h−1

i (t, β), β0)
)

β=β0

)T

(β − β0)n
1
2 + oP (1)

= −n
1
2 (f+

N (t))T (β − β0) + oP (1).

In similar way we obtain also the result for sums of Y ∗+
i . �

P r o o f o f T h e o r e m 3.1 . The proof is analogous to the proof of Theorem 2.1, using
Lemma 6.2. �
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