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A FAST LAGRANGIAN HEURISTIC FOR LARGE-SCALE
CAPACITATED LOT-SIZE PROBLEMS WITH
RESTRICTED COST STRUCTURES

Kjetil K. Haugen, Guillaume Lanquepin-Chesnais and Asmund Olstad

In this paper, we demonstrate the computational consequences of making a simple assump-
tion on production cost structures in capacitated lot-size problems. Our results indicate that
our cost assumption of increased productivity over time has dramatic effects on the problem
sizes which are solvable.

Our experiments indicate that problems with more than 1000 products in more than 1000
time periods may be solved within reasonable time. The Lagrangian decomposition algorithm
we use does of course not guarantee optimality, but our results indicate surprisingly narrow
gaps for such large-scale cases – in most cases significantly outperforming CPLEX.

We also demonstrate that general CLSP’s can benefit greatly from applying our proposed
heuristic.

Keywords: heuristics, capacitated lot-sizing, restricted cost structures

Classification: 65K05, 90B30, 68W99

1. INTRODUCTION

The capacitated lot-size problem (CLSP) has drawn significant research attention since
Manne’s [16] original MILP formulation more than 50 years ago. Several review arti-
cles [6, 13, 15] and [3] indicate the size, diversity and complexity of CLSP-research.

Karimi et al. [13] categorizes CLSP algorithmic research related to solution methods
in various categories. Of particular interest for this work is the subcategory of Relaxation
Heuristics. According to Karimi et al. [13], such heuristics usually produce better quality
solutions, are more general and allow extensions to different problems.

In spite of extensive research, the size of problems practically feasible are limited.
By practically feasible, we mean problems that can be solved in reasonable time within
an acceptable deviation from optimum. As modern product variety may involve vast
product counts, the reported sizes of problems practically feasible are still far from real
world cases.

However, some articles do report large-scale CLSP-like problems solved. Diaby
et al. [5] report problem sizes of up to 5000 products in 30 time periods. Compara-
ble problem sizes are reported by Haugen et al. [11]. Common for these applications are
reformulations of the CLSP introducing added problem flexibility. Diaby et al. [5] allow
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overtime usage, while Haugen et al. [11, 10] introduce demand-affecting prices. Hence,
both these two approaches solve other problems than CLSP.

Our aim in this article, is to investigate a different angle of attack in order to achieve
solution speed for problem sizes closer to real world cases without relaxing the original
CLSP formulation. Still, certain research facts must be considered; the strong NP-
hardness of CLSP [2, 4]. Consequently, we need to apply some tricks.

In section 2, we introduce our CLSP formulation while section 3 discusses our al-
gorithmic set-up as well as our cost assumptions. Section 4 contains our numerical
experiments, while the article concludes and suggests possible further research in sec-
tion 5.

2. OUR CLSP FORMULATION

At this point, a mathematical formulation of CLSP is appropriate. The Single-level (big
bucket) CLSP may be formulated as:

Minimise Z =
T∑

t=1

J∑
j=1

[sjtδjt + hjtIjt + cjtxjt] (1)

Subject to
∑J

j=1 ajtxjt ≤ Rt ∀ t (2)
xjt + Ij,t−1 − Ijt = djt ∀ jt (3)

0 ≤ xjt ≤ Mjtδjt ∀ jt (4)
Ijt ≥ 0, ∀ jt (5)

δjt ∈ {0, 1} ∀ jt (6)
j ∈ {1, 2, . . . , J} (7)
t ∈ {1, 2, . . . , T} (8)

with decision variables:

xjt : the amount of item j produced in period t

Ijt : amount of item j held in inventory between periods t, t + 1
δjt : 1 if item j is produced in period t ; 0 otherwise

and parameters:

T : number of time periods
J : number of items

sjt : setup cost for itemj in period t

hjt : storage cost for item j between periods t, t + 1
cjt : unit production cost for item j in period t
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ajt : consumption of capacitated resource by item j in period t

Rt : amount of capacity resource available in period t

djt : given future demand for product j in time period t

Mjt : this is the smallest possible “Big M” needed to take

care of binary logic for product j in period t, Mjt =
∑T

s=t
djs,

I0 : Initial inventory > 0.

