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A BACKWARD SELECTION PROCEDURE
FOR APPROXIMATING A DISCRETE PROBABILITY
DISTRIBUTION BY DECOMPOSABLE MODELS

Francesco M. Malvestuto

Decomposable (probabilistic) models are log-linear models generated by acyclic hypergraphs,
and a number of nice properties enjoyed by them are known. In many applications the following
selection problem naturally arises: given a probability distribution p over a finite set V of
n discrete variables and a positive integer k, find a decomposable model with tree-width k
that best fits p. If H is the generating hypergraph of a decomposable model and pH is the
estimate of p under the model, we can measure the closeness of pH to p by the information
divergence D(p : pH), so that the problem above reads: given p and k, find an acyclic, connected
hypergraph H of tree-width k such that D(p : pH) is minimum. It is well-known that this
problem is NP -hard. However, for k = 1 it was solved by Chow and Liu in a very efficient
way; thus, starting from an optimal Chow–Liu solution, a few forward-selection procedures
have been proposed with the aim at finding a ‘good’ solution for an arbitrary k. We propose
a backward-selection procedure which starts from the (trivial) optimal solution for k = n− 1,
and we show that, in a study case taken from literature, our procedure succeeds in finding an
optimal solution for every k.
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Classification: 05C65, 62-09, 68R10, 68T05

1. INTRODUCTION

An important area of machine learning research is the development and use of proba-
bilistic models for classification and prediction. A class of popular probabilistic models
is that of “decomposable models” [8, 26] (also called “multiplicative models” in [42, 43]),
which enjoy a number of nice properties: they are not tied to a specific form of a dis-
tribution, their interpretations are relatively easy because one can distinguish variables
that belong together from variables that can be separated, no iterative fitting algorithms
are needed to compute estimates, they can be characterized by zero partial associations
(that is, conditional independences). Decomposable models are loglinear models gen-
erated by “acyclic hypergraphs”. A hypergraph H is acyclic (or “decomposable”) if
there exists a running-intersection ordering of H, that is, an ordering (A1, . . . , Am) of
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its hyperedges such that, if m > 1 then, for each i ≥ 2, there exists j < i for which

(A1 ∪ . . . ∪Ai−1) ∩Ai ⊆ Aj .

If H is a reduced and connected hypergraph with m > 1 hyperedges (for details see Sec-
tion 2), then the sets (A1∪. . .∪Ai−1)∩Ai, 2 ≤ i ≤ m, are called the separators of H [26].

In some applications, one or more decomposable models are assigned in advance and
one wants to find all the decomposable models that can be logically inferred [18, 19, 23,
30, 31]. But in other applications, we are given a sample of observations of n categorical
variables, and we want to select a decomposable model that best fits the (probability)
distribution p defined by frequencies of events in the sample, subject to a constraint
owing to the allowable amount of machine memory [9, 25, 27]. Given the generating
hypergraph H of a decomposable model, by pH we denote the estimate of p under the
model, and we measure the accuracy of the estimate using the information divergence
D(p : pH), which is a nonnegative quantity vanishing if and only if pH = p. Let k be the
tree-width of H, that is, k is the maximum cardinality of hyperedges of H minus one.
Then, the selection problem above is reducible to the following parameterized problem:

(P) Given a distribution p over a set V of n discrete variables and an integer k, 0 ≤ k ≤
n − 1, find an acyclic hypergraph H on V with tree-width k such that D(p : pH)
is minimum.

We call an acyclic hypergraph on V with tree-width k a k-solution, and a k-solution H
is optimal if D(p : pH) is minimum. Note that the point partition of V , that is, the
hypergraph {{v} : v ∈ V }, is the only 0-solution and, hence, it is the optimal 0-solution;
moreover, the trivial partition of V , that is, the hypergraph {V }, is the only (n − 1)-
solution and, hence, it is the optimal (n − 1)-solution. So, problem (P) has a trivial
optimal k-solution for k = 0 and k = n− 1. Moreover, Chow and Liu [11] showed that a
connected 1-solution with minimum information divergence (a “Chow–Liu tree”) can be
found in a very efficient way. However, the problem of finding an optimal k-solution for
1 < k < n−1 was proven to be NP -hard [10, 14, 15, 21, 35], and several heuristics have
been proposed to find an approximation to an optimal k-solution. Using the “forward
approach” [2, 3, 4, 16, 17, 37, 39, 44], one starts from a Chow–Liu tree and adds edges
while maintaining chordality [16] and keeping the tree-width non greater than k; with
an appropriate choice of edges to add, the set of maximal cliques of the resultant chordal
graph is a ‘good’ approximation to an optimal k-solution. Another approach is based
on the following result.

Theorem 1. (Malvestuto [29]) For every acyclic hypergraph H on V with tree-width
k, there exists an acyclic hypergraph H∗ on V such that

(H1) H∗ is connected,
(H2) every hyperedge of H∗ has cardinality k + 1,
(H3) every separator of H∗ has cardinality k,

and for which D(p : pH∗) ≤ D(p : pH).
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We shall see in Section 3 that an acyclic hypergraph meeting requirements (H1), (H2)
and (H3) can be viewed as being the set of maximal cliques of a “k-tree” [7, 22, 38] and,
henceforth, such hypergraphs will be referred to as k-hypertrees. Theorem 1 has recently
been re-discovered in [39], where k-hypertrees are called “t-cherry junction trees”.

By Theorem 1, there always exists a k-hypertree that is an optimal k-solution. In
[28, 29] and in [40] the authors gave two procedures which construct a k-hypertree by
adding (k + 1)-sets incrementally in such a way that the output is an approximation to
an optimal k-solution.

