Kybernetika 48 no. 6, 1136-1155, 2012

A Lyapunov-based design tool of impedance controllers for robot manipulators

This article was granted Editor's award of the year 2012Editor's award 2012

Marco Mendoza, Isela Bonilla, Fernando Reyes and Emilio González-Galván

Abstract:

This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two cha\-llen\-ges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full non\-li\-near robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.

Keywords:

impedance control, Lyapunov stability, robot manipulator

Classification:

68T40, 93C85, 93D05

References:

  1. R. Anderson and M. Spong: Hybrid impedance control of robotic manipulators. IEEE Trans. Robotic. Autom. 4 (1988), 5, 549-556.   CrossRef
  2. C. Canudas, B. Siciliano and G. Bastin: Theory of Robot Control. Springer-Verlag, 1996.   CrossRef
  3. R. Carelli and R. Kelly: An adaptive impedance/force controller for robot manipulators. IEEE Trans. Automat. Control 36 (1991), 8, 967-971.   CrossRef
  4. S. Chiaverini, B. Siciliano and L. Villani: A survey of robot interaction control schemes with experimental comparison. IEEE-ASME Trans. Mech. 4 (1999), 273-285.   CrossRef
  5. J. González and G. Widmann: A force commanded impedance control scheme for robots with hard nonlinearities. IEEE Trans. Control Syst. Theory 3 (1995), 4, 398-408.   CrossRef
  6. U. Hagn, T. Ortmaier, R. Konietschke, B. Kuebler, U. Seibold, A. Tobergte, M. Nickl, S. Joerg and G. Hirzinger: Telemanipulators for remote minimally invasive surgery. IEEE Robot. Automat. Magazine 15 (2008), 4, 28-38.   CrossRef
  7. U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker, L. Le-Tien, A. Albu-Schäffer, R. Konietschke, M. Grebenstein, R. Warpup, R. Haslinger, M. Frommberger and G. Hirzinger: The DLR MIRO: A versatile lightweight robot for surgical applications. Ind. Robot 35 (2008), 4, 324-336.   CrossRef
  8. N. Hogan: Impedance control: An approach to manipulation: Part I - Theory, Part II - Implementation and Part III - Applications. J. Dyn. Syst-T ASME 107 (1985), 1-24.   CrossRef
  9. S. Hoon-Kang, M. Jin and P. Hun-Chang: A solution to the accuracy/robustness dilemma in impedance control. IEEE-ASME Trans. Mech. 14 (2009), 3, 282-294.   CrossRef
  10. R. Horn and C. Johnson: Matrix Analysis. Cambridge University Press, New York 1985.   CrossRef
  11. A. de Jager and J. Banens: Experimental evaluation of robot controllers. In: Proc. 33rd Conf. Decision Control, Lake Buena Vista 1994, pp. 363-368.   CrossRef
  12. A. Jaritz and M. W. Spong: An experimental comparison of robust control algorithms on a direct drive manipulators. IEEE Trans. Control Syst. Theory 4 (1996), 627-640.   CrossRef
  13. H. Kazerooni: Robust nonlinear impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom. 1987, pp. 741-750.   CrossRef
  14. K. Kim and Y. Hori: Experimental evaluation of adaptive and robust schemes for robot manipulator control. IEEE Trans. Ind. Electron. 42 (1995), 653-662.   CrossRef
  15. H. I. Krebs, M. Ferraro, S. P, Buerger, M. J. Newbery, A. Makiyama, M. Sandmann, D. Lynch, B. T. Volpe and N. Hogan: Rehabilitation robotics: Pilot trial of a spatial extension for MIT-manus. J. Neuroeng. Rehabil. 1 (2004), 5.   CrossRef
  16. H. I. Krebs, B. T. Volpe, M. L, Aisen, W. Hening, S. Adamovich, H. Poizner, K. Subrahmanyan and N. Hogan: Robotic applications in neuromotor rehabilitation. Robotica 21 (2003), 3-11.   CrossRef
  17. V. Lippiello, B. Siciliano and L. Villani: Robot interaction control using force and vision. In: Proc. IEEE-RSJ Int. Conf. Robot. Syst., 2006, pp. 1470-1475.   CrossRef
  18. V. Lippiello, B. Siciliano and L. Villani: A position-based visual impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom., Roma 2007, pp. 2068-2073.   CrossRef
  19. L. Marchal-Crespo and D. J. Reinkensmeyer: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6 (2009), 20.   CrossRef
  20. W. McCormick and H. Schwartz: An investigation of impedance control for robot manipulators. Internat. J. Robot. Res. 12 (1993), 5, 473-489.   CrossRef
  21. A. M. Okamura: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot 31(6) (2004), 499-508.   CrossRef
  22. M. Raibert and J. Craig: Hybrid position/force control of manipulators. J. Dyn. Syst-T ASME 102 (1981), 126-133.   CrossRef
  23. F. Reyes and R. Kelly: Experimental evaluation of identification schemes on a direct drive robot. Robotica 15 (1997), 563-571.   CrossRef
  24. L. Sciavicco and B. Siciliano: Modeling and Control of Robot Manipulators. McGraw-Hill, New York 1996.   CrossRef
  25. B. Siciliano and L. Villani: Robot Force Control. Kluwer Academic Publishers, Boston 1999.   CrossRef
  26. M. W. Spong and M. Vidyasagar: Robots Dynamics and Control. John Wiley and Sons, New York 1989.   CrossRef
  27. M. Takegaki and S. Arimoto: A new feedback method for dynamic control of ma\-ni\-pu\-la\-tors. J. Dyn. Syst-T ASME 102 (1981), 119-125.   CrossRef
  28. Y. H. Tsoi and S. Q. Xie: Impedance control of ankle rehabilitation robot. In: Proc. IEEE Int. Conf. Robotic. Bio., Bangkok 2009.   CrossRef
  29. L. Whitcomb, A. Rizzi and D. E. Koditschek: Comparative experiments with a new adaptive controller for robot arms. IEEE Trans. Robotic. Autom. 9 (1993), 59-70.   CrossRef
  30. D. Whitney: Historical perspective and state of the art in robot force control. In: Proc. IEEE Int. Conf. Robotic. Autom. 1985, pp. 262-268.   CrossRef