The objective (1) contains total costs (set-up, storage and production). Constraints (2)
are the capacity constraints and (3) inventory balancing, while (4), with the integral-
ity requirement (6), enforces set-up when production is positive. Non-negativity con-
straints (5) are reasonable. (7) and (8) define ranges for indices.

3. OUR ALGORITHMIC SET-UP

3.1. Relaxation heuristics — Lagrangian relaxation

The trick mentioned in section 1 is related to assumptions on cost structures. If we
can make reasonable (read practically relevant) assumptions on cost structures, easing
the computational burden in certain sub problems, we can hope to achieve speed-ups
compared to existing research.

In order to explain how and why our approach works, we need to explain the basics
of Lagrangian relaxation. As indicated in section 1, Relaxation Heuristics is a central
technique in CLSP-heuristic research. The technique works as follows: Firstly, the per
period capacity constraint (2) is relaxed (added to the objective (1)). As a consequence,
J decoupled sub problems – for instance solvable by the Wagner–Whitin algorithm [20]1

– emerges. By solving these problems, set-up structures for each product j is obtained,
and the solution for the common problem will constitute a lower bound for the orig-
inal problem. Secondly, this set-up structure is applied in order to fix corresponding
binary (set-up) variables resulting in an LP sub problem, producing an upper bound on
the solution of the original problem, which is solved to produce Lagrangian multipliers
(shadow prices). We name the first problem set LB-problems, while the second problem
set is named UB-problems2. These values are then fed back into the original relaxed
problem as new multipliers. Now, the basic Lagrangian relaxation loop is constructed
and improved solutions are obtained running back and forth between the UB- and the
LB-problems.

The above described algorithmic set-up was used by both Thizy and Wassenhove [18]
and Trigeiro [19] in their trend-setting articles. Hence, our choice of relaxing the capacity
constraint (2) is in accordance with existing theory. This fact is also supported by Chen
and Thizy [4] as well as research by Haugen et al. [10, 11].

The main difference between these approaches is perhaps related to Trigeiro’s use
of Lagrangian multiplier smoothing techniques. A similar set-up (including smoothing)
was used by Haugen et al. [10, 11].

1We apply a slightly modified version of the original algorithm as reported by Wagelmans et al. [21]
2See appendices B and C for additional information on both formulation as well as solution strategies

for these sub problems.
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3.2. Cost assumptions

The specialized cost assumptions we apply are needed in order to solve the UB-problems
more efficient. We apply a technique recently proposed and demonstrated by Haugen
et al. [9]. As the technique is well described in [9], we will just discuss it briefly. In order
to keep things simple, we investigate a single product case. The multi product case is
discussed in detail in [9].

If all binary variables (δjt’s) in the CLSP-formulation (1) – (8) are fixed, the resulting
LP may be formulated3:

Minimise Z =
T̂∑

t=1

[htIt + ctxt] (9)

Subject to xt ≤ Rt ∀ t (10)
xt + It−1 − It = dt ∀ t (11)

xt ≥ 0 ∀ t (12)
It ≥ 0 ∀ t. (13)

If we start by assuming constant production costs (c1 = c2 = . . . cT = c), it is
straightforward to show (see Haugen et al. [9]) that the objective can be reformulated
to:

Minimise Z =
T∑

t=1

htIt. (14)

Given this, it is obvious that the optimal solution to the LP must be the “Just-in-
time” solution (x∗t = dt∀ t), given that this solution is feasible (i. e. not violating the
constraint (10)). If the capacity constraint is violated say in time period τ1, then we can
arrive at an optimal solution by “shuffling”4 production from this time period τ1 to the
nearest time period (τ2 < τ1) with spare capacity. Any other time period choice further
away, will increase total inventory costs. Furthermore, it is likewise clear that given the
following revised production cost assumption;

c1 ≥ c2 ≥ . . . ≥ cT (15)

the above argument is still valid.
This argument is easily extended to the multi-item case – see Haugen et al. [9],

providing an extremely efficient specialized algorithm for the (LP) UB-problems.
If our proposed algorithm for CLSP turns out to be successful, which later sections

indeed will reveal, the practical usability will rely on whether our added cost restrictions
fits reality. Our cost assumption (15) is limited to production costs. Production costs
are market determined. As such, it would be very surprising if a certain producer would
be able to predict them.