Finally, a “backward approach” was theorized by Wermuth [42, 43], who provided a
criterion for decomposing a hyperedge A of an acyclic hypergraph H into two subsets
A−{u} and A−{v} such that the hypergraph (H−{A})∪{A−{u}, A−{v}} is acyclic.
Recently, a backward-selection procedure has been worked out in [36] based on a min-
imal triangulation algorithm, and the authors tested their algorithm on the Jamaican
Lizards dataset [8] which we will examine in Section 5.

In this paper, we present a backward algorithm (see the Greedy Backward algorithm
in Section 4) which constructs a suitable (h− 1)-hypertree from an h-hypertree. Thus,
if we start with the the optimal (n − 1)-solution (that is, the trivial partition of V )
and apply our algorithm n − k − 1 times (with h = n − 1, . . . , k + 1), then we find an
approximation to an optimal k-solution. We will test our procedure on the Jamaican
Lizards dataset and show that it succeeds in finding an optimal k-solution for each k.

The paper is organized as follows. Section 2 contains basic definitions and preliminary
results on acyclic hypergraphs, decomposable models and estimates of a probability
distribution. In Section 3 we introduce the notions of a k-hypertree and of an optimal
k-hypertree, and state some preliminary results. In Section 4 we present our greedy
backward algorithm, which is tested in Section 5 on the Jamaican Lizards dataset.
Section 6 contains a closing note.

2. PRELIMINARIES

2.1. Acyclic hyperhgraphs

We start with some more-or-less standard definitions. A hypergraph on a finite nonempty
set V is a set H of subsets of V whose union recovers V ; the elements of H and V are
called the hyperedges (the edges, for short) of H and the vertices of H, respectively. If
H is the trivial partition of V (that is, H = {V }), we call H the trivial hypergraph on V .
Two vertices of H are adjacent if they belong both to some edge of H. A clique of H is a
nonempty subset C of V such that either |C| = 1 or every two distinct vertices in C are
adjacent. A k-clique of H is a clique of H with k vertices. A hypergraph is connected
if every two distinct vertices a and b are joined by a path, that is, there is a sequence
of distinct vertices (v1, . . . , vk) such that v1 = a, vk = b and, for h = 1, . . . , k − 1, the
vertices vh and vh+1 are adjacent. A hypergraph is reduced if no edge is a subset of
another edge.

Henceforth, we limit our considerations to hypergraphs that are connected and re-
duced.

An (undirected, simple) graph is a hypergraph whose edges have all cardinality 2. The
adjacency graph (or “2-section”) of a hypergraph H on V is the graph on V , denoted
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by H2, where two vertices are adjacent if and only if they adjacent in H.
Recall from the Introduction that a hypergraph is acyclic if there exists a running-

intersection ordering of its edges. A linear algorithm to find a running-intersection
ordering (if any) of a hypergraph was given in [41]. Several equivalent definitions
of acyclicity exist [6]. Let H be a nontrivial acyclic (connected and reduced) hyper-
graph with m edges, let (A1, . . . , Am) be a running-intersection ordering of H, and let
Bi = (A1 ∪ . . .∪Ai−1)∩Ai, 2 ≤ i ≤ m. The sets B2, . . . , Bm are precisely the (minimal
vertex ) separators of H [23]. For each separator B of H, the replication number of B,
denoted by rB , is the number of distinct values of the index i for which B = Bi.

Fact 1. The replication number of a separator of H is the same for every running-
intersection ordering of H.

Remark 1. Let (A1, . . . , Am) be a running-intersection ordering of an acyclic nontrivial
hypergraph H, and let Bi = (A1 ∪ . . .∪Ai−1)∩Ai, 2 ≤ i ≤ m. Since every two vertices
in A1 are adjacent and, for each i, 2 ≤ i ≤ m, every two vertices in Ai−Bi are adjacent
and each vertex in Ai −Bi is adjacent to every vertex in Bi, the number of edges of H2

is exactly (
|A1|
2

)
+

∑
i=2,...,m

αi

where

αi =
{

|Bi| if |Ai −Bi| = 1(|Ai−Bi|
2

)
+ |Ai −Bi| · |Bi| else.

Acyclic (connected) hypergraphs can be represented by trees (e. g., “junction trees”
[20, 26], “join trees” [6] and “Almond trees” [1, 20]). We shall make use of a tree-
representation of an acyclic (connected and reduced) hypergraph, called “edge-separator
tree” (also called “edge-divider tree” [5] and “connection tree” [34]), which is halfway
between a junction tree and an Almond tree. Let H be an acyclic hypergraph on V , and
let S be the set of separators of H. An edge-separator tree of H is an undirected tree T
with node set H∪S that satisfies the following property (called “separation property” in
[1] and “junction property” in [26]): For every vertex v of H, the subgraph of T induced
by those nodes that contain v is connected. Note that, in order to avoid ambiguities,
we call nodes and arcs the vertices and edges of T , respectively; moreover, we call a
node of T an edge-node (or a separator-node) if it belongs to H (to S, respectively).
Observe that, if H is the trivial hypergraph (that is, H = {V }), then S = ∅ so that the
edge-separator tree of H is a one-point tree whose unique node is V .

Fact 2. Let T be any edge-separator tree of an acyclic hypergraph. The number of
neighbors of a separator-node B of T is equal to rB + 1.

From a computational point of view, the set S of separators of an acyclic hypergraph
H can be obtained in time linear in ||H|| =

∑
A∈H |A| [41], and an edge-separator tree

of H can be constructed in time linear in ||H|| · ||S|| where ||S|| =
∑

B∈S |B| [5].
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In all the examples that follow, we write sets of vertices simply as lists.

