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SUPERVISORY CONTROLLER DESIGN
FOR TIMED-PLACE PETRI NETS

Aydın Aybar and Altuğ İftar

Supervisory controller design to avoid deadlock in discrete-event systems modeled by timed-
place Petri nets (TPPNs) is considered. The recently introduced approach of place-stretching
is utilized for this purpose. In this approach, given an original TPPN (OPN), a new TPPN,
called the place-stretched Petri net (PSPN), is obtained. The PSPN has the property that
its marking vector is sufficient to represent its state. By using this property, a supervisory
controller design approach for TPPNs to avoid deadlock is proposed in the present work. An
algorithm to determine the set of all the states of the PSPN which lead to deadlock is presented.
Using this set, a controller for the PSPN is defined. Using this controller, a controller for the
OPN is then obtained. Assuming that the given Petri net is bounded, the proposed approach
always finds a controller in finite time whenever there exists one. Furthermore, this controller,
when exists, is maximally permissive.
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1. INTRODUCTION

Discrete-event systems (DES), whose dynamics can best be described by occurrence of
certain events, have been the subject of extensive research for the past few decades
[11, 25]. One of the most common modelling methods for DES is Petri nets [17, 19, 21].
Historically, Petri nets were first introduced without the notion of time. However, it was
then realized that time may play an important role in some DES. Thus, so-called timed
Petri nets (TPNs) were introduced to model such systems [10, 14, 24, 26]. In different
models of TPNs, time can be associated with either transitions, places, or arcs [24]. Such
TPNs are respectively called timed-transition, timed-place, and timed-arc Petri nets. In
this work, we consider timed-place Petri nets (TPPNs). In a TPPN, a time-delay (also
called holding duration) occurs between the time a token enters a place and the time it
can enable any downstream transition.

An important property for DES is deadlock. Deadlock is said to occur in a discrete-
event system modelled by a Petri net if the system reaches to a state at which no event
can occur, i. e., no transition of the Petri net can fire. Since it is undesirable to reach to
such a state, a supervisory controller is in general needed to avoid this situation. Many
works have been devoted to design supervisory controllers to avoid deadlock in systems
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modelled by Petri nets (e. g., [3, 6, 12, 13, 16, 18, 22, 23]). To design and implement
such a supervisory controller, however, the knowledge of the state of the system is,
in general, required. For an untimed Petri net, the marking vector, which gives the
number of tokens in each place, suffices to represent the state of the system. For a TPN,
however, marking vector alone is insufficient. For a TPPN, for example, the time left to
the availability of each token in each place is also required. It is said that a token in a
place is available, if it can be used to enable any downstream transition. This property
makes it very difficult to represent the state of a TPN for any purpose. An approach,
called stretching (which is later called transition-stretching), was first introduced in [4]
to overcome this difficulty for timed-transition Petri nets (TTPNs). This approach was
then used to design supervisory controllers for TTPNs to avoid deadlock in [5]. A
similar approach, called place-stretching, was recently introduced in [7] for TPPNs. In
this approach, given an original TPPN (OPN), a new TPPN, called the place-stretched
Petri net (PSPN), is obtained. The PSPN has the property that its marking vector is
sufficient to represent its state. By using this property, in the present work we propose a
supervisory controller design approach for TPPNs to avoid deadlock. In this approach,
given an OPN, its PSPN is obtained first. A controller for the PSPN is then designed.
Finally, using the controller for the PSPN, a controller for the OPN is obtained.

Assuming that the given Petri net is bounded (i. e., the number of tokens in each
place remains bounded), the proposed approach always finds a controller whenever there
exists one. Furthermore, the determined controller is maximally permissive, i. e., the
reachability set of the controlled Petri net under this controller includes the reachability
set of the controlled Petri net under any other controller which also avoids deadlock.
It is important to obtain maximally permissive controllers in order to allow maximal
operation of DES [15, 20].

It should be noted that a TPPN can be converted into a TTPN and vice versa.
Therefore, it is in principle possible to first convert a TPPN into a TTPN and use
the approach given in [5] to design a controller. In a Petri net the transitions denote
the events and places denote resources [25]. Therefore, it is most natural to associate
time with a transition when the corresponding event takes some time to occur and to
associate time with a place when some time has to elapse for the availability of the
corresponding resource. Once a Petri net model with holding durations on the places
(i. e., a TPPN) is obtained, to convert this model into a TTPN it is required to remove
the holding durations from all the places and instead associate an equivalent time-
delay with each upstream (alternatively downstream) transition. This method would
work well if each transition has only one downstream (upstream) place. When this
assumption fails, it would be required to repeat certain transitions in order to obtain
an equivalent TTPN model. This would however, complicate the model (by increasing
the number of transitions) and also would result in a model which does not have a
one-to-one correspondence with the actual system (an event in the original system now
corresponds to more than one transition). Therefore, rather than converting the original
TPPN model into a TTPN model and using the approach of [5], it is easier and more
natural to work on the original model and use the approach presented in the present
work. It should also be noted that in some DES both the events and the resources may
have certain times associated with them. In such a case, it is most natural to model this
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system with a TPN where both the transitions and places are timed. Then a hybrid
stretching approach, where both the transitions and the places are stretched can be used.
In this case, a hybrid design approach, where the approach of [5] and the approach given
in here is used together, can be used to design a controller to avoid deadlock.

2. TIMED-PLACE PETRI NETS

A TPPN is defined as a tuple G = (P, Tc, Tu, N, O, S0,D). Here, P is the set of places,
Tc is the set of controllable transitions, Tu is the set of uncontrollable transitions, N :
P×T → N is the input matrix which specifies the weights of the arcs directed from places
to transitions, where T := Tc∪Tu is the set of transitions and N is the set of nonnegative
integers, O : P × T → N is the output matrix which specifies the weights of the arcs
directed from transitions to places, S0 := S(0) is the initial state, and D : P → N+

specifies the holding duration of a place p ∈ P , where N+ is the set of positive integers.
The difference between a controllable transition t ∈ Tc and an uncontrollable transition
t ∈ Tu is that a controllable transition can be disabled by a supervisory controller at
any time, but an uncontrollable transition can not be disabled.