3Note that T̂ in equation (9) typically is different from T (T̂ ≤ T ) in equation (1) due to fixation of
the binary variables.

4We name this algorithm the “ bulldozer” algorithm for further reference. The choice of name is due
to it’s similarity to a bulldozer clearing snow by shuffling it to the closest possible storage location.
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Production costs contain (primarily) wages and technology. Both factors are hard to
predict. If some producer actually could predict changes from a given average value, it
might be opportune to ask if the producer perhaps should engage in finance market spec-
ulative activities instead of running CLSP-problems to organize local production. In any
case, one would typically observe decreasing production costs if empirical observations
are performed. One could think about most modern products who at the introduction
phase typically will have high per unit production costs. Even if wages, and most other
production inputs have increasing costs, per unit product costs normally decrease due
to productivity increase over a product’s life-cycle. Let us try to sum up: If production
costs are to change, they should (logically) change in a decreasing way, covered by our
assumption (15). Alternatively, in the short run, it is hard to see producers being able
to beat the market by forecasting labour and technology better.

3.3. An added approximation

As indicated by several authors (see e. g. [8, 12] or [11]), solving sub-problems to op-
timality in Lagrangian decomposition may prove inefficient. The main point in these
techniques is to achieve direction as opposed to exactness. As such, we could try to
improve speed by investigating certain approximations for our proposed sub problem
solvers. The “bulldozer” algorithm discussed above is simply so fast, that added ap-
proximations seems unlikely to induce improvements.

3.4. Solving the LB-problem

The LB-problems however, may be interesting to investigate further in approximations
or new heuristics. Even though the DP-based WW-algorithm [20, 21], is extremely
efficient, it provides much of the computational burden in our proposed algorithmic set-
up. As a consequence, we propose (in many ways similar to Kirca and Kokten [14]) to
apply a very simple EOQ5-approximation [7] as an alternative to the exact6 WW-solver.
A more thorough description of this approximation is left for appendix A.

Our algorithmic set-up is summarized in Figure 1.
The LB-problems are either solved by a “normal” WW-algorithm [20, 21] or by

our EOQ-approximation described in appendix A. The UB-problems are solved by the
“Bulldozer”-algorithm described in subsection 3.2.

A final point should be mentioned. In order to ease the problem of achieving feasibility
in the “Bulldozer”-stage, we have allowed a dynamic Lagrangian multiplier smoothing
procedure. That is, we open up for using different smoothing parameters at different
iteration steps in our Lagrangian relaxation heuristic.

4. NUMERICAL EXPERIMENTS

4.1. Computational set-up

All our numerical experiments are performed on a HP z400 equipped with the Intel Xeon
W3520 processor and 8GB DDR3 RAM. The software platform contains gcc: 4.4.5,

5Economic Order Quantity
6Exactness means to optimality here.
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Fig. 1. The algorithmic set-up.

Python: 2.6.6, Pyrex: 0.9.8.5, Cplex: 12.2.0.0 (from python wrapper) and Cython: 0.14
(only used for the tests in appendix A). The experiments are mainly done in Ubuntu
Linux 10.10 64bits Maverick, but certain operations were performed in Windows XP
32bits SP3 (running inside virtualbox 4.0.0).

All additional information on cases, run-times, graphics and so forth are (of course)
obtainable from the authors upon request.

4.2. Trigeiro cases

We start out by examining our heuristics performance on some standard problems from
literature, originally defined by Trigeiro et al [19] and collected by Wolsey and Bel-
vaux [1]. We pick the six standard cases; tr6-15, tr6-30, tr12-15, tr12-30, tr24-15
and tr24-30. The numbers in the case-names refers to the number of products and time
periods respectively7.

Table 1 sums up our results. (All cases are run with “WW” as the LB-problem-solver.)

Case J T Zh ZCPLEX CPU(s) Z∗ CPU∗(s)
tr6-15 6 15 39896 52800 0.0125 37092 0.1213
tr6-30 6 30 69899 86600 0.0499 60835 0.6587
tr12-15 12 15 78563 81640 0.6587 70922 0.8751
tr12-30 12 30 160746 189249 0.6039 129788 12.0592
tr24-15 24 15 143418 192000 0.0763 135970 0.9582
tr24-30 24 30 310977 434600 0.1433 287425 3.8429

Tab. 1. Results for the Trigeiro cases.

