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GENERALIZED SYNCHRONIZATION AND CONTROL
FOR INCOMMENSURATE FRACTIONAL UNIFIED
CHAOTIC SYSTEM AND APPLICATIONS
IN SECURE COMMUNICATION

Hongtao Liang, Zhen Wang, Zongmin Yue and Ronghui Lu

A fractional differential controller for incommensurate fractional unified chaotic system is
described and proved by using the Gershgorin circle theorem in this paper. Also, based on the
idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system
is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a
chaotic masking system is designed. Finally, the proposed fractional differential controller, GS
and chaotic masking scheme are showed by using numerical and experimental simulations.
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1. INTRODUCTION

Chaotic behaviors have been observed and studied in different areas of science and engi-
neering such as mechanics, electronics, physics, medicine, ecology, biology, economy and
so on [1, 29, 36]. Due to troubles that may arise from unusual behaviors of a chaotic sys-
tem, chaos control and synchronization have gained increasing attention in the past few
decades. Nowadays, many control techniques have been described and found, such as
open-loop control methods, traditional linear and nonlinear control methods, adaptive
control methods, optimal control methods and fuzzy control methods [8, 32]. So have
different kinds of synchronization: complete synchronization (CS, i. e. Identical syn-
chronization (IS)), phase synchronization (PS), lag synchronization (LS), anticipatory
synchronization (AS), GS, multiplexing synchronization (MS) etc. [3, 30, 35]. On the
other hand, the chaotic dynamics and synchronization control techniques of fractional
differential equations (FDEs) have attracted much attention in recent years. A number
of chaotic synchronization methods for FDEs have been developed. However, overview-
ing these synchronization methods, most of them have concentrated on studying CS.
In comparison, the number of GS studied is far fewer than CS. Furthermore, it is well
known that CS is difficult to achieve except under ideal conditions, and there always ex-
ists parameter mismatches and distortions in the physical world [11, 38, 39]. Therefore,
the control and GS for FDEs will become a very important issue.
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In recent years, the applications of fractional calculus to physics, engineering and
control processing are more interesting and widely. Some fractional PID controller,
fractional PI controller, fractional PD controller and fractional lead-lag compensator
have been constructed and studied [21, 25, 32]. In [40], the GS of FDEs systems is
investigated by using different scaling factors for the system state variables and a new
synchronization scheme is obtained. Ref. [15] described an application of differential
evolution to the design of fractional-order PID controllers which are involving fractional-
order integrator and fractional-order differentiator. A drive-response synchronization
method with linear output error feedback is presented for GS of the fractional-order
chaotic systems via a scalar transmitted signal in [27]. In some of these works, it is
verified that the fractional-order controllers can have better disturbance rejection ratios
and less sensitivity to plant parameter variations compared to the traditional controllers.
However, the systems are discussed in those articles are ODEs or commensurate FDEs
systems [23, 26, 28]. It is an ideal candidate for examining fractional controller for
incommensurate FDEs systems.

From the above point of view, we can see that the study of GS and fractional con-
troller for incommensurate FDEs systems is of high practical importance. A fractional
controller is constructed based on the fractional differentiator in this paper. The paper is
organized as follows. Fractional order derivatives, numerical algorithm for FDE and sta-
bility theorem in incommensurate FDEs system are presented in Section 2. In Section 3,
the fractional differential controller is designed and proved by using the Gershgorin cir-
cle theorem. Based on the nonlinear observer and the pole assignment technique, a GS
scheme of the chaotic system is also proposed in this section. The GS method is applied
in SC and chaotic masking scheme is presented in Section 4. In Section 5, numerical
simulations are provided to illustrate the performance of the proposed control strategy
together with GS and SC. Finally, some concluding remarks are presented in the final
section.