In this work, it is assumed that the time can be discretized using an appropriate
sampling period such that each holding duration is an integer multiple of that period.
That is, we assume that all holding durations can be satisfactorily represented by a
rational value. Then, the sampling period can simply be chosen as the inverse of the
least common denominator of all holding durations (or as the greatest common divisor if
all holding durations are integers). Thus, the time variable is represented by an integer
k and, without loss of generality, the initial time is let to be k = 0. It should be
noted that in some cases this approach may necessitate a rather small sampling period,
which in turn would result in long holding durations. In our approach of stretching (to
be explained below), this would mean that a rather large number of new places and
transitions must be introduced to define the stretched Petri net. It is known that the
size of the reachability set of a Petri net (thus, also the complexity of computations to
analyze it) in general depends exponentially on the number of places and transitions.
However, in our case, since each newly introduced transition has only one input place
and one output place, the addition of these new places and transitions increase the size
of the reachability set of the Petri net only linearly. This is a price to pay in order to
obtain an easy representation of the state of the TPN.

The state of the TPPN at time k can be described as [7]:

S(k) = {n(p, k, l), l = 0, . . . ,D(p)− 1, p ∈ P} , (1)

where n(p, k, l) denotes the number of tokens q ∈ η(p, k) for which σp,q(k) = l, where
η(p, k) denotes the set of tokens present in place p at time k, and σp,q(k) denotes the
time left to the availability of token q in place p at time k. For any p ∈ P and q ∈ η(p, k),

σp,q(k) =


D(p)− 1, if token q enters place p at time k

(due to firing of t ∈ •p at time k − 1)
σp,q(k − 1)− 1, if token q enters place p before

time k and σp,q(k − 1) > 0
0, otherwise,



Supervisory controller design for timed-place Petri nets 1117

where •p := {t ∈ T | O(p, t) 6= 0} is the set of transitions which precedes place p ∈ P .
Similarly, for future reference, p• := {t ∈ T | N(p, t) 6= 0} is the set of transitions which
follows place p ∈ P , •t := {p ∈ P | N(p, t) 6= 0} is the set of places which precedes
transition t ∈ T , and t• := {p ∈ P | O(p, t) 6= 0} is the set of places which follows
transition t ∈ T . Note that, the number of tokens assigned to place p ∈ P at any time
k, M(p, k), is given by

M(p, k) =
D(p)−1∑

l=0

n(p, k, l) .

A transition t ∈ T is said to be enabled at time k if n(p, k, 0) ≥ N(p, t), ∀ p ∈ P . Let
E(G, k) denote the set of transitions of G which are enabled at time k. Furthermore,
for t ∈ E(G, k), let

εt(k) := min
p∈•t
{Int (n(p, k, 0)/N(p, t))}

be the degree of enabledness of t at time k, where Int(·) denotes the integer part of (·).
Then, t ∈ E(G, k) may fire upto εt(k) times at time k. When a transition t ∈ E(G, k)
fires µ times (0 ≤ µ ≤ εt(k)) at time k, it draws µN(p, t) tokens from all places p ∈ •t
and deposits µO(p, t) tokens into all places p ∈ t• at time k+1. Note that, this model is
appropriate to represent events which can happen more than once at any instant (e. g.,
a machine which can process one or more parts at a given time). If there is a physical
limit on the number of times a transition t can fire (e. g., the number of parts a machine
can process) for any duration τ > 0, this limitation can be modelled by introducing
a place (call it pt

L) with N(pt
L, t) = O(pt

L, t) = 1, N(pt
L, θ) = O(pt

L, θ) = 0, ∀ θ 6= t,
D(pt

L) = τ , M(pt
L, 0) = λ, where λ is the upper limit on the number of firings of the

transition t for the duration τ (see [7]). Furthermore, this model also allows firing of
more than one transition, say t1, . . ., tν , respectively µ1, . . ., µν times, at the same time
k, as long as the set {(t1, µ1), . . . , (tν , µν)} is enabled at time k. A set φ of pairs (t, µ),
where t ∈ E(G, k) and 0 < µ ≤ εt(k), is said to be enabled at time k if∑

(t,µ)∈φ

µN(p, t) ≤ n(p, k, 0) , ∀ p ∈ P .

Let Ẽ(G, k) denote the set of sets φ of G which are enabled at time k. When φ ∈
Ẽ(G, k) fires at time k, the number of tokens in a place p ∈ P at the next instant is
given by

M(p, k + 1) = M(p, k) +
∑

(t,µ)∈φ

µ[O(p, t)−N(p, t)] . (2)

An important undesirable property for Petri nets is deadlock. Deadlock is said to
occur in a Petri net at time k if no transition can fire at time k or later. Thus, deadlock
occurs in a TPPN G at time k if and only if

E(G, k) = E(G, k + 1) = . . . = E(G, k + dmax − 1) = ∅ , (3)

where dmax := maxp∈P {D(p)}.
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3. PLACE-STRETCHED PETRI NETS

Place-stretching was first introduced in [7] for TPPNs in which there is no distinction
between controllable and uncontrollable transitions (in [7] control of Petri nets was not
considered, hence there was no need for such a distinction). In this section, we generalize
this method to TPPNs in which the set of transitions is decomposed into the sets of
controllable and uncontrollable transitions. Given an original TPPN (OPN), the method
of place-stretching produces a new TPPN, called the place-stretched Petri net (PSPN).
The PSPN has, in general, more places and transitions than the OPN, but each place
of the PSPN has a unit holding duration. This property, as we shall present, makes it
easier to represent the state of the TPPN and to design a controller for it. To obtain
the PSPN, let us first define P1 := {p ∈ P | D(p) = 1} and P2 := {p ∈ P | D(p) ≥ 2}
(thus, P = P1 ∪ P2). Then, for any p ∈ P2,

i) define D(p)− 1 new places, pp
1, pp

2, . . ., pp
D(p)−1, and D(p)− 1 new uncontrollable

transitions, tp1, tp2, . . ., tpD(p)−1. Let π(p) := {pp
1, p

p
2, . . . , p

p
D(p)−1} and τ(p) :=

{tp1, t
p
2, . . . , t

p
D(p)−1}. The newly introduced uncontrollable transitions are such

that any one of them (say t) fires εt(k) times at any time k (i. e., these transitions
do not wait when they become enabled).