In Table 1, the three first columns denote case name, number of products (J) and
number of time periods (T ) respectively. The columns labelled Zh and ZCPLEX contains

7That is, the tr6-15-case contains 6 products in 15 time periods.
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CLSP objective function values for our heuristic and CPLEX. These objective function
values are obtained by running our heuristic and CPLEX (pairwise) for the same amount
of CPU-time (in seconds) given in the column labelled CPU(s). The final columns (Z∗)
and (CPU∗(s)) contain optimal objective function values found by CPLEX as well as
corresponding CPU-times.

We observe immediately, that our heuristic (by this measurement method) outper-
forms CPLEX for all cases as Zh � ZCPLEX.

Table 2, calculated based on the information in Table 1 provides a clearer image.

Case
∣∣∣Zh−ZCPLEX

Zh

∣∣∣ · 100 %
∣∣∣Z∗−Zh

Z∗

∣∣∣ · 100 %
∣∣∣Z∗−ZCPLEX

Z∗

∣∣∣ · 100 %

tr6-15 32.34% 7.56% 42.35%
tr6-30 23.89% 14.90% 42.35%
tr12-15 3.92% 10.77% 15.11%
tr12-30 17.73% 23.85% 45.81%
tr24-15 33.87% 5.48% 41.21%
tr24-30 39.75% 8.19% 51.20%
Average (%) 25.25% 11.79% 39.67 %

Tab. 2. Deviations (%) for the Trigeiro cases.

The first result-column (
∣∣∣Zh−ZCPLEX

Zh

∣∣∣ · 100 %) in Table 2 shows that our heuristic on
average produces around 25% better solutions than CPLEX for the same amount of
execution time. Furthermore, our heuristic is on average slightly below 12 % from the
optimal value (

∣∣∣Z∗−Zh

Z∗

∣∣∣ · 100 %), while CPLEX is around 40% away from optimality

(
∣∣∣Z∗−ZCPLEX

Z∗

∣∣∣ · 100 %).
The above cases, originally considered hard, are of course easily solved on today’s

hard- and software. In fact, CPLEX proves optimality for the Trigeiro cases ranging
from 0.12 CPU-seconds for the tr6-15 case up to 12.06 CPU-seconds for the tr12-30
case. As such, our algorithm does not introduce any “revolution” for these cases, apart
form the obvious fact that it produces good quality solutions significantly faster than
CPLEX.

4.3. Some medium sized examples and behaviour compared to CPLEX

In order to test our heuristic more seriously, we have made our own cases. These cases
range from relatively small cases 10 × 10 (10 products in 10 time) periods up to quite
large cases of 200 × 10, 10 × 200 and 50 × 50. The terminology Y × Z will be used in
subsequent sections where Y is number of products and Z is number of time periods.

For all costs, holding costs (hjt) are always set to 1 and production costs (cjt) to
20. The set-up costs (sjt) are randomly picked within the set [100, 200, 300, 400, 500]
but kept constant after the pick. Demand is a matrix (product × period) of pseudo-
Gaussian (rounded to get integer and positive numbers). The capacity constraint (Rt)
at time period t is the multiplication of a Gaussian (mean=ratio, var=0.01) generated
number and the sum of the demand for the period.
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All data are written in two formats; AMPL and MPS, the AMPL format is read by
our heuristic and the MPS-file by CPLEX.

Before we move into some computationally more interesting cases, we present a simple
analysis of our algorithm’s behaviour related to problem tightness. Figure 2 shows our
results.
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Fig. 2. Heuristic behaviour as a function of problem tightness.

The boxplot8 in Figure 2 is constructed by running a total of 35 cases ranging from
10 × 10 by 5 × 20 up to 50 × 10. We have defined three different problem classes based
on problem tightness visualized on the Average ratio-axis in the box plot. Each box
holds a different tightness computed as J ·

PT
t=1 RtPJ

j=1
PT

t=1 djt
. Consequently, the family of

cases representing the left-most box (the value 1.2) are really tight problems, while the
right-most box of 2.0 represents more loose problems.