Example 1. Consider the acyclic hypergraph H = {ae, be, cd, ce}. The set of separators
of H is S = {c, e}; moreover, one has rc = 1 and re = 2. The hypergraph has exactly
one edge-separator tree which is shown in Figure 1.

Fig. 1. The edge-separator tree of the acyclic hypergraph

{ae, be, cd, ce}.

A rooted edge-separator tree of H is an edge-separator tree of H rooted at any edge-
node; if R is the root, the rooted edge-separator tree is denoted by TR. For every two
adjacent nodes N and N ′ of TR, N is the parent of N ′ (or, equivalently, N ′ is a child of
N) if the distance of N from R is less than the distance of N ′ from R. A leaf of TR is an
(edge-)node with no children. It is worth noting that, given a rooted edge-separator tree
TR of H, we can construct a running-intersection ordering of H, by visiting the nodes
of TR in a top-down way, that is, by visiting a node after its parent.

2.2. Decomposable probabilistic models

Let V be a finite set of discrete (random) variables. Let A be a nonempty (proper or
improper) subset of V ; an A-tuple is an assignment of values to variables in A. Given a
V -tuple x and a nonempty subset A of V , by xA we denote the A-tuple obtained from
x by ignoring the values of variables in V −A.

Let p be a (probability) distribution over V ; for V -tuple x, by p(x) we denote the
value of p at x. Let A be a nonempty subset of V ; by pA we denote the marginal of p
on A so that for A-tuple y one has pA(y) =

∑
x:xA=y p(x), and by Ep(A) we denote the

entropy of pA, that is,
Ep(A) =

∑
y:pA(y)>0

pA(y) log pA(y).

Let A be a subset of V with |A| ≥ 2, and let u and v be two distinct variables in A.
By Ip(u, v|A−{u, v}) we denote the conditional mutual information [12, 13] (also called
“average conditional information” [29]) of u and v given A− {u, v}, that is,

Ip(u, v|A− {u, v}) = Ep(A− {u}) + Ep(A− {v})− Ep(A− {u, v})− Ep(A)

where, by convention, Ep(A − {u, v}) is taken to be 0 if A = {u, v}. It is well-known
[12, 13] that Ip(u, v|A− {u, v}) ≥ 0, where the equality holds if and only if u and v are
conditionally independent given A− {u, v} under pA.
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A distribution q over V dominates p if q(x) > 0 for every V -tuple x for which
p(x) > 0. If q dominates p, the information divergence (or “Kullback-Leibler distance”
or “cross-entropy”or “relative entropy”) of q from p is defined by the quantity

D(p : q) =
∑

x:p(x)>0

p(x) log
p(x)
q(x)

.

It is well-known that D(p : q) ≥ 0 where the equality holds if and only if p = q.

The log-linear model [26] generated by a hypergraph H on V is the set of distribu-
tions over V that factorize according to H. A (probabilistic) decomposable model [26, 32]
is a log-linear model generated by an acyclic hypergraph. A distribution is decompos-
able by an acyclic hypergraphH if it belongs to the decomposable model generated byH.

Proposition 1. [27] Let H be an acyclic hypergraph on V , and let S be the set of
separators of H. A distribution p is decomposable by H if and only if

(i) for every V -tuple x with p(x) > 0 one has p(x) =
∏

A∈H pA(xA)∏
B∈S (pB(xB))rB

, and

(ii) for every V -tuple x with p(x) = 0 there exists an edge A ofH for which pA(xA) = 0.

In what follows, we summarize the two conditions of Proposition 1 simply by writing

p =
∏

A∈H pA∏
B∈S prB

B

Equivalenty, given a running-intersection ordering (A1, . . . , Am) of H, m ≥ 2, p is de-
composable by H if and only if

pH = pA1

∏
2≤i≤n−k

pAi

pBi

where Bi = (A1 ∪ . . . ∪Ai−1) ∩Ai, 2 ≤ i ≤ m.

Example 1 (continued). By Proposition 1, a distribution p over the variable set abcde

is decomposable by H = {ae, be, cd, ce} if and only if p =
paepbepcdpce

pcp2
e

.

Let p be a distribution over V and let H be a hypergraph on V . By MH(p) we denote
the set of the marginals of p over H, that is, MH(p) = {pA : A ∈ H}. The estimate of
p under the log-linear model generated by H, denoted by pH, is the maximum-entropy
extension of MH(p).

Let H be an acyclic hypergraph on V , and let S be the set of separators of H. Then
pH factorizes as follows [26, 32]:

pH =
∏

A∈H pA∏
B∈S prB

B

. (1)
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Note that, since (pH)A = pA for every edge A of H, pH is decomposable by H by
Proposition 1. Moreover, the entropy of pH amounts to

EpH(V ) =
∑
A∈H

Ep(A)−
∑
B∈S

rBEp(B).

Finally, it is easy to see that pH dominates p: if p(x) > 0 then pA(xA) > 0 for each edge
A of H and pB(xB) > 0 for each separator B of H so that, by (1), pH(x) > 0. Therefore,
the information divergence D(p : pH) is well-defined and, explicitly, one has [29, 40]

D(p : pH) = EpH(V )− Ep(V ). (2)

The next result involves two acyclic hypergraphs H and G on the same vertex set
where G is finer than H, by which we mean that every edge of G is a subset of some
edge of H.