ii) keep all the arcs which enter place p, but detach all the arcs which leave place p
from p; instead, attach the originating end of these arcs to place pp

D(p)−1.

iii) define new arcs with unity weights from p to tp1, from tp1 to pp
1, from pp

1 to tp2, . . .,
and from tpD(p)−1 to pp

D(p)−1.

iv) reassign the holding duration of p as unity; also assign unit holding durations to
each of the newly introduced places, pp

1, pp
2, . . ., pp

D(p)−1.

v) to define the initial state of the PSPN, keep the tokens q ∈ η(p, 0) with σp,q(0) =
D(p) − 1 inside place p, but move the tokens q ∈ η(p, 0) with σp,q(0) = l to the
place pp

D(p)−1−l, for l = 0, . . . ,D(p)− 2.

For example, for the OPN shown in Figure 1, the PSPN shown in Figure 2 is obtained
by this procedure.1

The PSPN is denoted by the tuple Gs = (Ps, Tc, Tu, Tn, Ns, Os,m0). Here, Ps :=
P ∪Pn is the set of places, where Pn := ∪p∈P2π(p) is the set of newly introduced places.
Tc and Tu are the sets of, respectively, controllable and uncontrollable original transitions
(which are the same as the corresponding sets for G), and Tn := ∪p∈P2τ(p) is the set
of newly introduced transitions, which are also uncontrollable. The difference between
a t ∈ Tu and a t ∈ Tn is that a t ∈ Tn fires εt(k) times at any time k; however, a t ∈ Tu

1In all the figures, the places, the transitions, and the arcs are respectively shown by circles, bars,
and arrows, as customary. Furthermore, the dots in each circle denotes the tokens present in that place
at time k = 0. A number in parenthesis next to a place indicates the holding duration of that place, a
number next to an arc indicates the weight of that arc, and a number next to a token indicates the time
left, σp,q(0), to the availability of that token at time k = 0. Unity holding durations, unity weights, and
zero times left to availability, however, are not explicitly indicated for clarity. Controllable transitions
are indicated by a star next to that transition.
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Fig. 1. Example TPPN.

may fire µ times, for any µ between zero and εt(k); i. e., a t ∈ Tu (just like a t ∈ Tc) may
wait; however, a t ∈ Tn does not wait when it becomes enabled. The set of transitions
of Gs is given by Ts := Tc ∪ Tu ∪ Tn = T ∪ Tn. The input matrix, Ns : Ps × Ts → N , is
given as

Ns(p, t) =



N(p, t), if p ∈ P1 and t ∈ T
1, if p ∈ P2 and t = tp1
1, if p = pp̂

i and t = tp̂i+1 for some p̂ ∈ P2

with D(p̂) ≥ 3 and i = 1, . . . ,D(p̂)− 2
N(p̂, t), if p = pp̂

D(p̂)−1 and t ∈ T for some p̂ ∈ P2

0, otherwise.

(4)

On the other hand, the output matrix, Os : Ps × Ts → N , is given as

Os(p, t) =


O(p, t), if p ∈ P and t ∈ T

1, if p = pp̂
i and t = tp̂i for some p̂ ∈ P2

and i = 1, . . . ,D(p̂)− 1
0, otherwise.

(5)
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Fig. 2. PSPN for the example TPPN.
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Finally, m0 : Ps → N is the initial marking, which is given as

m0(p) =


n(p, 0,D(p)− 1), if p ∈ P

n(p̂, 0,D(p̂)− 1− i), if p = pp̂
D(p̂)−i for some p̂ ∈ P2,

i = 1, . . . ,D(p̂)− 1.
(6)

Note that, since dmax = 1 for the PSPN, the marking vector, m(k) : Ps → N , which
gives the number of tokens in each place p ∈ Ps at time k, completely defines the state of
the PSPN at any time k. Therefore, the initial state S0, in the description of a general
TPPN is replaced by the initial marking, m0 := m(0), for a PSPN. Furthermore, in the
definition of a PSPN, there is no need for a function which defines the holding durations
of the places, since all the holding durations are unity.

In the PSPN model, a transition t ∈ Ts is enabled at time k, i. e., t ∈ E(Gs, k),
if m(p, k) ≥ Ns(p, t), ∀ p ∈ Ps, where m(p, k) is the number of tokens assigned to
place p ∈ Ps at time k. For any t ∈ E(Gs, k), the degree of enabledness of t at time
k is simply given as εt(k) = minp∈•t {Int (m(p, k)/Ns(p, t))}. A set φ of pairs (t, µ),
where t ∈ E(Gs, k) and 0 < µ ≤ εt(k), is enabled at time k, i. e., φ ∈ Ẽ(Gs, k), if∑

(t,µ)∈φ µNs(p, t) ≤ m(p, k), ∀ p ∈ Ps. When φ ∈ Ẽ(Gs, k) fires at time k, the marking
vector at the next instant is given as

m(k + 1) = m(k) +
∑

(t,µ)∈φ

µ[Os(t)−Ns(t)] , (7)

where Ns(t) and Os(t) respectively denote the columns of Ns and Os which correspond
to transition t.