As can be readily observed from Figure 2, our heuristic (not very surprisingly) behaves
better for less tight problems. For instance, the average GAP(%) from the optimal value
is found slightly above 25 %9 for the tightest family, while the relatively loose family with
an Average ratio of 2 on average has only around 5% deviation from the optimal value.

This observation does not necessarily indicate that our heuristic performs badly on
tight cases, but that it performs significantly better on less tight cases. The Trigeiro
cases in Tables 1, 2 are in fact quite tight with an Average ratio of 1.32.

8We use standard boxplots, visualising probability distributions efficiently. The height of a box gives
very visible information on variance of the distribution. A narrow box indicates small variance.

9The solid black line in the leftmost box.
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The main body of medium sized problems in our analysis is reported in Figures 3, 4

and 5. These cases10, substantially bigger, contain cases within 10 × 200, 200 × 10 and
50 × 50.

Fig. 3. Objective function value as a function of CPU-time for

10 × 200 cases.

All Figures 3, 4 and 5 contain CLSP objective function value as a function of CPU-
time. Each figure contains 3 different solution instances; CPLEX, and our algorithm
either with “WW” or EQO as LB-problem solvers. Furthermore, the two panes at the
bottom are zoomed parts of the chart on top.

A closer inspection of Figures 3 and 4 reveals a similar type of pattern. The EOQ
version (the blue curve) finds a relatively good solution extremely fast. Slightly slower,
the “WW” version (the green curve) finds a better solution, while CPLEX (the red
curve) struggles and do not show solutions better than hour heuristic within the observed
interval of computational time.

However, the Branch and Bound Algorithm of CPLEX should of course in the end
produce the optimal value, which is not guaranteed by our heuristic. Indeed, this is
observed in Figure 5. Still, our heuristics produce relatively good solutions very fast
compared to CPLEX.

1015 generated cases in each category.



338 K. K. HAUGEN, G. LANQUEPIN-CHESNAIS AND A. OLSTAD

Fig. 4. Objective function value as a function of CPU-time for

50 × 50 cases.

4.4. Two large-scale cases

As the title of this article indicates, our main objective have been to investigate our
heuristics’ behaviour for really large-scale cases. Even though our previous cases indicate
efficient behaviour, the ultimate test should include much larger problem instances. We
have tested a 1000 × 1000 case as well as a 5000 × 5000 case. To give you some indication
of size, the 1000 × 1000 case produces a MPS-file with a size around 1GB, while the
bigger case of 5000 × 5000 delivers a 25GB MPS-file.

Not unexpectedly, CPLEX struggled with these cases. In fact, already for the 1000 ×
1000 case, CPLEX crashed, after close to 4 (real-time) hours finding a singular solution
with an objective function value of 580218000. This solution was found after 30 (real-
time) minutes. As a consequence, we did not bother to test CPLEX for the 5000 × 5000
case. Actually, the real-time needed just to generate the MPS-file would be close to a
week for this case.

However, our algorithms provided surprisingly good and fast results. Table 3 shows
the output of our algorithm with EOQ as LB-problem solver.

As can be observed by Table 3, we achieve very good results. In less than 353 CPU-
seconds an objective function value with around a 0.3% GAP11 is obtained.

Running the same case with “WW” as the LB-problem solver produces results as

11Strictly speaking, this GAP is an approximation as our exact LB-problem solver is substituted with
the EOQ-approximation, still the upper bound is exact.
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Fig. 5. Objective function value as a function of CPU-time for

200 × 10 cases.

shown in Table 4.
As could be expected, the exact (“WW”) LB-problem solver produces better results

than the EOQ-approximation. Still, the improvement is not dramatic – actually just
around 0.3%. However, this improvement is obtained through a significant increase
in computing time. Actually, this improvement increases computing time close to 200
times ( 69688.828

352.699 ≈ 198).
To some extent, we can claim (for the case at hand at least) that 2 things are demon-

strated: Our algorithms outperform standard software through CPLEX, but also and
perhaps even more interesting, our simple EOQ approximation provides very good so-
lutions very fast.