2. FRACTIONAL CALCULUS

2.1. Basic concepts

The fractional order differentiator can be denoted by a general fundamental operator
aDq

t as a generalization of the differential and integral operators [24], which is defined
as follows,

aDq
t =


dq

dtq , R(q) > 0
1, R(q) = 0∫ t

a
(dτ)−q

, R(q) < 0
(1)

where q is the fractional order which can be a complex number and the constant a
is related to the initial conditions. There are two commonly used definitions for the
general fractional differentiation and integration, i. e., the Grünwald–Letnikov (GL) and
the Riemann Liouville (RL). The GL definition is as:

aDq
t f(t) = lim

h→0

1
hq

[(t−q)/h]∑
j=0

(−1)j

(
q
j

)
f(t− jh). (2)
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While the RL definition is given by

aDq
t f(t) =

1
Γ(n− q)

dn

dtn

∫ t

a

f(τ)
(t− τ)q−n+1 dτ. (3)

For n − 1 < q < n and Γ(x) is the well known Euler’s Gamma function. In this
paper, we will use another definition of differintegral introduced by Caputo. Caputo’s
definition can be written as

aDq
t f(t) =

1
Γ(q − n)

∫ t

a

f (n)(τ)
(t− τ)q−n+1 dτ, n− 1 < q < n. (4)

2.2. Algorithm for FDE

The numerical calculation of a FDE is not simple as that of an ODE. In the literatures of
fractional chaos, two approximation methods have been proposed for numerical solution
of a fractional differential equation. One is the frequency-domain method [5, 6]and
another is the time-domain method based on the predictor-correctors scheme [9, 10].
Here we use a predictor-corrector algorithm for FDEs systems. The brief introduction
of this algorithm is as following.

The Cauchy problem

Dq
t x(t) = f(t, x(t)), 0 < t ≤ T, x(i)(0) = x

(i)
0 , i = 0, 1, · · · ,m− 1 (5)

where m − 1 < q ≤ m ∈ N, can be transformed into an equivalent Volterra integral
equation

x(t) =
m−1∑
i=0

ti

i!
x

(i)
0 +

1
Γ(q)

∫ t

0

(t− τ)q−1
f(τ, x(τ)) dτ . (6)

Set h = T
N−1 , N ∈ N, tn = nh, n = 0, · · ·N − 1. Then (6) can be discretized as follows

xh(tn+1) =
m−1∑
i=0

tin+1

i!
x

(i)
0 +

hq

Γ(q + 2)
[f(tn+1, x

p
h(tn+1)) +

n∑
j=0

aj,n+1f(tj , xh(tj))] (7)

where

aj,n+1 =
{

nq+1 − (n− q)(n + 1)q, j = 0
(n− j + 2)q+1 + (n− j)q+1 − 2(n− j + 1)q+1, 1 ≤ j < n

xp
h(tn+1) =

n−1∑
i=0

tin+1

i!
x

(i)
0 +

1
Γ(q)

n∑
j=0

bj,n+1f(tj , xh(tj))

bj·n+1 =
hq

q
[(n + 1− j)q − (n− j)q], 0 ≤ j ≤ n.
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2.3. Stability of FDEs system

Lemma 2.1. Linear incommensurate FDEs system [22]
dαX
dtα = AX, X ∈ Rn, A ∈ Rn×n

dα

dtα =
[

dα1

dtα1 , dα2

dtα2 , · · · , dαn

dtαn

]T
, 0 < αi < 1.

(8)

Let αi = vi

ui
, (vi, ui) = 1, vi, ui ∈ Z+ for i = 1, 2, · · · , n, and assume M to be the lowest

common multiple of all the denominator ui. Define

∆(λ) = diag(λMα1 , λMα2 , · · · , λMαn )−A. (9)

Then the zero solution of system (8) is globally asymptotically stable in the sense of
Lyapunov if all roots λ of equation det(∆(λ)) = 0 satisfy |arg(λ)| > π

2M or |arg(λ)| > Λπ
2 ,

where Λ = max{α1, α2, · · · , αn}.

Lemma 2.2. (Gershgorin circle theorem, Varga [34]) Let A = (aij)n×n ∈ Cn×n, then
the eigenvalue λ lies in one of the circles |t− aii| ≤

∑
j 6=i |aij |.