Note that, as remarked in [7], (7) completely describes the evolution of the state
of the PSPN. The corresponding equation, (2), on the other hand, is insufficient to
describe the evolution of the state of a general TPPN. To describe the evolution of
the state of a general TPPN, one needs to describe the evolution of n(p, k, l), for each
l = 0, . . .D(p) − 1, and each p ∈ P . However, once the state (i. e., the marking vector)
of the PSPN is determined at any time k, the state of its corresponding TPPN (i. e., the
OPN) at time k can easily be obtained as (1), where

n(p, k, l) =
{

m(p, k), for l = D(p)− 1
m(pp

D(p)−1−l, k), for p ∈ P2, l = 0, . . . ,D(p)− 2,
(8)

for any p ∈ P and l = 0, . . . ,D(p) − 1. Furthermore, the number of tokens assigned to
place p ∈ P of the OPN at any time k can be obtained as

M(p, k) =
{

m(p, k), for p ∈ P1

m(p, k) +
∑

p̂∈π(p) m(p̂, k), for p ∈ P2.
(9)

Also note that, due to the fact that dmax = 1 for the PSPN, deadlock occurs in the
PSPN at time k if and only if E(Gs, k) = ∅. Furthermore, since there is a one to one
correspondence between the state of the PSPN and of its OPN, deadlock occurs in the
OPN at time k if and only if deadlock occurs in the PSPN at time k. Therefore, to
check for deadlock in the OPN, rather than finding the state of the OPN and using (3),
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one can simply determine the state of the PSPN (which is easier as explained above),
and check whether E(Gs, k) = ∅.

Therefore, it is in general easier to use the PSPN model to analyze or design a discrete-
event system modeled by a TPPN. The state of the TPPN can then be recovered as (1),
where n(p, k, l) is given by (8). In fact, many analysis and design algorithms developed
for untimed Petri nets can easily be modified and used for a PSPN, although they
can not be used directly for a general TPPN. The basic reason for this is that, due
to different holding durations of different places, the events which may seem to occur
simultaneously in the untimed Petri net, can not in fact occur in the actual TPPN.
However, since all the holding durations in the PSPN are unity, this difficulty is resolved.
For example, to obtain the reachability set, R(G, S0), i. e., the set of all reachable states
from S0, of a TPPN G, the reachability set, R(Gs,m0), of its PSPN Gs can first be
obtained. The reachability set of the given TPPN can then be obtained using (8) and
(1). Algorithm 1, which is taken from [7] (which was obtained by properly modifying the
algorithm introduced in [1] for untimed Petri nets), constructs the reachability set of a
PSPN.2 This algorithm requires the PSPN definition, Gs (which includes Ps, Tc, Tu, Tn,
Ns, Os, and m0), and returns the reachability set, R(Gs,m0), and the set Ω(Gs,m0).
The kth element of Ω(Gs,m0) is the minimum time required to reach the kth element
of R(Gs,m0) from m0. This algorithm uses the function SimSet which returns the set,
Ẽ(Gs, ·), of enabled sets of pairs (t, µ), at any state m(·). SimSet, which is shown as
Algorithm 2, requires the PSPN definition Gs (except for m0) and the marking vector
m. Algorithm 1 builds up the reachability set, R, by starting with the initial marking
m0 (which is naturally an element of R). At each iteration, the set Φ of all enabled sets
of pairs (t, µ), at each lastly added marking is determined using Algorithm 2. Then, all
the markings which are reachable from each of the lastly added markings in one time
step are computed. These markings are added to R, unless they are already an element
of R. These iterations continue until no new marking is found. Algorithm 2, on the other
hand, determines the set Φ, by first determining all the enabled transitions, t, and degree
of enabledness, εt, of each such t. Then, all possible pairs (t, µ) for all enabled t and
µ = 1, . . . , εt, are formed. Then, all different combinations of these (t, µ) are collected
as an element φ of Φ as long as they satisfy the condition

∑
(t,µ)∈φ µNs(p, t) ≤ m(p, k),

∀ p ∈ Ps. While doing this, special attention is given to t ∈ Tn. Any such t, with its
corresponding µ = εt, is included in all φ, since any newly introduced transition must
fire εt times when it becomes enabled. Both Algorithm 1 and 2 terminate in finite time
as long as the OPN is bounded.

4. SUPERVISORY CONTROLLER DESIGN TO AVOID DEADLOCK

In this section, a supervisory controller design approach is introduced to avoid deadlock
in TPPNs. Since it is easier to identify deadlock in a PSPN (as explained above), our
proposed approach is based on place-stretching. In this approach, given a TPPN (i. e.,

2In all algorithms, for a set F , 2F denotes the power set of F , |F | denotes the number of elements of
F and [F ]i denotes the ith element of F (i = 1, 2, . . . , |F |). All the sets are ordered sets. A ∪̂ B is used to
denote the set union A∪B, whenever it is known apriori that A∩B = ∅. To evaluate H = A ∪̂ B elements
of A and of B are simply appended to form H. Furthermore, ρ(m, φ) := m+

P
(t,µ)∈φ µ[Os(t)−Ns(t)],

ρ̄(m, t) := m + Os(t) − Ns(t), and MaX(m) := maxp∈Ps{m(p)}.
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Algorithm 1 Algorithm to construct the reachability set of the PSPN.
Input: Gs = (Ps, Tc, Tu, Tn, Ns, Os,m0)
Outputs: R = R(Gs,m0) and ΩR = Ω(Gs,m0)

R = R1 = {m0}, ΩR = ΩR1 = {0}
loop

R2 = ∅, ΩR2 = ∅
for i = 1 to |R1| do

m = [R1]i
Φ =SimSet[Gs,m]
for j = 1 to |Φ| do

φ = [Φ]j
m̂ = ρ(m,φ)
if m̂ /∈ (R2 ∪̂ R) then

R2 ← R2 ∪̂ {m̂}
ΩR2 ← ΩR2 ∪̂ {[ΩR1 ]i + 1}

end if
end for

end for
if R2 == ∅ then

exit loop
end if
R← R ∪̂ R2

ΩR ← ΩR ∪̂ ΩR2

R1 = R2

ΩR1 = ΩR2

end loop
return R, ΩR

the OPN), a PSPN is first obtained as explained in the previous section. A controller
is then designed for the PSPN. Based on this controller, a controller is obtained for the
OPN in the final phase.