The 5000 × 5000 case was only run with the EOQ LB-problem solver. The reason
ought to be obvious – a 200 times speed difference (see above) would turn 4.6 CPU hours

Iteration Z CPU(s) GAP(%)
10 409839123 70.454 0.324%
50 409833038 352.699 0.322%

Tab. 3. Algorithmic performance with EOQ for the

1000 × 1000 case.
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Iteration Z CPU(s) GAP(%)
10 408516589 6957.707 0.0012 %
30 408516589 20745.197 0.0012 %

100 408516289 69688.828 0.0011 %

Tab. 4. Algorithmic performance with “WW” for the

1000 × 1000 case.

(16622.292 CPU-seconds) into more than a CPU-month. But, and this is important,
our EOQ-based heuristic did find solutions in reasonable time. The results are given in
Table 5 without further comments.

Iteration Z CPU(s) GAP(%)
10 10449259234 1701.746 0.00338 %
30 10449259234 5081.390 0.00338 %

100 10449247810 16622.292 0.00327 %

Tab. 5. Algorithmic performance with EOQ for the

5000 × 5000 case.

4.5. Behaviour of our algorithm for cases violating assumption (15)

The main reason for the observed result quality is perhaps due to our choice of UB-
problem solver. This solver was derived based on the assumption (15). However, there
is nothing stopping us from testing our heuristic approaches on general CLSPs. After
all, the arguments made in subsection 3.3 on not solving sub-problems to optimality are
still valid. We did some tests (see below), consciously generating cost data breaking (15).
Now, the “Bulldozer” serves as an approximation, but these tests did indeed indicate
that solution quality was still at a good level.

The actual experiments involved a case with J = 50 and T = 10. The cost structure
were randomly (Gaussian) generated securing that all cases violated our cost assumption.
On average (10 different cases), our heuristic performed around 10 (10.4556) times faster
than CPLEX. For the same execution time, our heuristic proved (on average) 17%
smaller gap than CPLEX.

As such, our algorithmic framework may be of interest as a method to solve large-scale
general CLSP-problems.

5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper, we have demonstrated a possibility of solving really large-scale CLSP-cases
under relatively minor restrictions on production costs. Recall that our assumption
is limited only to this cost element – inventory and/or set-up costs are unrestricted.
Additionally, as we see it, our assumption (15) should not be considered practically very
restrictive. An assumption of increasing productivity over time does not (in our opinion)
violate real-world expected empirical behaviour.
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As opposed to other research reporting really large-scale cases, we do not reformulate
the original CLSP. There may of course be very good reasons for doing so (see e. g.
Haugen [10]), but we still feel that the original CLSP are of practical relevance.

There are several options to improve our algorithmic choice. For instance, choosing
either “WW” or EOQ as a sub-problem solver for the LB-problems could be extended
to applying a combination. An interesting strategy to investigate could be to apply
EOQ initially, to acquire a relatively good solution fast, and then continue with “WW”
in order to improve on this solution. We have not tested this option, though obviously
feasible. Furthermore, a closer look into the possibility of more serious applications of
dynamic smoothing may prove interesting. A classical feature of the type of heuristic
we have applied is cycling. Previous research (see for instance [10] or [11]) indicates
algorithmic sensitivity with regards to the either static or dynamic choices of smoothing
parameter(s). An algorithmic scheme with the possibility of changing these parameters
dynamically seems an interesting candidate to investigate further.

Finally, it seems fair to stress that we merely have demonstrated the potential of
our algorithms in solving really large-scale CLSPs. Surely, it is necessary to formulate
a much wider set of problem instances for testing in order to get a better feeling for
behaviour of such cases. Still, we find our results both interesting as well as surprising
when it comes to observed solution quality and execution speed.

A. A SHORT DESCRIPTION OF OUR EOQ APPROXIMATION

It is of course well know from classical literature (see for instance the classical text-book
by Nahmias [17]) that the EOQ model may serve as an approximation in solving dynamic
lot-size models. Such an approximation will improve if demand variability is moderate,
and Wagner and Whitin themselves actually demonstrate the limiting behaviour of their
WW-algorithm in the original paper [20].

Our approach can be described as follows:

1) Compute EOQj for all products j ∈ {1, . . . , J}.

2) Make necessary adjustments on EOQj computed in 1) in order to spawn produc-
tion costs.

3) ∀ j ∈ {1, . . . , J} find set-up structures.