Theorem 2. Let p be a distribution over V , and let H and G be two acyclic hypergraphs
on V . If G is finer than H then

(i) EpH(V ) ≤ EpG (V );

(ii) pG dominates pH and D(pH : pG) = D(p : pG)−D(p : pH).

P r o o f . (i) Since G is finer than H, every extension of MH(p) is an extension of MG(p)
so that pH is an extension of MG(p) and, hence, EpH(V ) ≤ EpG (V ).
(ii) Let x be a V -tuple with pH(x) > 0. By eq. (1), one has that pA(xA) > 0 for every
edge A of H. Let A′ be any edge of G. Since G is finer than H, there exists an edge of
H that contains A′. Let A be such an edge of H; then, one has pA′(xA′) ≥ pA(xA) > 0.
Since this is true for every edge A′ of G, by eq. (1), one has that pG(x) > 0, which
proves that pG dominates pH. So, D(pH : pG) is well-defined. Moreover, by eq. (2), one
has D(pH : pG) = EpG (V ) − EpH(V ). On the other hand, again by eq. (2), one has
D(p : pH) = EpH(V ) − Ep(V ) and D(p : pG) = EpG (V ) − Ep(V ). To sum up, one has
D(pH : pG) = D(p : pG)−D(p : pH). �

Finally, by eq. (1), the set of marginals MH(p) is a convenient storage representation
for pH so that we can measure the storage cost of pH by the size of MH(p), by which
we mean the amount of memory needed to store the marginals pA for A ∈ H.

3. ESTIMATES BY K-HYPERTREES

3.1. k-hypertrees

A graph is complete if its vertex set is a clique. A k-tree [7, 22] is a graph which can
be formed by starting with a complete graph on k + 1 vertices and, then, repeatedly
adding vertices in such a way that each added vertex has exactly k neighbours that form
a clique. It is easily seen that a k-tree with n vertices has n− k maximal cliques.
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By a k-hypertree we mean a hypergraph whose edges are maximal cliques of a k-
tree. Accordingly, a k-hypertree is a hypergraph which can be formed by starting with
a trivial hypergraph on k + 1 vertices and, then, repeatedly adding edges of the type
C ∪ {a} where C is a k-clique (of the already constructed k-hypertree) and a is a new
vertex. Note that the 0-hypertree on V is the point partition of V , and a 1-hypertree
on V is an ordinary tree on V . Since a k-tree with n vertices has n−k maximal cliques,
a k-hypertree with n vertices has exactly n − k edges; moreover, by Remark 1, the
adjacency graph of a k-hypertree on n vertices is a k-tree with

(
n− k+1

2

)
k edges.

It is easy to show that a k-hypertree H with n vertices has exactly one edge-separator
tree. The statement is obvious if k = n − 1. Assume that k < n − 1 and let T and
T ′ be two edge-separator trees of H. In order to prove that T = T ′, it is sufficient to
show that, if A and A′ are two edges of H that in T are joined by a path of length 2,
then A and A′ are joined by a path of length 2 in T ′, too. Let π = (A,B, A′) and
π′ = (A,B1, . . . , Bl, A

′) be the paths joining A and A′ in T and in T ′, respectively.
Of course, one has B = A ∩ A′. Moreover, by the junction property of T ′, the set
A ∩ A′ is contained in each node on π′; therefore, B (= A ∩ A′) is a subset of each
Bh, 1 ≤ h ≤ l. Since the separators of H have all the same cardinality (= k), one has
B = B1 = . . . = Bl. It follows that π = π′ and, hence, T = T ′.

Finally, it is a matter of course to verify that a hypergraph H is a k-hypertree if and
only if H is an acyclic hypergraph meeting the three requirements (H1), (H2) and (H3)
mentioned in the Introduction.

3.2. Optimal k-hypertrees

As stated in the Introduction, there always exists a k-hypertree on V that is an optimal
k-solution to problem (P); we call such a k-hypertree an optimal k-hypertree for p. The
next result shows that, for estimates of p generated by optimal k-hypertrees, both ac-
curacy and storage cost are non-decreasing functions of k. Henceforth, we assume that
each variable takes on the same number of values.

Theorem 3. Let H be an optimal k-hypertree for p and let G be an optimal (k − 1)-
hypertree for p. Then

(i) D(p : pH) ≤ D(p : pG);

(ii) the size of MH(p) is greater than or equal to the size of MG(p).

P r o o f . (i) Let A and A′ be two edges of G such that A ∩ A′ equals a separator of G.
The hypergraph G′ obtained from G by replacing the two edges A and A′ with the set
A∪A′ is an acyclic hypergraph with tree-width k. Since G is finer than G′, by Theorem
1 one has D(p : pG′) ≤ D(p : pG). By Theorem 2, there exists a k-hypertree H′ such
that D(p : pH′) ≤ D(p : pG′). Since H is an optimal k-hypertree for p, one also has
D(p : pH) ≤ D(p : pH′). To sum up, one has D(p : pH) ≤ D(p : pH′) ≤ D(p : pG′) ≤
D(p : pG) which proves the statement.