3. SYNCHRONIZATION AND CONTROL

3.1. Design of fractional differential controller

The fractional unified chaotic system [18] can be written


dαx1
dtα = (25a + 10)(x2 − x1)

dβx2
dtβ = (28− 35a)x1 − x1x3 + (29a− 1)x2

dγx3
dtγ = x1x2 − (a+8)

3 x3

(10)

where the parameter a ∈ [0, 1], 0 < α, β, γ < 1. When a ∈ [0, 0.8), equation (10) rep-
resents Lorenz fractional chaotic system, whose strange attractors is shown in Figure 1.
When a = 0.8, it represents Lü fractional chaotic system. When a ∈ (0.8, 1], it rep-
resents Chen fractional chaotic system. Also system (10) has three equilibrium points
O(0, 0, 0), O±(±

√
(8 + a)(9− 2a),±

√
(8 + a)(9− 2a), 27− 6a).

Denote the equilibrium points O± as (η, η, ξ) , and let x̂i = xi − η, ( i = 1, 2 ),x̂3 =
x3 − ξ, since the Caputo derivative of a constant is zero, then the system (10) can be
written as 

dαx̂1
dtα = (25a + 10)(x̂2 − x̂1)

dβ x̂2
dtβ = (1− 29a)(x̂1 − x̂2)− x̂1x̂3 − ηx̂3

dγ x̂3
dtγ = x̂1x̂2 + η(x̂1 + x̂2)− (a+8)

3 x̂3.

(11)
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Fig. 1. Attractor of Fractional fractional unified chaotic system with

a = 0.7, (α, β, γ) = (0.85, 0.9, 0.95).

Consider the control system

dαx̂1
dtα = (25a + 10)(x̂2 − x̂1) + u1 − k1x̂1

dβ x̂2
dtβ = (1− 29a)(x̂1 − x̂2)− x̂1x̂3 − ηx̂3 + u2 − k2x̂2

dγ x̂3
dtγ = x̂1x̂2 + η(x̂1 + x̂2)− (a+8)

3 x̂3 + u3 − k3x̂3

dpu1
dtp = −u1 − k4x̂1

dqu2
dtq = −u2 − k5x̂2

dru3
dtr = −u3 − k6x̂3

(12)

where ui(0) = 0, ki > 0. Obviously, the system (12) can be transformed into the form
of (8), and the coefficient matrix is

A(X) =



−(25a + 10 + k1) 25a + 10 0 1 0 0
(1− 29a)− x̂3 −(1− 29a + k2) −η 0 1 0

x̂2 + η η −
(

(a+8)
3 + k3

)
0 0 1

−k4 −1
−k5 −1

−k6 −1


.

Obviously, A(X) is not a constant matrix, Lemma 2.1 can not be applied to fractional
order nonlinear system directly. However, the zero solution of fractional order nonlinear
system is asymptotically stable if the real part of all the eigenvalues of the coefficient
matrix containing state variables less than zero regardless of the values of state variables
(except the origin) [28,29]. Because the variable of chaotic system is bounded, we can
let M2 = max{|(1− 29a)− x̂3|+ |η|}, M3 = max{|x̂2 + η|+ |η|}, and have
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Theorem 3.1. The equilibrium points O± of the incommensurate fractional system
(10) are asymptotically stable if k1 > 1, k2 > 29a + M2, k3 > − (a+5)

3 + M3 > 0,
0 < k4,5,6 < 1.

P r o o f . By Lemma 2.2, the eigenvalue of A(X) lies in the circles

|λ1 + (25a + 10 + k1)| ≤ 25a + 11, |λ2 + (1− 29a + k2)| ≤ |(1− 29a)− x̂3|+ |η|+ 1,∣∣∣∣λ3 + (
(a + 8)

3
+ k3)

∣∣∣∣ ≤ |x̂2 + η|+ |η|+ 1, |λ4 + 1| ≤ k4, |λ5 + 1| ≤ k5, |λ6 + 1| ≤ k6.