Point 1) above is straightforward. We compute average demand per product d̄j =
1
T

∑T
t=1 djt and compute EOQj =

√
2d̄j s̄j

h̄j
, where s̄j and h̄j are average set-up and

inventory costs respectively.
As our model contains production costs, point 2) indicates that we must adjust the

above calculated values for EOQj by some factor reflecting this. Some trial and error
lead to the adjustment factors for EOQj of the form K

(
cjt + ajtλ

k
jt

)
, where K is some

norming constant (revealed through experiments), and λk
jt is the Lagrangian multiplier

for product j in time period t at iteration step k.

Point 3) is then simply performed by picking the EOQ-values
(
EOQj =

√
2d̄j s̄j

h̄j

)
and looping through the given demand (over t) until aggregate demand is larger than
the given EOQ-value. This time period makes the next set-up period.
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Table 6 highlights the quality of a such an algorithm, as it produces results quality-
wise comparable to the Silver and Meal (SM) and Part Period Balancing (PPB) heuris-
tics; more than two times faster. SM approximates the original lot-size problem by
looking at average costs instead of total costs. EOQ looks at total costs, but alterna-
tively approximates demand. PPB is a kind of intermediate approach between EOQ
and SM.

The data in Table 6 are computed for 20 randomly generated data sets (one product
in 20 time periods) where all costs are constant. Demand is uniformly generated on the
interval [0, 20].

Min. 1st Qu. Median Mean 3rd Qu. Max. CPUs
SM 0 0.74 3.4 3.8 5 13 0.43
PPB 0 1.6 3.8 7 9.7 25 0.43
EOQ 0.53 1.2 2 4.9 5.1 23 0.16

Tab. 6. Quantiles, mean and median of relative errors (%) and

Computation time (ms)-

B. DESCRIPTION OF LB-PROBLEMS

The LB-problems referred in subsection 3.1 may be formulated as:

Min Z =
T∑

t=1

J∑
j=1

[sjtδjt + hjtIjt + cjtxjt]

+
T∑

t=1

λt

 J∑
j=1

ajtxjt −Rt

 (16)

s.t. the constraints (3) to (8).

where all parameters and variables are defined in section 2. (16) can be reformulated
as:

Min Z =
T∑

t=1

J∑
j=1

[sjtδjt + hjtIjt + c̄jtxjt]−
T∑

t=1

λtRt (17)

s.t. the constraints (3) to (8).

where c̄jt = cjt + λtajt. Now, for given values of λt, the final part of (17) is a constant
an can be removed from the objective. As a consequence, the remaining problem is
identical to the original Wagner/Whitin [20] formulation.

The LB-problem is then solved either by a modern version of the original Wag-
ner/Whitin Dynamic Programming algorithm [21] or by our EOQ-approximation de-
scribed in appendix A.
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C. DESCRIPTION OF UB-PROBLEMS

In this appendix we formulate and show our proposed algorithmic choices for The LB
problems referred in subsection 3.1. These problems can be formulated (As Linear
Programs) by equations (18) – (22) where variables and parameters are the same as
defined in section 2 apart from T̂ which is different from the original T . This difference
occurs due to the problem structure where binary variables are fixed and T̂ is hence
smaller than or equal to T .

Min Z =
J∑

j=1

T̂∑
t=1

[hjtIjt + cjtxjt] (18)

s.t.

I∑
j=1

ajtxjt ≤ Rt ∀ t (19)

xjt + Ij,t−1 − Ijt = djt ∀ j, t (20)
xjt ≥ 0 ∀ t (21)
Ijt ≥ 0 ∀ t. (22)

An pseudo-code algorithm for the single item version of (18) – (22) is shown below:

0. LET x∗t = dt,∀ t

1. IF x∗t ≤ Rt,∀ t STOP (x∗t is optimal)

2. IF next period is T̂ + 1 STOP

3. ELSE find next period, τ where x∗t > Rt and produce a total of x∗t −Rt

in previous periods τ−1, τ−2, . . . as close as possible to τ . (If impossible,
problem is infeasible STOP)

4. SET x∗τ = Rτ and update x∗τ−1, x
∗
τ−2, . . . correspondingly

5. GOTO 2.

The above algorithm is extended to handle multiple items by simply choosing which
product to start to produce and continue on the next product. The actual item rank is
based on the ratios cjt

ajt
to secure cost minimization.
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