(ii) Let us assume that each variable takes on d values. Since H has n − k edges and
each edge of H has cardinality k +1, the size of each marginal in MH(p) is dk+1 and the
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size of MH(p) is (n−k)dk+1. Analogously, the size of MG(p) is (n−k+1)dk. Therefore,
the size of MH(p) minus the size of MG(p) is dk[(d − 1)(n − k) − 1], which is not less
than dk as d > 1 and n > k. �

4. A GREEDY BACKWARD ALGORITHM

Let H be a k-hypertree on a set V of n vertices, where 2 ≤ k ≤ n − 1. We first
present a method which, given a running-intersection ordering (A1, . . . , An−k) of H,
constructs a (k − 1)-hypertree G on V . The idea is that the n − k + 1 edges of G can
be obtained as follows: two edges of G are the pieces of any two-way decomposition of
A1 and, if k < n − 1, then each of the remaining n − k − 1 edges of G is a k-element
subset of Ai, i = 2, . . . , n− k. More precisely, we will construct a chain of hypergraphs
G1 ⊂ . . . ⊂ Gn−k = G as follows:

— G1 = {A1 − {a1}, A1 − {b1}} where (a1, b1) is any couple of elements of A1;

— if k < n − 1 then Gi, 2 ≤ i ≤ n − k, is obtained from Gi−1 by adding one edge of
the form Ci ∪ {ai}, where Ci is a (k − 1)-element subset of Ai that is a clique of
Gi−1 and ai is the unique element of the singleton Ai − (A1 ∪ . . . ∪Ai−1).

First of all, we prove that, if k < n−1 then, for each i, 2 ≤ i ≤ n−k, a clique of Gi−1

such as Ci always exists. To see it, let Bi = (A1∪ . . .∪Ai−1)∩Ai, and let ji < i be such
that Bi ⊂ Aji , 2 ≤ i ≤ n− k. Let us distinguish two cases depending on whether ji = 1
or ji > 1. If ji = 1 then, since |A1| = k+1 and |Bi| = k, one has that a1 ∈ Bi or b1 ∈ Bi;
therefore, Bi − {a1} or Bi − {b1} is a clique of G1 and, hence, of Gi−1. Assume that
ji > 1. Let A′ be the k-element subset of Aji that was added to Gji−1 to give Gji . Then,
the set Bi∩A′ is a (k−1)-element subset of Bi that is a clique of Gji and, hence, of Gi−1.

So, for each i, 1 ≤ i ≤ n − k, Gi is a hypergraph on Vi = ∪j=1,...,iAj . At this point,
it is easy to prove by induction on i that each Gi is a (k − 1)-hypertree on Vi. Trivially,
G1 is a (k − 1)-hypertree on V1 (= A1). Note that the set of separators of G1 is the
singleton S1 = {A1 − {a1, b1}}. Moreover, if Gi−1 is (k − 1)-hypertree on Vi−1 with
separator set Si−1 then, since Ci is a clique of Gi−1 and ai /∈ Vi−1, the hypergraph
Gi = Gi−1 ∪ {Ci ∪ {ai}} is a (k − 1)-hypertree on Vi (= Vi−1 ∪ {ai}) and the set of
separators of Gi is Si = Si−1 ∪ {Ci}.

From the foregoing it follows that G (= Gn−k) is (k − 1)-hypertree on V (= Vn−k).
Moreover, G is finer than H since every edge of G is a subset of some edge of H.

It is worth noting that for G1 we have
(
k+1
2

)
possible choices of (a1, b1), and for Gi,

i > 1, we have at most k choices of Ci. Let Γ(H) be the set of outputs of the possible
applications of the procedure above with input H. Given a distribution p over V , we
want to find a hypergraph G∗ in Γ(H) such that D(p : pG∗) is a minimum. Let G be any
hypergraph in Γ(H). Since G is finer than H, by Theorem 2, one has D(p : pG) = D(p :
pH)+D(pH : pG) and, since D(p : pH) is fixed, we need to minimize D(pH : pG). To this
end, we now give a useful expression of D(pH : pG). Let bi be the unique element of the
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singleton Bi − Ci; thus, Ci = Ai − {ai, bi} and Gi = Gi−1 ∪ {Ai − {bi}}, 2 ≤ i ≤ n− k.
We now prove that D(pH : pG) is equal to the following quantity

W =
∑

1≤i≤n−k

Ip(ai, bi|Ai − {ai, bi})

which we call the weight of G.

Theorem 4. Let G be a hypergraph in Γ(H). The quantity D(pH : pG) equals the
weight of G.

P r o o f . First of all, observe that

pH = pA1

∏
2≤i≤n−k

pAi

pAi−{ai}

pG =
pA1−{a1}pA1−{b1}

pA1−{a1,b1}

∏
2≤i≤n−k

pAi−{bi}

pAi−{ai,bi}
.

Therefore, the entropy of pH amounts to

Ep(A1) +
∑

2≤i≤n−k

Ep(Ai)− Ep(Ai − {ai})

and the entropy of pG amounts to

Ep(A1−{a1})+Ep(A1−{b1})−Ep(A1−{a1, b1})+
∑

2≤i≤n−k

Ep(Ai−{bi})−Ep(Ai−{ai, bi})

from which it easily follows that

EpG (V )− EpH(V ) = W.

Finally, by Theorem 2 and eq. (2), one has D(pH : pG) = W . �

By Theorem 4, a simple heuristic to minimize D(pH : pG) consists in minimizing each
term in the additive expression of W . Note that, if k = n − 1, then H is the trivial
hypergraph on V and a minimum-weight hypergraph G is an optimal (n− 2)-hypertree.

We are now in a position to state an algorithm (called Decompose-and-Reduce) which,
given a k-hypertree H constructs a (k−1)-hypertree G in Γ(H). Instead of starting from
a running-intersection ordering of H, the algorithm makes use of a rooted edge-separator
tree TR of H which is traversed in a top-down way, that is, we visit a node only after
visiting its parent. Moreover, the algorithm makes use of the following data structures:

• An edge queue G, which initially is empty.