To design the controller for the PSPN, let R(Gs,m0) denote the reachability set of
the PSPN (which can be obtained by using Algorithm 1). For any m ∈ R(Gs,m0),
let Es(m) denote the set of all enabled transitions of Gs at marking m, i. e., Es(m) :=
{t ∈ Ts | Ns(p, t) ≤ m(p) , ∀ p ∈ Ps}. Furthermore, let Ẽs(m) denote the set of all
enabled sets of pairs (t, µ) of Gs at marking m, i. e., Ẽs(m) := {φ |

∑
(t,µ)∈φ µNs(p, t) ≤

m(p) , ∀ p ∈ Ps}. Then, deadlock occurs in the PSPN if and only if Ẽs(m) = ∅
at some m ∈ R(Gs,m0). Such an m is called a deadlock state. Therefore, in order
to avoid deadlock, a controller must make sure that the state of the PSPN does not
reach to a deadlock state. Let D0 denote the set of deadlock states, i. e., D0 := {m ∈
R(Gs,m0) | Ẽs(m) = ∅}. Let D̂ denote the set of states that must be avoided in order
to avoid deadlock. Clearly Do ⊂ D̂. Furthermore, note that if the state of the PSPN
reaches to a state m ∈ R(Gs,m0) \ D̂ such that firing any φ ∈ Ẽs(m) leads to a state
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Algorithm 2 Algorithm to determine the set of enabled sets.
Inputs: Gs = (Ps, Tc, Tu, Tn, Ns, Os) and m.
Output: Ẽs = Ẽs (m).

FUNCTION SimSet[Gs,m]
T = Tc ∪ Tu, Es = ∅, Σs = ∅, En

s = ∅, Ẽs = ∅, Ēs = ∅
for i = 1 to |T | do

ε = MaX (m)
for j = 1 to |Ps| do

if m ([Ps]j) < Ns ([Ps]j , [T ]i) then
go to Break-1

end if
if Ns ([Ps]j , [T ]i) 6= 0 then

ε = min (ε, Int (m ([Ps]j) /Ns ([Ps]j , [T ]i)))
end if

end for
Es ← Es ∪̂ {[T ]i}
Σs ← Σs ∪̂ {ε}
Break-1: continue

end for
for i = 1 to |Es| do

for j = 1 to [Σs]i do
Ēs ← Ēs ∪̂ {([Es]i, j)}

end for
end for
for i = 1 to |Tn| do

for j = 1 to |Ps| do
if Ns ([Ps]j , [Tn]i) == 1 then

if m ([Ps]j) 6= 0 then
En

s ← En
s ∪̂ {([Tn]i,m ([Ps]j))}

end if
go to Break-2

end if
end for
Break-2: continue

end for
(continued on the next page)
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Algorithm 2 (continued).

Ês = 2Ēs

for i = 1 to |Ês| do
φ = [Ês]i ∪̂ En

s

if φ == ∅ then
go to JMP

end if
for l = 1 to |Ps| do

cnt = 0
for j = 1 to |φ| do

(t, µ) = [φ]j
cnt← cnt + µNs ([Ps]l, t)

end for
if m ([Ps]l) < cnt then

go to JMP
end if

end for
Ẽs ← Ẽs ∪̂ {φ}
JMP: continue

end for
return Ẽs

in D̂ then it is impossible to avoid deadlock. Therefore, a supervisory controller must
also avoid such m; i. e., such m must also be in D̂. Moreover, if the state of the PSPN
reaches to a state m ∈ R(Gs,m0) \ D̂ such that there exists a φ ∈ Ẽs(m) such that
t ∈ Tsu , ∀ (t, µ) ∈ φ, where Tsu := Tu ∪ Tn is the set of all uncontrollable transitions
of Gs, then a controller can not disable such φ. Therefore, if firing this φ leads to a
state in D̂, then such m must also be avoided by the controller. Note that, this latter
situation occurs if and only if there exists t ∈ Es(m) ∩ Tsu such that firing t once leads
to a state in D̂. In summary, the set of all states that must be avoided in order to avoid
deadlock is given as D̂ :=

⋃n
i=0 Di, where n is such that Dn 6= ∅, but Dn+1 = ∅, and,

for i = 1, . . . , n + 1, Di := Dc
i ∪ Du

i , Dc
i := {m ∈ R(Gs,m0) \

⋃i−1
k=0 Dk | ρ(m,φ) ∈⋃i−1

k=0 Dk, ∀φ ∈ Ẽs(m)}, and Du
i := {m ∈ R(Gs,m0) \

⋃i−1
k=0 Dk | ρ̄(m, t) ∈

⋃i−1
k=0 Dk,

for some t ∈ Es(m)∩Tsu}, where ρ(m,φ) denotes the next state when φ fires at m, i. e.,
ρ(m,φ) := m+

∑
(t,µ)∈φ µ[Os(t)−Ns(t)], and ρ̄(m, t) denotes the next state when t fires

once at m, i. e., ρ̄(m, t) := ρ (m, {(t, 1)}) = m + Os(t) − Ns(t). Once R := R(Gs,m0)
is determined (e. g., by Algorithm 1), Algorithm 3 finds D̂. Algorithm 3 requires the
PSPN definition, Gs, and the reachability set R. Algorithm 3 also uses the function
SimSet, given as Algorithm 2. To determine D̂, Algorithm 3 first determines D0. If
D0 is empty, then D̂ is also empty, and hence the algorithm is terminated. Otherwise,
D̂ is initiated as D0 and a loop is entered in which, at its ith iteration, Du

i , Dc
i , and

Di := Dc
i ∪Du

i are determined and Di is appended to D̂. The iteration of this loop is
terminated when no new element for Di is found. Algorithm 3 terminates in finite time
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as long as R is a finite set (which is true when the OPN is bounded).