According to the condition, when k1 > 1, k2 > 29a + M2, k3 > − (a+5)
3 + M3 > 0,

0 < k4,5,6 < 1, we can see that all the circles lie in the left of imaginary axis, and the
real of all the eigenvalue of A(X) less than zero, i. e., all λ satisfy |arg(λ)| > π

2 > Λπ
2 for

0 < Λ = max{α, β, γ, p, q, r} < 1. By Lemma 2.1, we can know that the zero solution of
the control system (12) is asymptotically stable, i. e. the equilibrium points O± of the
incommensurate fractional system (10) is asymptotically stable if k1 > 1, k2 > 29a+M2,
k3 > − (a+5)

3 + M3 > 0, 0 < k4,5,6 < 1. �

Remarks: For the equilibrium point O, the coefficient matrix of the control system is

A(X) =



−(25a + 10 + k1) 25a + 10 0 1 0 0
(28− 35a)− x3 −(1− 29a + k2) 0 0 1 0

x2 0 −
(

(a+8)
3 + k3

)
0 0 1

−k4 −1
−k5 −1

−k6 −1


and the Theorem 3.1 will become

Theorem 3.2. The equilibrium point O of the incommensurate fractional system (10)
is asymptotically stable if k1 > 1, k2 > 29a+M2, k3 > − (a+5)

3 +M3 > 0, 0 < k4,5,6 < 1,
where M2 = max{|(28− 35a)− x3|}, M3 = max{|x2|}.

3.2. GS with observer

Rewrite the fractional unified chaotic system as{
dσX
dtσ = AX + BF (X)

σ = (α, β, γ)T
(13)

where, A =

(
−25a− 10 25a + 10 0
28− 35a 29a− 1 0

0 0 −a+8
3

)
, B =

(
0 0
−1 0
0 1

)
, F (X) =

(
x1x3

x1x2

)
, and

suppose the system (13) has the output F (X), based on the design idea of nonlinear
observer, we configure the transmitted synchronizing signal as

G(X) = F (X) + KX (14)
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where K ∈ R2×3 is a feedback gain matrix to be decided. Construct the following
fractional order observer

dσY

dtσ
= P−1APY + P−1B(G(X)−KPY ) (15)

where, Rank(P ) = 3.

Theorem 3.3. If (A,B) is controllable, and |arg(λi(A−BK))| > Λπ
2 , i = 1, 2, 3, Λ =

max{α, β, γ}, then limt→∞ ‖PY −X‖ = 0, i. e. system (13) and (15) will approach GS
with the observe (15).

P r o o f . Let e = PY −X, then

dσe
dtσ = P dσY

dtσ − dσX
dtσ

= APY + B(G(X)−KPY )−AX −BF (X)
= A(PY −X)−BK(PY −X) = (A−BK)e.

(16)

By the Lemma 2.1, the system (16) is globally asymptotically stable under the conditions
of Theorem 3.3, i. e. limt→∞ ‖e‖ = 0. �

Remarks: When P = I, where I is an identical matrix, the system (13) and (15) are
in CS. When P = −I, the two systems are anti-synchronized. When P = kI and k 6= ±1
are constant, the two systems are in GS.

4. SC TECHNIQUES BASED ON CS

The use of CS for secure information transmission implies the presence of at least two
unidirectionally coupled identical chaotic oscillators. There are many methods based

Fig. 2. Basic structure of a typical chaotic masking system.
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on this principle, i. e., chaotic masking, chaotic regime switching, the nonlinear mixing
of an information signal with a chaotic one, the modulation of control parameters of
a transmitting oscillator with a valid information signal, etc. [2, 7, 12, 15, 33]. These
methods constitute the basis of many SC techniques, hence, we consider the chaotic
masking by using the fractional chaotic system in this section.

Chaotic masking is one of the first and simplest techniques for transmitting informa-
tion in a secure fashion. A schematic diagram of this method is shown in Figure 2. The
information signal m(t) is combined in the summator with a carrier generated by the
chaotic system x(t) for transmission through the communication channel. The received
signal causes complete chaotic synchronization of the chaotic oscillator u(t) in the re-
ceiver, as a result, the dynamics of the receiving oscillator become identical to that of
the transmitting one. The detected signal m̃(t) is produced after passing through the
subtractor as the difference between the received signal and the synchronous response
of the chaos oscillator in the receiver.