• An array state which is indexed by the set of couples of adjacent vertices of H.
For such a couple (u, v), state(u, v) = adjacent if u and v are adjacent in the
hypergraph represented by the current value of G, and state(u, v) = nonadjacent
otherwise. Initially, state(u, v) = nonadjacent for each couple (u, v).
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• For each edge-node A of TR, a file F (A) of records [couple, score], where couple is
a couple of elements (u, v) of A and score is the conditional mutual information
of u and v given A − {u, v}. The records of F (A) are ordered by non-decreasing
values of score.

• For each separator-node B of TR, a list C(B) of couples of distinct elements of B
arranged in any order, and a list L(B), which will contain the elements w of B
such that B − {w} is a clique of the current value of G. Initially, L(B) := B for
each separator-node B of TR.

Decompose-and-Reduce

STEP 1 (The root of TR is visited.)
Set W := 0.
Take the first record of F (R). Let it be [(a, b), s].
Add R− {a} and R− {b} to G and set W := W + s.
For each record [couple, score] of F (R) with couple 6= (a, b), set state(couple) :=
adjacent.

STEP 2 (The other nodes of TR are visited during a top-down traversal of TR.)
Distinguish two cases depending on whether the node to visit is a separator-node or an
edge node.

Case 1: the node is a separator-node, say B.
If |B| > 2 then delete from L(B) each element b such that there exists a couple
(u, v) in C(B) with u 6= b and v 6= b for which state(u, v) = nonadjacent.

Case 2: the node is an edge-node, say A.
Let B be the parent of A, and let a be the unique element of A−B.
Scan F (A) to find the first of the records [couple, score] where couple is of the
type (a,w) with w ∈ L(B). Let it be [(a, b), s].
Add A− {b} to G and set W := W + s.
For each element w of B − {b}, set state(a,w) := adjacent.

Remark 2. If we apply the Decompose-and-Reduce algorithm with input the edge-
separator tree of the trivial hypergraph H = {V }, then the output G is an optimal
(n− 2)-hypertree for p (since D(p : pH) = 0 and D(p : pG) = W ).

Example 2. Consider the 3-hypertree H = {abde, acde}. The edge-separator tree of H
is shown in Figure 2.

The array state has nine components corresponding to the couples (a, b), (a, c), (a, d),
(a, e), (b, d), (b, e), (c, d), (c, e) and (d, e), and initially the state of each of them is
nonadjacent. Assume that the files F (abde) and F (acde) contain the following records:

F (abde)

[(a, d), 0.00934] [(d, e), 0.01372] [(a, b), 0.01581]
[(b, e), 0.01829] [(a, e), 0.02611] [(b, d), 0.03553]
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Fig. 2. The edge-separator tree of the 3-hypertree {abde, acde}.

F (acde)

[(a, c), 0.00540] [(a, d), 0.00676] [(c, e), 0.01298]
[(d, e), 0.01303] [(a, e), 0.02942] [(c, d), 0.04887]

The list C(ade) contains the three couples (a, d), (a, e) and (d, e) and the list L(ade)
contains the three elements a, d and e. We apply the Decompose-and-Reduce algorithm
first with input Tabde and, then, with input Tacde.

(Decompose-and-Reduce with input Tabde)

STEP 1. After reading the first record [(a, d), 0.00934] of F (abde), we set G := (abe, bde)
and W := 0.00934. Moreover, we set

state(d, e) := state(a, b) := state(b, e) := state(a, e) := state(b, d) := adjacent.

STEP 2. We visit the separator-node ade which is the unique child of the root abde.
The list C(ade) contains the three couples (a, d), (a, e) and (d, e). Since state(a, d) =
nonadjacent and state(a, e) = state(d, e) = adjacent, we delete e from L(ade) which
becomes L(ade) = ad. At this point, we visit the edge-node acde which is the unique
child of the separator-node ade. The unique element of acde− ade is c. The first record
[couple, score] of F (acde) where couple is of the type (c, w) with w ∈ L(ade) is the
record [(a, c), 0.00540]. Then, we add the edge acde− a = cde to G, and add 0.00540 to
W . Finally, we set state(c, d) := state(c, e) := adjacent. The output of the algorithm
is G = (abe, bde, cde) and W = 0.01474.

(Decompose-and-Reduce with input Tacde)

STEP 1. After reading the first record [(a, c), 0.00540] of F (acde), we set G := (ade, cde)
and W := 0.00540. Moreover, we set

state(a, d) := state(c, e) := state(d, e) := state(a, e) := state(c, d) := adjacent.

STEP 2. We visit the separator-node ade which is the unique child of the root acde.
The list C(ade) contains the three couples (a, d), (a, e) and (d, e). Since state(a, d) =
state(a, e) = state(d, e) = adjacent, we keep L(ade) := ade. At this point, we visit
the edge-node abde which is the unique child of the separator-node ade. The unique
element of abde − ade is b. The first record [couple, score] of F (abde) where couple
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is of the type (b, w) with w ∈ L(ade) is the record [(a, b), 0.01581. Then, we add
the edge abde − a = bde to G, and add 0.01581 to W . Finally, we set state(a, b) :=
nonadjacent and state(b, d) := state(b, e) := adjacent. The output of the algorithm
is G = (ade, cde, bde) and W = 0.02121.

Remark 3. Example 2 shows that a separator of the input H need not be an edge
of the output G. Recently, Kovács and Szántai [24] have given an algorithm (namely,
Algorithm 1) to construct a (k − 1)-hypertree from a k-hypertree. Their algorithm is
less general then the Decompose-and-Reduce algorithm, since it does not apply to the
case k = n − 1 and, moreover, each separator of the input is required to be an edge of
the output.