Once the set D̂ is determined, in order to avoid deadlock, at any state m of Gs, a
controller must disable firing any φ ∈ Ẽs(m) which leads the state of Gs into D̂. Such
a controller may be described using the controller function:

c(m,φ) :=
{

0, if ρ(m,φ) ∈ D̂
1, otherwise,

(10)

for all φ ∈ Ẽs(m) and for all m ∈ R(Gs,m0), where c(m,φ) = 0 means that firing of φ
at state m is disabled by the controller and c(m,φ) = 1 means that firing of φ at state
m is not disabled by the controller. Note that, by the construction of D̂, if ρ(m,φ) ∈ D̂
for any m ∈ R(Gs,m0) \ D̂ and φ ∈ Ẽs(m), then there exists at least one (t, µ) ∈ φ such
that t ∈ Tc. Therefore, the controller (10) can in fact disable firing of φ at the state m.
This means that, given m0 /∈ D̂, the controller (10) can indeed guarantee deadlock-free
operation of the PSPN. Note that if m0 ∈ D̂, then there exists no controller which can
guarantee deadlock-free operation of the PSPN. Furthermore, if the initial state S0 of
the OPN is such that m0 ∈ D̂ (where m0 is given by (6)), then there exists no controller
which can guarantee deadlock-free operation of the OPN.

Algorithm 3 Algorithm to determine the set D̂.
Inputs: Gs = (Ps, Tc, Tu, Tn, Ns, Os) and R = R(Gs,m0).
Output: D̂.

D̂ = ∅
for i = 1 to |R| do

m = [R]i
Φ = SimSet[Gs,m]
if Φ == ∅ then

D̂ ← D̂ ∪̂ {m}
end if

end for
if D̂ == ∅ then

go to Fin
end if
R1 = R \ D̂
Tsu = Tu ∪̂ Tn

(continued on the next page)
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Algorithm 3 (continued).

loop
D = ∅
for i = 1 to |R1| do

m = [R1]i
for j = 1 to |Tsu | do

for r = 1 to |Ps| do
if Ns([Ps]r, [Tsu

]j) > m([Ps]r) then
go to Break-1

end if
end for
if ρ̄(m, [Tsu ]j) ∈ D̂ then

D ← D ∪̂ {m}
go to Break-2

end if
Break-1: continue

end for
Φ = SimSet[Gs,m]
for j = 1 to |Φ| do

if ρ(m, [Φ]j) 6∈ D̂ then
go to Break-2

end if
end for
D ← D ∪̂ {m}
Break-2: continue

end for
if D = ∅ then

exit loop
end if
D̂ ← D̂ ∪̂ D
R1 ← R1 \D

end loop
Fin: return D̂

Using controller (10), a controller for the OPN at any state S ∈ R(G, S0) can be
described as

C(S, φ) = c(m, φ̂) (11)

for all φ ∈ Ẽo(S), where Ẽo(S) is the set of all enabled sets of pairs (t, µ) of G at S,
i. e., Ẽo(S) := {φ |

∑
(t,µ)∈φ µN(p, t) ≤ n(p, ·, 0) , ∀ p ∈ P}. Here, m is the marking of

Gs which corresponds to state S of G, i. e.,

m(p) =


n(p, ·,D(p)− 1), if p ∈ P

n(p̂, ·,D(p̂)− 1− i), if p = pp̂
D(p̂)−i for some p̂ ∈ P2,

i = 1, . . . ,D(p̂)− 1,



1128 A. AYBAR AND A. İFTAR

and φ̂ := φ∪
{
∪t∈Es(m)∩Tn

{(t, m(pt))}
}
, where pt is the unique element of •t (note that,

by (4), for any t ∈ Tn, there is a unique pt ∈ Ps such that Ns(pt, t) = 1 and, for any other
p ∈ Ps, Ns(p, t) = 0). As for c, C(S, φ) = 0 means that firing of φ at state S is disabled
by the controller and C(S, φ) = 1 means that firing of φ at state S is not disabled by the
controller. Since there is a one to one correspondence between the states of the OPN
and of the PSPN and that the controller (10) guarantees deadlock-free operation of the
PSPN as long as m0 /∈ D̂, the controller (11) guarantees deadlock-free operation of the
OPN, provided only that the initial state S0 of the OPN is such that m0 /∈ D̂, where
m0 is given by (6). This means that, as long as the OPN is bounded, the presented
approach produces a controller (given by (11)) which avoids deadlock, whenever there
exists such a controller. Furthermore, note that D̂ is the smallest subset of R(Gs,m0)
which must be avoided in order to avoid deadlock in the PSPN. This implies that the
controller (10) is maximally permissive for Gs. This in turn implies that the controller
(11) is maximally permissive for G.

We note that, although it may be possible to implement the controller (11) by using
control places and obtaining a closed-loop Petri net, this is usually not required in
practice. This controller can be implemented on the actual plant (which has been
modeled by a TPPN) as an on-line monitoring and control system, as it is suggested,
e. g., in [23]. Such a system would monitor the state of the actual plant and at any state
S would disable all φ for which C(S, φ) = 0.

Before concluding this section, we remark that the computational complexity of Al-
gorithm 1 is proportional to the size of the reachability set R = R(Gs,m0). The com-
putational complexity of Algorithm 2 is related polynomially to the size of the Petri net
(i. e., the number of transitions and the number of places), which is, in general, much
smaller than the size of R. Finally, the computational complexity of Algorithm 3 is

proportional to |R|+
∑n

i=0

∣∣R \ (
∪i

j=0Dj

)∣∣ ≤ |R|2 + 3|R|
2

, where | · | denotes the size of
the set · and n, D0, . . ., Dn are as defined in the second paragraph of the present sec-
tion. Therefore, it is concluded that the overall computational complexity of the design
approach is related polynomially to the size of R = R(Gs,m0), or equivalently to the
size of R(G, S0).