5. NUMERICAL EXPERIMENTS

Simulation 1: Chaos control using fractional controller

Let a = 0.7, the fractional unified chaotic system (10) represents Lorenz fractional
chaotic system. Take (α, β, γ) = (0.85, 0.9, 0.95), (p, q, r) = (0.8, 0.9, 0.8), k1 = 2, k2 =
100, k3 = 80, k4, 5, 6 = 0.5, by theorem 3.1, the zero solution of the incommensurate
fractional system (12) is asymptotically stable (see Figure 3).

Fig. 3. State diagram of system (12) ( x̂1: real line, x̂2: dash line, x̂3:

dot line).

Simulation 2: GS of the incommensurate fractional unified chaotic system
using observe

Let the closed-loop poles at [−2,−1,−2], by the pole assignment algorithm of multi-input

system, we can obtain a feedback gain matrix K =
(
−28.0727 5.2 0

0 0 −0.9

)
. Denote
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Fig. 4. Fractional controller u.

P = 0.3I, and I is an identity matrix, from Figures 6 to 8, we can see that the state X
equals PY .

Fig. 5. GS of system (13) and the observe (15).
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Fig. 6. State diagram of system (13) and (15), X1 − Y1 ( X1: real

line, Y1: dot line).

Fig. 7. State diagram of system (13) and (15), X2 − Y2 ( X2: real

line, Y2: dot line).

Simulation 3: Applications of GS in SC

Let the information signal m(t) = 1
2 cos t + 1

5 sin t
5 , The synchronization of transmitted

signal and mixed signal see Figure 13.

6. CONCLUSION

This paper deals with a fractional calculus based control strategy for chaos suppression in
the FDEs systems. The application of fractional calculus and Gershgorin circle theorem
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Fig. 8. State diagram of system (13) and (15), X3 − Y3 ( X3: real

line, Y3: dot line).

Fig. 9. State diagram of system (13) and (15), X1 − (PY )1 ( X1:

real line, (PY )1: dash line).

in controlling of the incommensurate fractional unified chaotic system is presented. We
propose a controller structure based on the fractional differentiator which can stabilize
some fixed points in chaotic system. Also offer observer for GS of the fractional unified
chaotic system and apply this synchronization technology in SC. Numerical simulations
confirm the efficiency of the proposed controller in suppression of chaotic oscillations
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Fig. 10. State diagram of system (13) and (15), X2 − (PY )2 ( X2:

real line, (PY )2: dash line).

Fig. 11. State diagram of system (13) and (15), X3 − (PY )3 ( X3:

real line, (PY )3: dash line).

and the proposed chaotic masking scheme’s success in the communication application.
Another topics, such as the influences of the noise in the parameters and structure
of the controlled system can be investigated for future research. Moreover, in future
works, we also can use fractional controller practically in control of chaotic systems,
such as multi-scroll chaotic systems which have been advanced by some effective design
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Fig. 12. State diagram of error system (16).

Fig. 13. The transmitted signal and mixed signal of chaotic masking

system.

methods using piecewise-linear functions, cellular neural networks, nonlinear modulating
functions, circuit component design, switching manifolds, etc. [16, 17, 19, 20]. Take
some special multi-scroll chaotic systems which designed by sine function [38-40] as an
example, since sinx =

∑∞
n=1 (−1)n+1 x2n−1

(2n−1)! = x
(
1 +

∑∞
n=1 (−1)n x2n

(2n+1)!

)
for x ∈ R,

obviously, when this multi-scroll chaotic system transformed into the form of (8), the
coefficient matrix includes 1+

∑∞
n=1 (−1)n x2n

(2n+1)! . Because the variable of chaotic system
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Fig. 14. Error of the information signal m(t) and the detected signal

m̃(t).

is bounded, we can let |x| ≤ M , then
∣∣∣1 +

∑∞
n=1 (−1)n x2n

(2n+1)!

∣∣∣ ≤ 1+
∑∞

n=1
M2n

(2n+1)! . And

we can see that the series
∑∞

n=1
M2n

(2n+1)! is convergence, like the theorem 3.1, we can
obtain that the equilibrium points will be asymptotically stable under the conditions of
the appropriate feedback control parameters k using Lemma 2.1 and Lemma 2.2. We
leave these for future work, and will discuss the practicality in more detail later.
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