Finally, we give a procedure for finding a (k− 1)-hypertree G∗ in Γ(H) whose weight,
denoted by W ∗, is expected to be ‘small’ (hopefully, a minimum). To achieve this, we
repeat the Decompose-and-Reduce algorithm for each of the n−k rooted edge-separator
trees of H, and take a minimum-weight hypergraph from among the outputs.

Greedy Backward

1. Set G∗ to the empty edge list and W ∗ := ∞.

2. Construct the edge-separator tree T of H.

3. For each edge A of H, do:

3.1 For each couple (u, v) in the array state, set state(u, v) := nonadjacent.

3.2 Construct the rooted edge-separator tree TA of H.

3.3 Apply Decompose-and-Reduce with input TA.

3.4 If W < W ∗ then set G∗ := G and W ∗ := W .

We first analyze the computational complexity of the Decompose-and-Reduce algo-
rithm and, then, the computational complexity of the Greedy Backward algorithm.

We begin with the size of the input of the Decompose-and-Reduce algorithm.

— The rooted edge-separator tree TR of H. Since H is a k-hypertree, the number of
edge-nodes of TR is n − k. If s is the number of separator-nodes of TR, then the
number of nodes of TR is n− k + s and the number of arcs of TR is n− k + s− 1.
Since s < n− k, the number of arcs of TR is O(n− k). Moreover, since each node
can be represented by a vertex list of length k or k− 1, we need O((n−k)k) space
for storing TR.

— The array state. Since the number of couples of adjacent vertices of H is the
same as the number of edges of the adjacency graph of H, the array state has(
n− k+1

2

)
k components (see Subsection 3.1) so that it requires O(nk) space.
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— The F files. For each edge-node A of TR, since |A| = k + 1, F (A) contains
exactly

(
k+1
2

)
records. Since TR has n− k edge-nodes, storing the F files requires

O((n− k)k2) space.

— The C and L lists. For each separator-node B of TR, since |B| = k, C(B) contains
exactly

(
k
2

)
couples and L(B) contains at most k elements. Since TR has at most

n− k − 1 separator-nodes, storing the C and L lists requires O((n− k)k2) space.

From the foregoing it follows that the size of the input is O((n− k)k2).

We now analyze the single time complexities of STEP 1 and STEP 2 of the
Decompose-and-Reduce algorithm.

STEP 1 Creating the two edges of G requires O(k) time, and updating the array state
requires O(k2) time. So, the step requires O(k2) time.

STEP 2 When a separator-node B is visited, we examine the elements of L(B) and, for
each element b of L(B), we scan the

(
k
2

)
couples in C(B) to decide whether or

not b must be deleted from L(B). Therefore, processing a single separator-node
requires O(k3) time and processing all the separator-nodes requires O((n− k)k3)
time. When an edge-node A is visited, we need to scan the file F (A). Next, we
update the value of G, which requires O(k) time. Finally, we update the array
state, which requires O(k) time. Therefore, processing a single edge-node requires
O(k2) time and processing all the edge-nodes requires O((n− k)k2) time. So, the
step requires O((n− k)k3) time.

Since the running time of STEP 2 is dominating, the time complexity of the
Decompose-and-Reduce algorithm is O((n− k)k3) time.

As to the Greedy Backward algorithm, we need to construct the edge-separator tree of
H, which requires O(n−k)k time (see Subsection 2.1), and to apply the Decompose-and-
-Reduce algorithm for each edge ofH. Therefore, the complexity of the Greedy Backward
algorithm is O((n− k)2k3).

5. A CASE STUDY

The Jamaican Lizards dataset [8] contains information on the structural habitat of
grahami and opalinus lizards from Whitehouse, Jamaica. The data consists of observed
counts for perch height (< 5′, ≥ 5′), perch diameter (≤ 2′′, > 2′′), insolation (sun,
shade), and time-of-day (early, midday, late) categories for both grahami and opalinus
lizards. We denote the four habitat variables by a, b, c and d respectively, and the
species by e. Let p denote the probability distribution over abcde obtained from the
sample data. The following are the values of the entropy for the marginals of p [29].

5-set Ep(abcde) = 3.21732

4-sets Ep(abcd) = 2.73327 Ep(abce) = 2.27963 Ep(abde) = 2.80514
Ep(acde) = 2.59497 Ep(bcde) = 2.62262
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3-sets Ep(abc) = 1.77670 Ep(abd) = 2.30811 Ep(abe) = 1.81318
Ep(acd) = 2.09263 Ep(ace) = 1.64171 Ep(ade) = 2.17371
Ep(bcd) = 2.10755 Ep(bce) = 1.66783 Ep(bde) = 2.19907
Ep(cde) = 1.97849

2-sets Ep(ab) = 1.30243 Ep(ac) = 1.12634 Ep(ad) = 1.65839
Ep(ae) = 1.17158 Ep(bc) = 1.14281 Ep(bd) = 1.67593
Ep(be) = 1.19777 Ep(cd) = 1.44673 Ep(ce) = 1.01847
Ep(de) = 1.55183

1-sets Ep(a) = 0.64919 Ep(b) = 0.66798 Ep(c) = 0.47800
Ep(d) = 1.01126 Ep(e) = 0.54621

Let H(k) be the optimal k-hypertree, 0 ≤ k ≤ 4. An exhaustive analysis of all k-
hypertrees, for each k, gives the following results [17, 29]:

H(4) = {abcde} D(p : pH(3)) = 0

H(3) = {abde, acde} D(p : pH(3)) = 0.00908

H(2) = {abe, bde, cde} D(p : pH(2)) = 0.02382

H(1) = {ae, be, cd, ce} D(p : pH(1)) = 0.04681

H(0) = {a, b, c, d, e} D(p : pH(0)) = 0.13532

The Jamaican Lizards dataset was used to test the forward procedure in [17], the
two incremental procedures in [29] and in [40] the backward procedure in [36] with the
following results:

(k = 3)

H(3) [17, 36, 40]

H = {abce, acde} and D(p : pH) = 0.01550 [29]

(k = 2)

H(2) [17]

H = {abe, ace, cde} and D(p : pH) = 0.02601 [29]

H = {abe, ade, cde} and D(p : pH) = 0.02465 [40]

H = {abe, bde, cd} and D(p : pH) = 0.03263 [36]

(k = 1)

H(1) [17, 29]

H = {ae, b, cd} and D(p : pH) = 0.06897 [36]

In the next three subsections we show that, for k = 4, 3, 2, the Greedy Backward
algorithm with input H(k) yields precisely H(k−1).
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5.1. Input H(4)

The edge-separator tree of H(4) is one-point tree and the GreedyBackward algorithm
consists of one application of the Decompose-and-Reduce algorithm. The file F (abcde)
contains the following ten records:

[(b, c), 0.00908] [(a, c), 0.01137] [(c, e), 0.01298] [(b, d), 0.01557]

[(a, d), 0.01710] [(b, e), 0.01829] [(d, e), 0.01888] [(a, b), 0.02178]

[(a, e), 0.03102] [(c, d), 0.05427]

The output of the GreedyBackward algorithm is G∗ = (abde, acde) which precisely
corresponds to the hypergraph H(3).

5.2. Input H(3)

The edge-separator tree T of H(3) was shown in Figure 2. The two applications of the
Decompose-and-Reduce algorithm with inputs Tabde and Tacde were discussed in Exam-
ple 2. It follows that the output of the GreedyBackward algorithm is G∗ = (abe, bde, cde)
which precisely corresponds to the hypergraph H(2).

5.3. Input H(2)

The edge-separator tree T of H(2) is shown in Figure 3.

���

��

��� ���

��

Fig. 3. The edge-separator tree of {abe, bde, cde}.

The files F (abe), F (bde) and F (cde) contain the following records:

F (abe) [(a, b), 0.00996] [(b, e), 0.01164] [(a, b), 0.01904]

F (bde) [(b, d), 0.00432] [(d, e), 0.00665] [(b, e), 0.01743]

F (cde) [(d, e), 0.00871] [(c, e), 0.00881] [(c, d), 0.04560]

The outputs of the Decompose-and-Reduce algorithm with inputs Tabe, Tbde and Tcde

are G = (ae, be, de, cd) with weight 0.02309, G = (be, de, ae, cd) with weight 0.02309,
and G = (cd, ce, be, ae) with weight 0.02299, respectively. Therefore, the output of the
GreedyBackward algorithm is G∗ = (cd, ce, be, ae) which precisely corresponds to the
hypergraph H(1).
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6. CLOSING NOTE

Suppose that, given a distribution p over a set V of n variables and a real number
δ > 0, we want to find an acyclic hypergraph H∗ such that D(p : pH∗) < δ and the
storage cost of pH∗ is minimum. We can solve this problem as follows. Using the
Decompose-and-Reduce algorithm with input the trivial hypergraph H(n−1) = {V }, we
find an optimal (n−2)-hypertree H(n−2) (see Remark 2). Of course, if D(p : pH(n−2)) ≥ δ
then we are done and set H∗ := H(n−1). If D(p : pH(n−2)) < δ, then we examine the
point partition H(0) = {{v} : v ∈ V }. If D(p : pH(0)) < δ then we are done and set
H∗ := H(0). Assume that D(p : pH(n−2)) < δ ≤ D(p : pH(0)). Then, an approximation
H′ to H∗ can be obtained in two steps:

(Step 1) Find a k-hypertree H of minimum tree-width such that D(p : pH) < δ.

(Step 2) Find an acyclic hypergraph H′ with tree-width k which is a minimal refinement
of H subject to the constraint D(p : pH′) < δ.

Step 1. We have two alternatives corresponding to the backward and forward approaches.

(Backward approach)
Starting with H(n−2), we repeatedly apply the GreedyBackward algorithm until we

obtain a (k − 1)-hypertree G∗ for which D(p : pG∗) ≥ δ. Then, we set H to the input of
the last application of the GreedyBackward algorithm.

(Forward approach)
We first compute the optimal 1-hypertree H(1) (that is, the Chow–Liu tree). If

D(p : pH(1)) < δ then we are done and set H := H(1); otherwise, we apply the forward
algorithm in [17] until we obtain a k-hypertree H for which D(p : pH) < δ.

Step 2. We apply the GreedyBackward algorithm with input the edge-separator tree of
H, but at each step of the Decompose-and-Reduce algorithm, we decompose or reduce
an edge of H only if D(p : pG) + W < δ. Then, the output G∗ of the GreedyBackward
algorithm is such that D(p : pG∗) + W < δ. Needless to say, we can repeat this proce-
dure while maintaining the tree-width equal to k so that ultimately we obtain an acyclic
hypergraph H′ with tree-width k which is a minimal refinement of H and for which
D(p : pH′) < δ.

Suppose to apply the procedure above to the Jamaican Lizards dataset with δ =
0.01500. Using any one of the algorithms in [17, 36, 40], at Step 1 we obtain H(3) =
{abde, acde} with information divergence 0.00908 and, at Step 2 we obtain the hyper-
graph {abde, cde} with information divergence 0.01448.

(Received August 24, 2011)
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