5. EXAMPLE

In this section, as an example, we consider the manufacturing system taken from [25].
This system consists of four pallets, two machines, a shared robot, and a buffer which
can store upto two intermediate parts. A part which enters the system is first fixtured
on one of the available pallets (no parts can enter if there are no available pallets). A
fixtured part then enters the first machine if it is available. After the first machine
finishes processing of a part, this part is unloaded by the robot if the robot is available.
An unloaded part is then placed into the buffer if there is an empty space in the buffer.
At this time both the robot and the first machine become available. An intermediate
part in the buffer can enter the second machine when it is available. After the second
machine finishes processing of a part, this part is unloaded by the robot, provided that
the robot is available. After a part is unloaded from the second machine, it is defixtured
from the pallet and leaves the system. At this time the robot, the second machine, and
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the freed pallet become available.
The Petri net model of the system is shown in Figure 1. In this model, the set of places

is P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}, where p1 represents the available pallets, p2

represents the processing of a part by the first machine, p3 denotes the availability of the
first machine, p4 represents unloading an intermediate part from the first machine by the
robot, p5 denotes the robot availability, p6 represents the intermediate parts stored in the
buffer, p7 denotes the available buffer capacity, p8 represents the processing of a part by
the second machine, p9 denotes the availability of the second machine, and p10 represents
unloading a finished part from the second machine by the robot. The set of transitions is
T = {t1, t2, t3, t4, t5, t6}, where t1 denotes the entrance of a part into the first machine, t2
denotes the start of the unloading of the first machine, t3 denotes the end of the unloading
of the first machine and placing the unloaded part into the buffer, t4 denotes the entrance
of a part into the second machine, t5 denotes the start of the unloading of the second
machine, and t6 denotes the end of the unloading of the second machine and defixturing
the finished part from the pallet. It is assumed that the transitions which request the
robot are controllable and the other transitions are uncontrollable. Hence, Tc = {t2, t5}
and Tu = {t1, t3, t4, t6}. It is further assumed that the processing of a part by the first
machine takes two time units, the processing of a part by the second machine takes three
time units, and each of the other tasks take one time unit. Hence, D(p2) = 2, D(p8) = 3,
and D(p1) = D(p3) = D(p4) = D(p5) = D(p6) = D(p7) = D(p9) = D(p10) = 1. It is
assumed that initially each of the four pallets are available, both machines and the robot
are available, and the buffer is empty. Hence, the initial state of the system is

S0 = S(0) = {4, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0}

where the elements of S are ordered as follows:

S(·) = {n(p1, ·, 0), n(p2, ·, 0), n(p2, ·, 1), n(p3, ·, 0), n(p4, ·, 0) = 0, n(p5, ·, 0),
n(p6, ·, 0), n(p7, ·, 0), n(p8, ·, 0), n(p8, ·, 1), n(p8, ·, 2), n(p9, ·, 0), n(p10, ·, 0)}. (12)

The corresponding PSPN is shown in Figure 2. The set of places for the PSPN is
Ps = P ∪ Pn, where Pn = {pp2

1 , pp8
1 , pp8

2 }, and the set of transitions is Ts = T ∪ Tn,
where Tn = {tp2

1 , tp8
1 , tp8

2 }. The initial state (i. e., the initial marking) of the PSPN is
m0 = m(0) = [4 0 1 0 1 0 2 0 1 0 0 0 0]T , where ·T indicates transpose and the elements
of the marking vector m are ordered as

m = [m(p1) m(p2) m(p3) m(p4) m(p5) m(p6) m(p7) . . .

. . . m(p8) m(p9) m(p10) m(pp2
1 ) m(pp8

1 ) m(pp8
2 )]T . (13)

The reachability set, R = R(Gs,m0), of the PSPN and the corresponding set,
Ω = Ω(Gs,m0), of minimum times required to reach each element of R(Gs,m0) are
determined using Algorithm 1. The elements of these sets are respectively shown in the
first and the second columns of Table 1. The ordering of the elements of each element m
of R is as given in (13). The third column of Table 1 lists the state S of the OPN that
corresponds to the marking vector of the PSPN which is given in the first column. That
is, the third column lists all the elements of R(G, S0). The ordering of the elements of
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each S is as given in (12). The fourth column of Table 1 gives the sets of enabled pairs
φ of the OPN at each state S, i. e., the elements of Ẽo(S).

Algorithm 3 determines one deadlock state, which is [0 0 0 1 0 2 0 0 0 0 0 0 1]T , for
the PSPN. The corresponding state of the OPN is

SD = {0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0}

where the ordering of the elements is as in (12). This deadlock state is indicated by
a “�” in the last column of Table 1. Algorithm 3 further determines that this state
is the sole element of the set D̂. Therefore, in order to avoid deadlock, a supervisory
controller must disable firing any set φ at a state S which leads the state to SD. This
controller, C(S, φ), is defined in the last column of Table 1 for each S ∈ R(G, S0) and
each φ ∈ Ẽo(S). It is seen that this controller only disables firing {(t2, 1)} at state
{0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0}. This ensures that the state of the controlled OPN never
reaches the deadlock state. Note that, this controller allows reaching to any element of
R(G, S0) other than SD. Hence, the controller is maximally permissive.

6. CONCLUSION

A supervisory controller design approach to avoid deadlock in DES modeled by TPPNs
has been presented. In this approach, given an original TPPN (OPN), its PSPN is
first obtained. A supervisory controller to avoid deadlock in the PSPN is then de-
signed. Using this controller, a controller for the OPN is obtained in the final phase.
Assuming that the given Petri net is bounded, the proposed approach always finds a con-
troller in finite time whenever there exists one. The determined controller, when exists,
guarantees deadlock-free operation of the system and is maximally permissive, i. e., the
reachability set of the controlled system under this controller includes the reachability
set of the controlled system under any other controller which also avoids deadlock. We
note that unboundedness of a Petri net (equivalently of the system which it models)
is an undesirable property. Controller design approaches have been developed for both
untimed Petri nets [9] and TTPNs [8] to guarantee boundedness. A similar approach
to guarantee boundedness in TPPNs can be developed along similar lines by using the
place-stretching proposed here. Once such a controller is designed, this controller can
be applied first to obtain a bounded Petri net. The controller design approach proposed
in the present work can then be applied to avoid deadlock.

As explained in the last paragraph of Section 4, the computational time needed is
polynomially related to the size of the reachability set, R(G, S0). It should, however, be
noted that, the size of the reachability set, in general, is related to the size of the Petri net
non-polynomially. This is, however, a general drawback of the forbidden states approach
employed here [23]. An alternative approach would be to employ the structural approach
[12]. However, structural approach, in general, leads to a non-maximally permissive
controller. For large-scale Petri nets, where the burden of constructing the reachability
set is too high, decomposition approaches [2] may be used to overcome this burden.

Although we have considered only supervisory controller design to avoid deadlock, the
approach of place-stretching can also be used to design controllers for other purposes,
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mT Ω S φ C

[4010102010000] 0 {4, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0} {(t1, 1)} 1

[3100102010000] 1 {3, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0}

[3000102010100] 2 {3, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0} {(t2, 1)} 1

[3001002010000] 3 {3, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0} {(t3, 1)} 1

[3010111010000] 4 {3, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0} {(t1, 1)} 1

{(t4, 1)} 1

{(t1, 1), (t4, 1)} 1

[2100111010000] 5 {2, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0} {(t4, 1)} 1

[3010102100000] 5 {3, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 0, 0} {(t1, 1)} 1

[2100102100000] 5 {2, 1, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0}

[2000102100100] 6 {2, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0} {(t2, 1)} 1

[2000111010100] 6 {2, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0} {(t2, 1)} 1

{(t4, 1)} 1

{(t2, 1), (t4, 1)} 1

[2100102000010] 6 {2, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0}

[3010102000010] 6 {3, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0} {(t1, 1)} 1

[2000102000110] 6 {2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0} {(t2, 1)} 1

[2001002000010] 7 {2, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0} {(t3, 1)} 1

[2001011010000] 7 {2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0} {(t3, 1)} 1

{(t4, 1)} 1

{(t3, 1), (t4, 1)} 1

[2001002100000] 7 {2, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0} {(t3, 1)} 1

[2000102000101] 7 {2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0} {(t2, 1)} 1

{(t5, 1)} 1

[3010102000001] 7 {3, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0} {(t1, 1)} 1

{(t5, 1)} 1

{(t1, 1), (t5, 1)} 1

Tab. 1. Results for the Example. (continued on the next page)
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mT Ω S φ C

[2100102000001] 7 {2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0} {(t5, 1)} 1

[2001002000001] 7 {2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0} {(t3, 1)} 1

[2010111000001] 8 {2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0} {(t1, 1)} 1

{(t5, 1)} 1

{(t1, 1), (t5, 1)} 1

[2010120010000] 8 {2, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0} {(t1, 1)} 1

{(t4, 1)} 1

{(t1, 1), (t4, 1)} 1

[2010111100000] 8 {2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0} {(t1, 1)} 1

[2010111000010] 8 {2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0} {(t1, 1)} 1

[2000002001100] 8 {2, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1} {(t6, 1)} 1

[3010002001000] 8 {3, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1} {(t1, 1)} 1

{(t6, 1)} 1

{(t1, 1), (t6, 1)} 1

[2100002001000] 8 {2, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1} {(t6, 1)} 1

[1100111000001] 9 {1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0} {(t5, 1)} 1

[2010011001000] 9 {2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1} {(t1, 1)} 1

{(t6, 1)} 1

{(t1, 1), (t6, 1)} 1

[1100011001000] 9 {1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1} {(t6, 1)} 1

[1100120010000] 9 {1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0} {(t4, 1)} 1

[1100111100000] 9 {1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0}

[1100111000010] 9 {1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}

[1000011001100] 10 {1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1} {(t6, 1)} 1

[1000111000101] 10 {1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0} {(t2, 1)} 1

{(t5, 1)} 1

Results for the Example (continued). (continued on the next page)
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mT Ω S φ C

[1000111100100] 10 {1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0} {(t2, 1)} 1

[1000120010100] 10 {1, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0} {(t2, 1)} 1

{(t4, 1)} 1

{(t2, 1), (t4, 1)} 1

[1000111000110] 10 {1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0} {(t2, 1)} 1

[1001011000001] 11 {1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0} {(t3, 1)} 1

[1001011000010] 11 {1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0} {(t3, 1)} 1

[1001020010000] 11 {1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0} {(t4, 1)} 1

[1001011100000] 11 {1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0} {(t3, 1)} 1

[1010120000001] 12 {1, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0} {(t1, 1)} 1

{(t5, 1)} 1

{(t1, 1), (t5, 1)} 1

[1010120000010] 12 {1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 0} {(t1, 1)} 1

[0100120000001] 13 {0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0} {(t5, 1)} 1

[1010020001000] 13 {1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1} {(t1, 1)} 1

{(t6, 1)} 1

{(t1, 1), (t6, 1)} 1

[0100020001000] 13 {0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1} {(t6, 1)} 1

[0000020001100] 14 {0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1} {(t6, 1)} 1

[0000120000101] 14 {0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0} {(t2, 1)} 0

{(t5, 1)} 1

[0001020000001] 15 {0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0} �

Results for the Example (continued).
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such as to enforce liveness, boundedness, and/or reversibility [8] in TPPNs. Further
research can also be undertaken to develop stretching-like approaches for timed-arc Petri
nets or for mixed type Petri nets, where any combination of places, transitions, and arcs
are timed.

(Received May 12, 2011)
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